1
|
Takamoto K, Inazu K, Nakai S, Inoue K, Tsuda M. Do confined field trials add value for the environment risk assessment of genetically modified Brassica napus L. in Japan? Transgenic Res 2025; 34:6. [PMID: 39777564 PMCID: PMC11706835 DOI: 10.1007/s11248-024-00425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/30/2024] [Indexed: 01/11/2025]
Abstract
The environmental risk assessment (ERA) of genetically modified (GM) crops in Japan requires collecting data from a comparative study of a GM and non-GM control in an in-country confined field trial (CFT). This in-country CFT requirement is used to address concerns that differences in the local environmental conditions may lead to differences in growth and/or risks of GM crops. However, this requirement for in-country CFT has recently been exempted for certain GM maize and GM cotton traits, and instead CFT data from other countries are used to inform the ERA of these GM events. However, in-country CFTs continue to be required for GM B. napus. Our objective is to assess whether using B. napus as a host crop increases the potential for differences between GM B. napus and conventional B. napus that may have an impact on biodiversity occurring only under the Japanese environment. In this paper agronomic data was compiled from seven local CFTs of GM B. napus events to assess the potential for differences between GM and non-GM B. napus for three key areas; competitiveness, potential to produce harmful substances, and outcrossing. Considering these elements, the need for conducting CFTs locally for ERA of future GM B. napus traits is discussed. The assessment concluded that conducting CFT locally is not necessary for GM B. napus events if traits do not bring competitive advantage or produce harmful substances only under Japanese environment.
Collapse
Affiliation(s)
- Kei Takamoto
- Bayer CropScience K.K., Marunouchi Kitaguchi Bldg, 1-6-5, Marunouchi, Chiyoda-ku, Tokyo, 100-8262, Japan
- Degree Programs in Life and Earth Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kaori Inazu
- BASF Japan Ltd., 3-4-4 Nihonbashi Muromachi, Chuo-ku, Tokyo, 103-0022, Japan
| | - Shuichi Nakai
- Bayer CropScience K.K., Marunouchi Kitaguchi Bldg, 1-6-5, Marunouchi, Chiyoda-ku, Tokyo, 100-8262, Japan
| | - Koichi Inoue
- BASF Japan Ltd., 3-4-4 Nihonbashi Muromachi, Chuo-ku, Tokyo, 103-0022, Japan
| | - Mai Tsuda
- Faculty of Food and Nutritional Sciences, Toyo University, 48-1 Oka, Asaka-shi, Saitama, 351-8510, Japan.
| |
Collapse
|
2
|
Pascher K, Hainz-Renetzeder C, Jagersberger M, Kneissl K, Gollmann G, Schneeweiss GM. Contamination of imported kernels by unapproved genome-edited varieties poses a major challenge for monitoring and traceability during transport and handling on a global scale: inferences from a study on feral oilseed rape in Austria. Front Genome Ed 2023; 5:1176290. [PMID: 37153078 PMCID: PMC10156978 DOI: 10.3389/fgeed.2023.1176290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Novel techniques such as CRISPR/Cas are increasingly being applied for the development of modern crops. However, the regulatory framework for production, labelling and handling of genome-edited organisms varies worldwide. Currently, the European Commission is raising the question whether genome-edited organisms should still be regulated as genetically modified organisms in the future or whether a deregulation should be implemented. In our paper, based on the outcome of a 2-year case study on oilseed rape in Austria, we show that seed spillage during import and subsequent transport and handling activities is a key factor for the unintended dispersal of seeds into the environment, the subsequent emergence of feral oilseed rape populations and their establishment and long-term persistence in natural habitats. These facts must likewise be considered in case of genome-edited oilseed rape contaminants that might be accidentally introduced with conventional kernels. We provide evidence that in Austria a high diversity of oilseed rape genotypes, including some with alleles not known from cultivated oilseed rape in Austria, exists at sites with high seed spillage and low weed management, rendering these sites of primary concern with respect to possible escape of genome-edited oilseed rape varieties into the environment. Since appropriate detection methods for single genome-edited oilseed rape events have only recently started to be successfully developed and the adverse effects of these artificial punctate DNA exchanges remain largely unknown, tracing the transmission and spread of these genetic modifications places high requirements on their monitoring, identification, and traceability.
