1
|
Heredia-Pech M, Martínez-Castillo J, Martínez-Natarén DA, Ruiz-Gil P, Jiménez-Rojas MI, Ortiz-García MM, Chávez-Pesqueira M. Effects of domesticated-to-wild gene flow on the genetic structure and diversity of wild papaya (Carica papaya L.) in its Mesoamerican diversity area. Genetica 2024; 153:7. [PMID: 39663322 DOI: 10.1007/s10709-024-00223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Due to the increase in demand for food production worldwide, the cultivation of improved varieties is used as a strategy in order to maximize production. The improved Maradol papaya variety was introduced to the Yucatan Peninsula (YP), Mexico, the Mesoamerican diversity area of papaya, in the 1990s. The domesticated and wild papaya belong to the same species (Carica papaya L.), which promotes gene flow from crops to their wild relatives, threatening the genetic diversity of wild papaya populations in the region. In this study, we used a population genomic approach to evaluate the impact of domesticated-to-wild gene flow on the genetic structure and diversity of wild papaya in the YP. We used 2054 SNP markers for 227 wild individuals from 15 collection sites and 127 domesticated individuals from 13 Maradol papaya plantations. We found, (a) the presence of individuals that may be the result of a hybridization process between wild and domesticated papaya; (b) a higher genetic diversity in the wild group (HE = 0.18) in comparison to the domesticated group (HE = 0.09); and (c) low migration rates from domesticated to wild plants (m = 0.005). The domesticated-to-wild gene flow in C. papaya can have a negative effect on the genetic diversity and adaptive potential of wild populations from this region. The conservation of crop wild relatives should be a priority since they are part of various ecological processes and are considered natural reservoirs of genetic diversity for crops.
Collapse
Affiliation(s)
- Mauricio Heredia-Pech
- Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 N°. 130, 97205, Mérida, Yucatán, México
| | - Jaime Martínez-Castillo
- Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 N°. 130, 97205, Mérida, Yucatán, México
| | - Daniela A Martínez-Natarén
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Km 6, Cordemex, 97310, Mérida, Yucatán, México
| | - Pedro Ruiz-Gil
- Facultad Maya de Estudios Agropecuarios, Universidad Autónoma de Chiapas, Carretera Catazajá-Palenque Km. 4, 29980, Catazajá, Chiapas, México
| | - Mónica I Jiménez-Rojas
- Tecnológico Nacional de México, Instituto Tecnológico de Mérida, Av. Tecnológico Km. 4.5, 97118, Mérida, Yucatán, México
| | - Matilde M Ortiz-García
- Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 N°. 130, 97205, Mérida, Yucatán, México
| | - Mariana Chávez-Pesqueira
- Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 N°. 130, 97205, Mérida, Yucatán, México.
| |
Collapse
|
2
|
Liang R, Liu JL, Ji XQ, Olsen KM, Qiang S, Song XL. Fitness and Hard Seededness of F 2 and F 3 Descendants of Hybridization between Herbicide-Resistant Glycine max and G. soja. PLANTS (BASEL, SWITZERLAND) 2023; 12:3671. [PMID: 37960027 PMCID: PMC10650743 DOI: 10.3390/plants12213671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
The commercial cultivation of herbicide-resistant (HR) transgenic soybeans (Glycine max L. Merr.) raises great concern that transgenes may introgress into wild soybeans (Glycine soja Sieb. et Zucc.) via pollen-mediated gene flow, which could increase the ecological risks of transgenic weed populations and threaten the genetic diversity of wild soybean. To assess the fitness of hybrids derived from transgenic HR soybean and wild soybean, the F2 and F3 descendants of crosses of the HR soybean line T14R1251-70 and two wild soybeans (LNTL and JLBC, which were collected from LiaoNing TieLing and JiLin BaiCheng, respectively), were planted along with their parents in wasteland or farmland soil, with or without weed competition. The fitness of F2 and F3 was significantly increased compared to the wild soybeans under all test conditions, and they also showed a greater competitive ability against weeds. Seeds produced by F2 and F3 were superficially similar to wild soybeans in having a hard seed coat; however, closer morphological examination revealed that the hard-seededness was lower due to the seed coat structure, specifically the presence of thicker hourglass cells in seed coat layers and lower Ca content in palisade epidermis. Hybrid descendants containing the cp4-epsps HR allele were able to complete their life cycle and produce a large number of seeds in the test conditions, which suggests that they would be able to survive in the soil beyond a single growing season, germinate, and grow under suitable conditions. Our findings indicate that the hybrid descendants of HR soybean and wild soybean may pose potential ecological risks in regions of soybean cultivation where wild soybean occurs.