Collapse
Affiliation(s)
- Kathrin Pascher
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Institute of Zoology, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Kathrin Pascher,
| | - Christa Hainz-Renetzeder
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Institute of Landscape Development, Recreation and Conservation Planning (ILEN), Department of Landscape, Spatial and Infrastructure Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michaela Jagersberger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Katharina Kneissl
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Günter Gollmann
- Department of Evolutionary Biology, Unit for Theoretical Biology, University of Vienna, Vienna, Austria
| | - Gerald M. Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Rostoks N, Grantiņa-Ieviņa L, Ieviņa B, Evelone V, Valciņa O, Aleksejeva I. Genetically modified seeds and plant propagating material in Europe: potential routes of entrance and current status. Heliyon 2019; 5:e01242. [PMID: 30815609 PMCID: PMC6378350 DOI: 10.1016/j.heliyon.2019.e01242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 11/09/2022] Open
Abstract
Genetically modified organisms (GMO), mainly crop plants, are increasingly grown worldwide leading to large trade volumes of living seeds and other plant material both for cultivation and for food and animal feed. Even though all the traded GMOs have been assessed for their safety with regards to human and animal health and the environment, there still are some concerns regarding the potential uncontrolled release in the environment of authorized or unauthorized GM plants. In this review, we identify the possible entrance routes of GM seeds and other propagating plant material in the EU which could be linked to unauthorized release of GMOs in the environment. In addition, we discuss the situation with GM plant cultivation in some non-EU countries in terms of potential risks for GM seed imports. The available body of information suggests that GM seeds and plant propagating material can enter the EU due to problems with labeling/traceability of GM seed lots, contamination of conventional seed lots and accidental release into the environment of grains imported for food and animal feed. Even though cases of uncontrolled release of authorized GMOs, as well as, release of unauthorized GMOs have been reported, they can be generally attributed to adventitious and technically unavoidable presence with little environmental impact. In conclusion, the probability of GM seeds and plant propagating material illegally entering the cultivation in EU is unlikely. However, specific monitoring programs need to be established and maintained to facilitate the compliance of European farmers with the current GMO legislation.
Collapse
Affiliation(s)
- Nils Rostoks
- Faculty of Biology, University of Latvia, 1 Jelgavas Street, LV-1004, Latvia
| | - Lelde Grantiņa-Ieviņa
- Institute of Food Safety, Animal Health and Environment "BIOR", 3 Lejupes Street, Riga, LV-1076, Latvia
| | - Baiba Ieviņa
- State Plant Protection Service, 36 Lielvardes Street, Riga, LV-1006, Latvia
| | - Velta Evelone
- State Plant Protection Service, 36 Lielvardes Street, Riga, LV-1006, Latvia
| | - Olga Valciņa
- Institute of Food Safety, Animal Health and Environment "BIOR", 3 Lejupes Street, Riga, LV-1076, Latvia
| | - Inese Aleksejeva
- Biotechnology and Quality Division, Veterinary and Food Department, Ministry of Agriculture, 2 Republic Square, Riga, LV-1981, Latvia
| |
Collapse
|
4
|
Lemke A, Kowarik I, Lippe M. How traffic facilitates population expansion of invasive species along roads: The case of common ragweed in Germany. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andreas Lemke
- Department of EcologyEcosystem Science/Plant EcologyTechnische Universität Berlin Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - Ingo Kowarik
- Department of EcologyEcosystem Science/Plant EcologyTechnische Universität Berlin Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - Moritz Lippe
- Department of EcologyEcosystem Science/Plant EcologyTechnische Universität Berlin Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| |
Collapse
|
5
|
Mikhaylova EV, Kuluev BR. Potential for gene flow from genetically modified Brassica napus on the territory of Russia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:557. [PMID: 30159768 DOI: 10.1007/s10661-018-6946-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
Gene flow from genetically modified crops has been studied for more than 20 years, but public concern still remains. A lot of data on this matter is obtained on the territory of EU and the USA, but in the majority of countries, such experiments were never carried out. Here, we present the first study of interspecific and intraspecific hybridization of transgenic Brassica napus on the territory of Russia. The experiment was conducted using two different models of coexistence. Cross-pollination with related species was more frequent in mixed than that in separated populations. We observed maximum 4.1% of transgenic seeds in the progeny of Brassica rapa and 0.6% in the progeny of Brassica juncea. The highest intraspecific hybridization rate of 0.67% was observed in separated populations. DNA fragments, typical to both parents, were present in the genome of the hybrids. The risk of gene flow in Russia is relatively low, but it will be problematic to do environmental monitoring on such a big territory. However, instead of banning the cultivation of genetically modified crops, some new varieties with visually detectable selective traits could be designed and approved for cultivation.