Collapse
Affiliation(s)
- Rong Liang
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (J.-L.L.); (X.-Q.J.); (S.Q.)
| | - Jia-Li Liu
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (J.-L.L.); (X.-Q.J.); (S.Q.)
| | - Xue-Qin Ji
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (J.-L.L.); (X.-Q.J.); (S.Q.)
| | - Kenneth M. Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Sheng Qiang
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (J.-L.L.); (X.-Q.J.); (S.Q.)
| | - Xiao-Ling Song
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (J.-L.L.); (X.-Q.J.); (S.Q.)
| |
Collapse
|
3
|
Shao Z, Huang L, Zhang Y, Qiang S, Song X. Transgene Was Silenced in Hybrids between Transgenic Herbicide-Resistant Crops and Their Wild Relatives Utilizing Alien Chromosomes. PLANTS (BASEL, SWITZERLAND) 2022; 11:3187. [PMID: 36501227 PMCID: PMC9741405 DOI: 10.3390/plants11233187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The commercialization of transgenic herbicide-resistant (HR) crops may cause gene flow risk. If a transgene in progenies of transgenic crops and wild relatives is silencing, these progenies should be killed by the target herbicide, thus, the gene flow risk could be decreased. We obtained the progenies of backcross generations between wild Brassca juncea (AABB, 2n = 36) and glufosinate-resistant transgenic Brassica napus (AACC, 2n = 38, PAT gene located on the C-chromosome). They carried the HR gene but did not express it normally, i.e., gene silencing occurred. Meanwhile, six to nine methylation sites were found on the promoter of PAT in transgene-silencing progenies, while no methylation sites occurred on that in transgene-expressing progenies. In addition, transgene expressing and silencing backcross progenies showed similar fitness with wild Brassica juncea. In conclusion, we elaborate on the occurrence of transgene-silencing event in backcross progenies between transgenic crop utilizing alien chromosomes and their wild relatives, and the DNA methylation of the transgene promoter was an important factor leading to gene silencing. The insertion site of the transgene could be considered a strategy to reduce the ecological risk of transgenic crops, and applied to cultivate lower gene flow HR crops in the future.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoling Song
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (L.H.); (Y.Z.); (S.Q.)
| |
Collapse
|
4
|
Heredia-Pech M, Chávez-Pesqueira M, Ortiz-García MM, Andueza-Noh RH, Chacón-Sánchez MI, Martínez-Castillo J. Consequences of introgression and gene flow on the genetic structure and diversity of Lima bean ( Phaseolus lunatus L.) in its Mesoamerican diversity area. PeerJ 2022; 10:e13690. [PMID: 35811827 PMCID: PMC9266586 DOI: 10.7717/peerj.13690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/16/2022] [Indexed: 01/17/2023] Open
Abstract
We evaluated the role of gene flow and wild-crop introgression on the structure and genetic diversity of Lima bean (Phaseolus lunatus) in the Yucatan Peninsula, an important Mesoamerican diversity area for this crop, using a genotyping-by-sequencing approach (15,168 SNP markers) and two scales. At the local scale, STRUCTURE and NGSEP analyses showed predominantly crop-to-wild introgression, but also evidence of a bidirectional gene flow in the two wild-weedy-crop complexes studied (Itzinté and Dzitnup). The ABBA-BABA tests showed a higher introgression in Itzinté (the older complex) than in Dzitnup (the younger one); at the allelic level, the wild-crop introgression in Itzinté was similar in both directions, in Dzitnup it was higher from crop-to-wild; and at the chromosomal level, introgression in Itzinté was from wild-to-crop, whereas in Dzitnup it occured in the opposite direction. Also, we found H E values slightly higher in the domesticated accessions than in the wild ones, in both complexes (Itzinté: wild = 0.31, domesticated = 0.34; Dzinup: wild = 0.27, domesticated = 0.36), but %P and π estimators were higher in the wild accessions than in the domesticated ones. At a regional scale, STRUCTURE and MIGRATE showed a low gene flow, predominantly from crop-to-wild; and STRUCTURE, Neighbor-Joining and PCoA analyses indicated the existence of two wild groups and one domesticated group, with a marked genetic structure based in the existence of domesticated MI and wild MII gene pools. Also, at the regional scale, we found a higher genetic diversity in the wild accessions than in the domesticated ones, in all estimators used (e.g., H E = 0.27 and H E = 0.17, respectively). Our results indicate that gene flow and introgression are playing an important role at the local scale, but its consequences on the structure and genetic diversity of the Lima bean are not clearly reflected at the regional scale, where diversity patterns between wild and domesticated populations could be reflecting historical events.