Collapse
Affiliation(s)
- Elena V Mikhaylova
- Laboratory of Bioengineering of plants and microorganisms, Institute of Biochemistry and Genetics UFRC RAS, Prospekt Oktabrya, 71, Ufa, Russian Federation, 450054.
| | - Bulat R Kuluev
- Laboratory of Bioengineering of plants and microorganisms, Institute of Biochemistry and Genetics UFRC RAS, Prospekt Oktabrya, 71, Ufa, Russian Federation, 450054
| |
Collapse
|
6
|
Pascher K, Hainz-Renetzeder C, Gollmann G, Schneeweiss GM. Spillage of Viable Seeds of Oilseed Rape along Transportation Routes: Ecological Risk Assessment and Perspectives on Management Efforts. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Goto H, McPherson MA, Comstock BA, Stojšin D, Ohsawa R. Likelihood assessment for gene flow of transgenes from imported genetically modified soybean ( Glycine max (L.) Merr.) to wild soybean ( Glycine soja Seib. et Zucc.) in Japan as a component of environmental risk assessment. BREEDING SCIENCE 2017; 67:348-356. [PMID: 29085244 PMCID: PMC5654456 DOI: 10.1270/jsbbs.16134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/02/2017] [Indexed: 05/07/2023]
Abstract
Environmental risk assessment is required for genetically modified (GM) crops before their import into Japan. Annual roadside monitoring along transportation routes from ports to processing facilities for GM soybean (Glycine max (L.) Merr.) have been requested as a condition of import only approval because of lack of information on the likelihood of persistence of imported GM soybean for food, feed and processing and the potential for transfer of transgenes into wild soybean (Glycine soja Seib. et Zucc.) through gene flow under the Japanese environment. The survey of soybean seeds, plants and wild soybean populations were conducted along transportation routes from unloading ports to processing facilities that provided data to help quantify actual exposure. The survey indicated that the opportunities for co-existence and subsequent crossing between wild soybean populations and imported soybean are highly unlikely. Together the survey results and the comprehensive literature review demonstrated low exposure of imported GM soybean used for food, feed and processing in Japan. This evaluation of exposure level is not specific to particular GM soybean event but can apply to any GM soybean traits used for food, feed and processing if their weediness or invasiveness are the same as those of the conventional soybean.
Collapse
Affiliation(s)
- Hidetoshi Goto
- Monsanto Japan Limited,
2-5-18, Kyobashi, Chuo-ku, Tokyo 104-0031,
Japan
- Laboratory of Plant Breeding, Graduate School of Life and Environmental Sciences, University of Tsukuba,
1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572,
Japan
- Corresponding author (e-mail: )
| | | | | | - Duška Stojšin
- Monsanto Company,
800 N Lindbergh Blvd., St. Louis, MO 63167,
USA
| | - Ryo Ohsawa
- Laboratory of Plant Breeding, Graduate School of Life and Environmental Sciences, University of Tsukuba,
1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572,
Japan
| |
Collapse
|
8
|
Long-Term Monitoring of Field Trial Sites with Genetically Modified Oilseed Rape (Brassica napus L.) in Saxony-Anhalt, Germany. Fifteen Years Persistence to Date but No Spatial Dispersion. Genes (Basel) 2016; 7:genes7010003. [PMID: 26784233 PMCID: PMC4728383 DOI: 10.3390/genes7010003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 11/17/2022] Open
Abstract
Oilseed rape is known to persist in arable fields because of its ability to develop secondary seed dormancy in certain agronomic and environmental conditions. If conditions change, rapeseeds are able to germinate up to 10 years later to build volunteers in ensuing crops. Extrapolations of experimental data acted on the assumption of persistence periods for more than 20 years after last harvest of rapeseed. Genetically-modified oilseed rape-cultivated widely in Northern America since 1996-is assumed not to differ from its conventional form in this property. Here, experimental data are reported from official monitoring activities that verify these assumptions. At two former field trial sites in Saxony-Anhalt genetically-modified herbicide-resistant oilseed rape volunteers are found up to fifteen years after harvest. Nevertheless, spatial dispersion or establishment of GM plants outside of the field sites was not observed within this period.
Collapse
|
9
|
Nishizawa T, Nakajima N, Tamaoki M, Aono M, Kubo A, Saji H. Fixed-route monitoring and a comparative study of the occurrence of herbicide-resistant oilseed rape (Brassica napus L.) along a Japanese roadside. GM CROPS & FOOD 2016; 7:20-37. [PMID: 26838503 PMCID: PMC5033165 DOI: 10.1080/21645698.2016.1138196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 11/05/2022]
Abstract
Previously, we conducted a roadside survey to reveal the occurrence of genetically modified (GM) oilseed rape along a Japanese roadside (Route 51). In this study, we performed successive and thorough fixed-route monitoring in 5 sections along another road (Route 23). Oilseed rape plants were detected on both sides of the road in each section between autumn 2009 and winter 2013, which included 3 flowering seasons. In four sections, more plants were found on the side of the road leading from the Yokkaichi port than on the opposite side. In the fifth section, the presence of clogged drains on the roadside, where juvenile plants concentrated, caused the opposite distribution: oilseed rape predominantly occurred along the inbound lanes (leading to the Yokkaichi port) in 2010 and 2012. Unlike in our previous survey, glyphosate- or glufosinate-resistant oilseed rape plants were abundant (>75% of analyzed plants over 3 years). Moreover, a few individuals bearing both herbicide resistance traits were also detected in some sections. The spillage of imported seeds may explain the occurrence of oilseed rape on the roadside. The abundance of herbicide-resistant oilseed rape plants may reflect the extent of contamination with GM oilseed rape seed within imports.
Collapse
Affiliation(s)
- Toru Nishizawa
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Japan
| | - Nobuyoshi Nakajima
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Japan
| | - Masanori Tamaoki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Japan
| | - Mitsuko Aono
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Japan
| | - Akihiro Kubo
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Japan
| | - Hikaru Saji
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
10
|
Abstract
Convincing evidence has accumulated that unintended transgene escape occurs in oilseed rape, maize, cotton and creeping bentgrass. The escaped transgenes are found in variant cultivars, in wild type plants as well as in hybrids of sexually compatible species. The fact that in some cases stacked events are present that have not been planted commercially, implies unintended recombination of transgenic traits. As the consequences of this continuous transgene escape for the ecosystem cannot be reliably predicted, I propose to use more sophisticated approaches of gene technology in future. If possible GM plants should be constructed using either site-directed mutagenesis or cisgenic strategies to avoid the problem of transgene escape. In cases where a transgenic trait is needed, efficient containment should be the standard approach. Various strategies available or in development are discussed. Such a cautious approach in developing novel types of GM crops will enhance the sustainable potential of GM crops and thus increase the public trust in green gene technology.