Collapse
Affiliation(s)
- Mauricio Heredia-Pech
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México
| | - Mariana Chávez-Pesqueira
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México
| | - Matilde M. Ortiz-García
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México
| | - Rubén Humberto Andueza-Noh
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Conkal, Conkal, Yucatán, México
| | - María Isabel Chacón-Sánchez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Jaime Martínez-Castillo
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México
| |
Collapse
|
5
|
Increased Longevity and Dormancy of Soil-Buried Seeds from Advanced Crop–Wild Rice Hybrids Overexpressing the EPSPS Transgene. BIOLOGY 2021; 10:biology10060562. [PMID: 34203092 PMCID: PMC8234842 DOI: 10.3390/biology10060562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary Estimating the survival and reproductive ability caused by a transgene moved from a genetically engineered (GE) crop to its wild relative populations through gene flow plays an important role in assessing the potential environmental risks of the GE crop. Such estimation has essentially focused on the survival and reproduction-related characteristics above the ground, but with little attention to the GE seeds shattered in the soil seed banks. We demonstrated that the herbicide-resistant transgene overexpressing the rice endogenous EPSP enzyme increased the survival and longevity of the GE crop–wild (Oryza rufipogon) hybrid seeds in soil seed banks. In addition, enhanced survival and longevity of the GE hybrid seeds are likely associated with increases in seed dormancy and a growth hormone (auxin) via overexpressing the EPSPS transgene. Therefore, the EPSPS transgene can persist in the soil seed banks and spread in the environment, causing unwanted environmental impacts. Abstract Estimating the fitness effect conferred by a transgene introgressed into populations of wild relative species from a genetically engineered (GE) crop plays an important role in assessing the potential environmental risks caused by transgene flow. Such estimation has essentially focused on the survival and fecundity-related characteristics measured above the ground, but with little attention to the fate of GE seeds shattered in the soil seed banks after maturation. To explore the survival and longevity of GE seeds in soil, we examined the germination behaviors of crop–wild hybrid seeds (F4–F6) from the lineages of a GE herbicide-tolerant rice (Oryzasativa) line that contains an endogenous EPSPS transgene hybridized with two wild O. rufipogon populations after the seeds were buried in soil. The results showed significantly increased germination of the GE crop–wild hybrid seeds after soil burial, compared with that of the non-GE hybrid seeds. Additionally, the proportion of dormant seeds and the content of the growth hormone auxin (indole-3-acetic acid, IAA) in the GE crop–wild hybrid seeds significantly increased. Evidently, the EPSPS transgene enhances the survival and longevity of GE crop–wild rice seeds in the soil seed banks. The enhanced survival and longevity of the GE hybrid seeds is likely associated with the increases in seed dormancy and auxin (IAA) by overexpressing the rice endogenous EPSPS transgene. Thus, the fate of GE seeds in the soil seed banks should be earnestly considered when assessing the environmental risks caused by transgene flow.
Collapse
|
6
|
Song X, Yan J, Zhang Y, Li H, Zheng A, Zhang Q, Wang J, Bian Q, Shao Z, Wang Y, Qiang S. Gene Flow Risks From Transgenic Herbicide-Tolerant Crops to Their Wild Relatives Can Be Mitigated by Utilizing Alien Chromosomes. FRONTIERS IN PLANT SCIENCE 2021; 12:670209. [PMID: 34177986 PMCID: PMC8231706 DOI: 10.3389/fpls.2021.670209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Integration of a transgene into chromosomes of the C-genomes of oilseed rape (AACC, 2n = 38) may affect their gene flow to wild relatives, particularly Brassica juncea (AABB, 2n = 36). However, no empiric evidence exists in favor of the C-genome as a safer candidate for transformation. In the presence of herbicide selections, the first- to fourth-generation progenies of a B. juncea × glyphosate-tolerant oilseed rape cross [EPSPS gene insertion in the A-genome (Roundup Ready, event RT73)] showed more fitness than a B. juncea × glufosinate-tolerant oilseed rape cross [PAT gene insertion in the C-genome (Liberty Link, event HCN28)]. Karyotyping and fluorescence in situ hybridization-bacterial artificial chromosome (BAC-FISH) analyses showed that crossed progenies from the cultivars with transgenes located on either A- or C- chromosome were mixoploids, and their genomes converged over four generations to 2n = 36 (AABB) and 2n = 37 (AABB + C), respectively. Chromosome pairing of pollen mother cells was more irregular in the progenies from cultivar whose transgene located on C- than on A-chromosome, and the latter lost their C-genome-specific markers faster. Thus, transgene insertion into the different genomes of B. napus affects introgression under herbicide selection. This suggests that gene flow from transgenic crops to wild relatives could be mitigated by breeding transgenic allopolyploid crops, where the transgene is inserted into an alien chromosome.