Collapse
Affiliation(s)
- Gerhart U Ryffel
- a Institut für Zellbiologie (Tumorforschung); Universitätsklinikum Essen ; Essen , Germany
| |
Collapse
|
11
|
Katsuta K, Matsuo K, Yoshimura Y, Ohsawa R. Long-term monitoring of feral genetically modified herbicide-tolerant Brassica napus populations around unloading Japanese ports. BREEDING SCIENCE 2015; 65:265-75. [PMID: 26175624 PMCID: PMC4482177 DOI: 10.1270/jsbbs.65.265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
Genetically modified, herbicide-tolerant (GMHT) Brassica napus plants originating from seed spill have recently been found along roadsides leading from Japanese ports that unload oilseed rape. Such introductions have potential biodiversity effects (as defined by the Cartagena Protocol): these include replacement of native elements in the biota through competitive suppression or hybridization. We conducted surveys in the period 2006-2011 to assess such threats. We examined shifts in the population distribution and occurrence of GMHT plants in 1,029 volunteer introduced assemblages of B. napus, 1,169 of B. juncea, and 184 of B. rapa around 12 ports. GMHT B. napus was found around 10 of 12 ports, but its proportion in the populations varied greatly by year and location. Over the survey period, the distributions of a pure non-GMHT population around Tobata and a pure GMHT population around Hakata increased significantly. However, there was no common trend of population expansion or contraction around the 12 ports. Furthermore, we found no herbicide tolerant B. juncea and B. rapa plants derived from crosses with GMHT B. napus. Therefore, GMHT B. napus is not invading native vegetation surrounding its populations and not likely to cross with congeners in Japanese environment.
Collapse
Affiliation(s)
- Kensuke Katsuta
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry and Fisheries of Japan,
Kasumigaseki, Tokyo 100-8950,
Japan
| | - Kazuhito Matsuo
- Biodiversity Division, National Institute for Agro-Environmental Sciences,
Tsukuba, Ibaraki 305-8604,
Japan
| | - Yasuyuki Yoshimura
- Biodiversity Division, National Institute for Agro-Environmental Sciences,
Tsukuba, Ibaraki 305-8604,
Japan
| | - Ryo Ohsawa
- Faculty of Life and Environmental Sciences, University of Tsukuba,
Tsukuba, Ibaraki 305-8572,
Japan
| |
Collapse
|
12
|
Schulze J, Frauenknecht T, Brodmann P, Bagutti C. Unexpected diversity of feral genetically modified oilseed rape (Brassica napus L.) despite a cultivation and import ban in Switzerland. PLoS One 2014; 9:e114477. [PMID: 25464509 PMCID: PMC4252112 DOI: 10.1371/journal.pone.0114477] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds.
Collapse
Affiliation(s)
- Juerg Schulze
- State Laboratory Basel-City, Biosafety Laboratory, Basel, Switzerland
| | - Tina Frauenknecht
- State Laboratory Basel-City, Biosafety Laboratory, Basel, Switzerland
| | - Peter Brodmann
- State Laboratory Basel-City, Biosafety Laboratory, Basel, Switzerland
| | - Claudia Bagutti
- State Laboratory Basel-City, Biosafety Laboratory, Basel, Switzerland
- * E-mail:
| |
Collapse
|
13
|
Statement on a conceptual framework for the risk assessment of certain food additives re‐evaluated under Commission Regulation (EU) No 257/2010. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
14
|
Scientific Opinion on application (EFSA‐GMO‐BE‐2011‐101) for the placing on the market of herbicide‐tolerant genetically modified oilseed rape MON 88302 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
15
|
Hecht M, Oehen B, Schulze J, Brodmann P, Bagutti C. Detection of feral GT73 transgenic oilseed rape (Brassica napus) along railway lines on entry routes to oilseed factories in Switzerland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1455-65. [PMID: 23917737 DOI: 10.1007/s11356-013-1881-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/28/2013] [Indexed: 06/02/2023]
Abstract
To obtain a reference status prior to cultivation of genetically modified oilseed rape (OSR, Brassica napus L.) in Switzerland, the occurrence of feral OSR was monitored along transportation routes and at processing sites. The focus was set on the detection of (transgenic) OSR along railway lines from the Swiss borders with Italy and France to the respective oilseed processing factories in Southern and Northern Switzerland (Ticino and region of Basel). A monitoring concept was developed to identify sites of largest risk of escape of genetically modified plants into the environment in Switzerland. Transport spillage of OSR seeds from railway goods cars particularly at risk hot spots such as switch yards and (un)loading points but also incidental and continuous spillage were considered. All OSR plants, including their hybridization partners which were collected at the respective monitoring sites were analyzed for the presence of transgenes by real-time PCR. On sampling lengths each of 4.2 and 5.7 km, respectively, 461 and 1,574 plants were sampled in Ticino and the region of Basel. OSR plants were found most frequently along the routes to the oilseed facilities, and in larger amounts on risk hot spots compared to sites of random sampling. At three locations in both monitored regions, transgenic B. napus line GT73 carrying the glyphosate resistance transgenes gox and CP4 epsps were detected (Ticino, 22 plants; in the region of Basel, 159).
Collapse
Affiliation(s)
- Mirco Hecht
- State Laboratory Basel-City, Biosafety Laboratory, Kannenfeldstrasse 2, 4012, Basel, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape events Ms8, Rf3 and Ms8 × Rf3 for import, processing and feed uses in Austria. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape event GT73 for import, processing and feed uses in Austria. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Scientific Opinion on application (EFSA‐GMO‐NL‐2010‐87) for the placing on the market of genetically modified herbicide tolerant oilseed rape GT73 for food containing or consisting of, and food produced from or containing ingredients produced from, oilseed rape GT73 (with the exception of refined oil and food additives) under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Scientific Opinion on application (EFSA-GMO-BE-2010-81) for the placing on the market of genetically modified herbicide-tolerant oilseed rape Ms8, Rf3 and Ms8 × Rf3 for food containing or consisting of, and food produced from or containing ingredients pro. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
20
|
Tsuda M, Okuzaki A, Kaneko Y, Tabei Y. Relationship between hybridization frequency of Brassica juncea × B. napus and distance from pollen source (B. napus) to recipient (B. juncea) under field conditions in Japan. BREEDING SCIENCE 2012; 62:274-281. [PMID: 23226088 PMCID: PMC3501945 DOI: 10.1270/jsbbs.62.274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 05/28/2012] [Indexed: 06/01/2023]
Abstract
Several imported transgenic canola (Brassica napus) seeds have been spilled and have grown along roadsides around import ports. B. juncea, a relative of B. napus with which it has high interspecific crossability, is widely distributed throughout Japan. There is public concern about the harmful impacts of feral B. napus plants on biodiversity, but spontaneous hybridization between spilled B. napus and weedy B. juncea populations is hardly revealed. We evaluated the relationship between the hybridization frequency of B. juncea × B. napus and their planting distance in field experiments using the mutagenic herbicide-tolerant B. napus cv. Bn0861 as a pollen source for hybrid screening. The recipient B. juncea cv. Kikarashina was planted in an experimental field with Bn0861 planted in the center. No hybrids were detected under natural flowering conditions in 2009. However, the flowering period was artificially kept overlapping in 2010, leading to a hybridization frequency of 1.62% in the mixed planting area. The hybridization frequency decreased drastically with distance from the pollen source, and was lower under field conditions than estimated from the high crossability, implying that spontaneous hybridization between spilled B. napus and weedy B. juncea is unlikely in the natural environment.