Collapse
|
7
|
Yook MJ, Park HR, Zhang CJ, Lim SH, Jeong SC, Chung YS, Kim DS. Environmental risk assessment of glufosinate-resistant soybean by pollen-mediated gene flow under field conditions in the region of the genetic origin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143073. [PMID: 33189381 DOI: 10.1016/j.scitotenv.2020.143073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/05/2020] [Accepted: 10/11/2020] [Indexed: 05/25/2023]
Abstract
Pollen-mediated gene flow of genetically modified crops to their wild relatives can facilitate the spread of transgenes into the ecosystem and alter the fitness of the consequential progeny. A two-year field study was conducted to quantify the gene flow from glufosinate-ammonium resistant (GR) soybean (Glycinemax) to its wild relative, wild soybean (G. soja), and assess the potential weed risk of hybrids resulting from the gene flow during their entire life cycle under field conditions in Korea, where wild soybean is the natural inhabitant. Pollen-mediated gene flow from GR soybeans to wild soybeans ranged from 0.292% (mixed planting) to 0.027% at 8 m distance. The log-logistic model described the gene flow rate with increasing distance from GR soybean to wild soybean; the estimated effective isolation distance for 0.01% gene flow between GR and wild soybeans was 37.7 m. The F1 and F2 hybrids exhibited the intermediate characteristics of their parental soybeans in their vegetative and reproductive stages. Canopy height and stem length of hybrids were close to those of wild soybean, which shows an indeterminate growth; the numbers of flowers, pods, and seeds per hybrid plant were close to those of wild soybean and significantly higher than those of GR soybean. Seed longevity of F2 hybrid plants was also intermediate but significantly greater than that of GR soybean due to high seed dormancy. Our results suggest that transgenes of the GR soybean might disperse into wild populations and persist in the agroecosystem of the genetic origin regions due to the pollen-mediated gene flow and the relatively high fitness of the hybrid progeny.
Collapse
Affiliation(s)
- Min-Jung Yook
- Department of Plant Science, Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hae-Rim Park
- Department of Plant Science, Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chuan-Jie Zhang
- Department of Plant Science, Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; College of Animal Science and Technology, Yangzhou University, Jiangsu Province, People's Republic of China
| | - Soo-Hyun Lim
- Department of Plant Science, Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, Republic of Korea
| | - Young Soo Chung
- Department of Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Do-Soon Kim
- Department of Plant Science, Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Liu JY, Sheng ZW, Hu YQ, Liu Q, Qiang S, Song XL, Liu B. Fitness of F1 hybrids between 10 maternal wild soybean populations and transgenic soybean. Transgenic Res 2021; 30:105-119. [PMID: 33400167 PMCID: PMC7854435 DOI: 10.1007/s11248-020-00230-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 11/05/2022]
Abstract
The releasing of transgenic soybeans (Glycine max (L.) Merr.) into farming systems raises concerns that transgenes might escape from the soybeans via pollen into their endemic wild relatives, the wild soybean (Glycine soja Sieb. et Zucc.). The fitness of F1 hybrids obtained from 10 wild soybean populations collected from China and transgenic glyphosate-resistant soybean was measured without weed competition, as well as one JLBC-1 F1 hybrid under weed competition. All crossed seeds emerged at a lower rate from 13.33-63.33%. Compared with those of their wild progenitors, most F1 hybrids were shorter, smaller, and with decreased aboveground dry biomass, pod number, and 100-seed weight. All F1 hybrids had lower pollen viability and filled seeds per plant. Finally, the composite fitness of nine F1 hybrids was significantly lower. One exceptional F1 hybrid was IMBT F1, in which the composite fitness was 1.28, which was similar to that of its wild progenitor due to the similarities in pod number, increased aboveground dry biomass, and 100-seed weight. Under weed competition, plant height, aboveground dry biomass, pod number per plant, filled seed number per plant, and 100-seed weight of JLBC-1 F1 were lower than those of the wild progenitor JLBC-1. JLBC-1 F1 hybrids produced 60 filled seeds per plant. Therefore, F1 hybrids could emerge and produce offspring. Thus, effective measures should be taken to prevent gene flow from transgenic soybean to wild soybean to avoid the production F1 hybrids when releasing transgenic soybean in fields in the future.