Collapse
Affiliation(s)
- Mai Tsuda
- Genetically Modified Organism Research Center, National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Ayako Okuzaki
- Genetically Modified Organism Research Center, National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yukio Kaneko
- Laboratory of Plant Breeding, Faculty of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| | - Yutaka Tabei
- Genetically Modified Organism Research Center, National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
21
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape event GT73 for import, processing and feed uses in Austria. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape events Ms8, Rf3 and Ms8 × Rf3 for import, processing and feed uses in Austria. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
23
|
Bailleul D, Ollier S, Huet S, Gardarin A, Lecomte J. Seed spillage from grain trailers on road verges during oilseed rape harvest: an experimental survey. PLoS One 2012; 7:e32752. [PMID: 22427873 PMCID: PMC3302880 DOI: 10.1371/journal.pone.0032752] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/30/2012] [Indexed: 11/18/2022] Open
Abstract
CONTEXT Anthropogenic vectors enhance the natural dispersal capacity of plant seeds significantly in terms of quantity and distance. Human-mediated seed dispersal (i.e. anthropochory) greatly increases the dispersal of crop species across agroecosystems. In the case of oilseed rape (OSR), spillage of seeds from grain trailers during harvest has never been quantified. METHODS Our experimental approach involved establishing 85 seed trap-sites on the road verges of an agricultural area around the grain silo of Selommes (Loir-et-Cher, France). We recorded OSR spillage during harvest and applied a linear model to the data. RESULTS The amount of seed spilled was related positively to the area of the OSR fields served by the road, whereas the amount of seed spilled decreased with other variables, such as distance from the trap-site to the verge of the road and to the nearest field. The distance to the grain silo, through local and regional effects, affected seed loss. Local effects from fields adjacent to the road resulted in a cumulative spillage on one-lane roads. On two-lane roads, spillage was nearly constant whatever the distance to the silo due to a mixture of these local effects and of grain trailers that joined the road from more distant fields. From the data, we predicted the number of seeds lost from grain trailers on one road verge in the study area. We predicted a total spillage of 2.05 × 10(6) seeds (± 4.76 × 10(5)) along the road length, which represented a mean of 404 ± 94 seeds per m(2). CONCLUSION Containment of OSR seeds will always be challenging. However, seed spillage could be reduced if grain trailers were covered and filled with less seed. Reducing distances travelled between fields and silos could also limit seed loss.
Collapse
Affiliation(s)
- Diane Bailleul
- Unité Ecologie, Systématique et Evolution, Université Paris-Sud, Orsay, France
| | - Sébastien Ollier
- Unité Ecologie, Systématique et Evolution, Université Paris-Sud, Orsay, France
| | - Sylvie Huet
- Département Mathématiques et Informatique Appliquées, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Antoine Gardarin
- Unité Ecologie, Systématique et Evolution, Université Paris-Sud, Orsay, France
| | - Jane Lecomte
- Unité Ecologie, Systématique et Evolution, Université Paris-Sud, Orsay, France
| |
Collapse
|
24
|
Nishizawa T, Tamaoki M, Kaneko Y, Aono M, Kubo A, Saji H, Nakajima N. High-throughput capture of nucleotide sequence polymorphisms in three Brassica species (Brassicaceae) using DNA microarrays. AMERICAN JOURNAL OF BOTANY 2012; 99:e94-e96. [PMID: 22362544 DOI: 10.3732/ajb.1100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY To capture molecular markers that are applicable to environmental risk assessment of genetically modified oilseed rape, and to streamline their development, we screened variations in nucleotide sequences of three Brassica species by DNA microarray analysis. METHODS AND RESULTS Using the Affymetrix GeneChip Arabidopsis ATH1 Genome Array, we monitored gene expression at 22810 loci among the Brassica species and picked out 192 putative polymorphic loci. We sequenced 25 of these and successfully aligned them among all three species. All 25 loci possessed some interspecific and at times intraspecific nucleotide variation. CONCLUSIONS DNA microarray analysis effectively detected a large number of nucleotide sequence variations among closely related Brassica species. The polymorphic regions will allow the subsequent development of functional gene markers.