Collapse
Affiliation(s)
- Jin Yue Liu
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ze Wen Sheng
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yu Qi Hu
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Qi Liu
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Sheng Qiang
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xiao Ling Song
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| | - Biao Liu
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, People's Republic of China
| |
Collapse
|
9
|
Bonner C, Sokolov NA, Westover SE, Ho M, Weis AE. Estimating the impact of divergent mating phenology between residents and migrants on the potential for gene flow. Ecol Evol 2019; 9:3770-3783. [PMID: 31015965 PMCID: PMC6468075 DOI: 10.1002/ece3.5001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 11/15/2022] Open
Abstract
Gene flow between populations can allow the spread of beneficial alleles and genetic diversity between populations, with importance to conservation, invasion biology, and agriculture. Levels of gene flow between populations vary not only with distance, but also with divergence in reproductive phenology. Since phenology is often locally adapted, arriving migrants may be reproductively out of synch with residents, which can depress realized gene flow. In flowering plants, the potential impact of phenological divergence on hybridization between populations can be predicted from overlap in flowering schedules-the daily count of flowers capable of pollen exchange-between a resident and migrant population. The accuracy of this prospective hybridization estimate, based on parental phenotypes, rests upon the assumptions of unbiased pollen transfer between resident and migrant active flowers. We tested the impact of phenological divergence on resident-migrant mating frequencies in experiments that mimicked a single large gene flow event. We first prospectively estimated mating frequencies two lines of Brassica rapaselected or early and late flowering. We then estimated realized mating frequencies retrospectively through progeny testing. The two estimates strongly agreed in a greenhouse experiment, where procedures ensured saturating, unbiased pollination. Under natural pollination in the field, the rate of resident-migrant mating, was lower than estimated by phenological divergence alone, although prospective and retrospective estimates were correlated. In both experiments, differences between residents and migrants in flowering schedule shape led to asymmetric hybridization. Results suggest that a prospective estimate of hybridization based on mating schedules can be a useful, although imperfect, tool for evaluating potential gene flow. They also illustrate the impact of mating phenology on the magnitude and symmetry of reproductive isolation.
Collapse
Affiliation(s)
- Colin Bonner
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Nina A. Sokolov
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Sally Erin Westover
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Michelle Ho
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Arthur E. Weis
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
- Koffler Scientific Reserve at Jokers HillUniversity of TorontoTorontoONCanada
| |
Collapse
|
10
|
Martin SL, Lujan‐Toro BE, Sauder CA, James T, Ohadi S, Hall LM. Hybridization rate and hybrid fitness for Camelina microcarpa Andrz. ex DC (♀) and Camelina sativa (L.) Crantz(Brassicaceae) (♂). Evol Appl 2019; 12:443-455. [PMID: 30828366 PMCID: PMC6383699 DOI: 10.1111/eva.12724] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022] Open
Abstract
Hybridization between crops and their wild relatives has the potential to introduce novel variation into wild populations. Camelina (Camelina sativa) is a promising oilseed and cultivars with modified seed characteristics and herbicide resistance are in development, prompting a need to evaluate the potential for novel trait introgression into weedy relatives. Little-podded false flax (littlepod; Camelina microcarpa) is a naturalized weed in Canada and the USA. Here we evaluated the hybridization rate between the three cytotypes of littlepod (♀) and camelina (♂), assessed characteristics of hybrids, and evaluated the fitness of hexaploid littlepod and camelina hybrids in the glasshouse and field. In total we conducted, 1,005 manual crosses with diploid littlepod, 1, 172 crosses with tetraploid littlepod, and 896 crosses with hexaploid littlepod. Hybrids were not produced by the diploids, but were produced by the tetraploids and hexaploids at rates of one hybrid for 2,000 ovules pollinated and 24 hybrids for 25 ovules pollinated, respectively. Hybrids between tetraploid littlepod and camelina showed low pollen fertility and produced a small number of seeds. In the glasshouse, hybrids between hexaploid littlepod and camelina also showed significantly lower pollen fertility and seed production than parental lines, but their seeds showed high viability. A similar pattern was observed in field trials, with hybrids showing earlier flowering, reduced biomass, seed production and seed weight. However, seed produced by the hybrids showed greater viability than that produced by hexaploid littlepod and is potentially the result of a shortened lifecycle. The introgression of lifecycle traits into littlepod populations may facilitate range expansion and contribute to crop gene persistence. Consequently, future work should evaluate the hybridization rate in the field, the fitness of advanced generation backcrosses, and the role of time to maturity in limiting hexaploid littlepod's distribution.