Collapse
Affiliation(s)
- Toru Nishizawa
- Environmental Biology Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Aono M, Wakiyama S, Nagatsu M, Kaneko Y, Nishizawa T, Nakajima N, Tamaoki M, Kubo A, Saji H. Seeds of a possible natural hybrid between herbicide-resistant Brassica napus and Brassica rapa detected on a riverbank in Japan. GM CROPS 2011; 2:201-10. [PMID: 22179196 DOI: 10.4161/gmcr.2.3.18931] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transgenic herbicide-resistant varieties of Brassica napus, or oilseed rape, from which canola oil is obtained, are imported into Japan, where this plant is not commercially cultivated to a large extent. This study aimed to examine the distribution of herbicide-resistant B. napus and transgene flow to escaped populations of its closely related species, B. rapa and B. juncea. Samples were collected from 12 areas near major ports through which oilseed rape imports into Japan passed--Kashima, Chiba, Yokohama, Shimizu, Nagoya, Yokkaichi, Sakai-Senboku, Kobe, Uno, Mizushima, Kita-Kyushu, and Hakata--and the presence of glyphosate- and/or glufosinate-resistant B. napus was confirmed in all areas except Yokohama, Sakai-Senboku, Uno, and Kita-Kyushu. The Yokkaichi area was the focus because several herbicide-resistant B. napus plants were detected not only on the roadside where oilseed rape spilled during transportation but also on the riverbanks, where escaped populations of B. rapa and B. juncea grew. Samples of B. napus that were tolerant to both herbicides were detected in four continuous years (2005-2008) in this area, suggesting the possibility of intraspecific transgene flow within the escaped B. napus populations. Moreover, in 2008, seeds of a possible natural hybrid between herbicide-tolerant B. napus (2n = 38) and B. rapa (2n = 20) were detected; some seedlings derived from the seeds collected at a Yokkaichi site showed glyphosate resistance and had 2n = 29 chromosomes. This observation strongly suggests the occurrence of hybridization between herbicide-resistant B. napus and escaped B. rapa and the probability of introgression of a herbicide-resistance gene into related escaped species.
Collapse
Affiliation(s)
- Mitsuko Aono
- Environmental Biology Division, National Institute for Environmental Studies, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Devos Y, Hails RS, Messéan A, Perry JN, Squire GR. Feral genetically modified herbicide tolerant oilseed rape from seed import spills: are concerns scientifically justified? Transgenic Res 2011; 21:1-21. [PMID: 21526422 DOI: 10.1007/s11248-011-9515-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
One of the concerns surrounding the import (for food and feed uses or processing) of genetically modified herbicide tolerant (GMHT) oilseed rape is that, through seed spillage, the herbicide tolerance (HT) trait will escape into agricultural or semi-natural habitats, causing environmental or economic problems. Based on these concerns, three EU countries have invoked national safeguard clauses to ban the marketing of specific GMHT oilseed rape events on their territory. However, the scientific basis for the environmental and economic concerns posed by feral GMHT oilseed rape resulting from seed import spills is debatable. While oilseed rape has characteristics such as secondary dormancy and small seed size that enable it to persist and be redistributed in the landscape, the presence of ferals is not in itself an environmental or economic problem. Crucially, feral oilseed rape has not become invasive outside cultivated and ruderal habitats, and HT traits are not likely to result in increased invasiveness. Feral GMHT oilseed rape has the potential to introduce HT traits to volunteer weeds in agricultural fields, but would only be amplified if the herbicides to which HT volunteers are tolerant were used routinely in the field. However, this worst-case scenario is most unlikely, as seed import spills are mostly confined to port areas. Economic concerns revolve around the potential for feral GMHT oilseed rape to contribute to GM admixtures in non-GM crops. Since feral plants derived from cultivation (as distinct from import) occur at too low a frequency to affect the coexistence threshold of 0.9% in the EU, it can be concluded that feral GMHT plants resulting from seed import spills will have little relevance as a potential source of pollen or seed for GM admixture. This paper concludes that feral oilseed rape in Europe should not be routinely managed, and certainly not in semi-natural habitats, as the benefits of such action would not outweigh the negative effects of management.
Collapse
Affiliation(s)
- Yann Devos
- European Food Safety Authority, GMO Unit, Largo Natale Palli 5/A, 43121, Parma, Italy.
| | | | | | | | | |
Collapse
|
28
|
Request from the European Commission related to the safeguard clause invoked by Austria on oilseed rape MS8, RF3 and MS8×RF3 according to Article 23 of Directive 2001/18/EC. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.1153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|