Collapse
Affiliation(s)
- Sara L. Martin
- Ottawa Research and Development CentreAgriculture and Agri‐food CanadaOttawaOntario
| | | | - Connie A. Sauder
- Ottawa Research and Development CentreAgriculture and Agri‐food CanadaOttawaOntario
| | - Tracey James
- Ottawa Research and Development CentreAgriculture and Agri‐food CanadaOttawaOntario
| | - Sara Ohadi
- Agricultural Food and Nutritional ScienceUniversity of AlbertaEdmontonAlberta
| | - Linda M. Hall
- Agricultural Food and Nutritional ScienceUniversity of AlbertaEdmontonAlberta
| |
Collapse
|
11
|
Fu J, Song X, Liu B, Shi Y, Shen W, Fang Z, Zhang L. Fitness Cost of Transgenic cry1Ab/c Rice Under Saline-Alkaline Soil Condition. FRONTIERS IN PLANT SCIENCE 2018; 9:1552. [PMID: 30405680 PMCID: PMC6206443 DOI: 10.3389/fpls.2018.01552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
The environmental release and biosafety of transgenic Bt crops have attracted global attention. China has a large area of saline-alkali land, which is ideal for large-scale production of Bt transgenic rice. Therefore an understanding of the fitness of Bt transgenic rice in saline-alkaline soils and the ability to predict its long-term environmental effects are important for the future sustainable use of these crops. In the present study, we aimed to evaluate the fitness of cry1Ab/c transgenic rice in both farmland and natural ecosystems. Transgenic cry1Ab/c rice Huahui1, for which a national biosafety certificate was obtained, was grown on normal farmland and saline-alkaline soils in a glass greenhouse. The expression pattern of exogenous Cry1Ab/c protein, and vegetative and reproductive fitness of rice were assessed. The expression of the exogenous Cry1Ab/c protein in the transgenic rice grown on saline-alkaline soil was lower than that in the strain grown on farmland soil. Under both the soil conditions, vegetative growth abilities, as evaluated by tiller number and biomass, and reproductive growth abilities, as measured by filled grain number and filled grain weight per plant, showed a significantly higher fitness cost for Huahui1 than that for the parental rice Minghui63 grown under the same soil conditions. In saline-alkaline soil, the fitness cost of Huahui1was moderately higher than that of Minghui63. Therefore, the ecological risk of cry1Ab/c transgenic rice is not expected to be higher than that of parental rice Minghui63 if the former escapes into natural saline-alkaline soil. The results of the present study provide a scientific basis to improve environmental safety assessment of the insect-resistant transgenic rice strain Huahui1 before commercialization.
Collapse
Affiliation(s)
- Jianmei Fu
- Weed Research Lab, College of Life Science, Nanjing Agricultural University, Nanjing, China
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China
| | - Xiaoling Song
- Weed Research Lab, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wenjing Shen
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China
| | - Zhixiang Fang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China
| | - Li Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China
| |
Collapse
|
12
|
Wang Z, Wang L, Wang Z, Lu BR. Non-random transmission of parental alleles into crop-wild and crop-weed hybrid lineages separated by a transgene and neutral identifiers in rice. Sci Rep 2017; 7:10436. [PMID: 28874702 PMCID: PMC5585250 DOI: 10.1038/s41598-017-10596-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
It is essential to assess environmental impact of transgene flow from genetically engineered crops to their wild or weedy relatives before commercialization. Measuring comparative trials of fitness in the transgene-flow-resulted hybrids plays the key role in the assessment, where the segregated isogenic hybrid lineages/subpopulations with or without a transgene of the same genomic background are involved. Here, we report substantial genomic differentiation between transgene-present and -absent lineages (F2-F3) divided by a glyphosate-resistance transgene from a crop-wild/weed hybrid population in rice. We further confirmed that such differentiation is attributed to increased frequencies of crop-parent alleles in transgenic hybrid lineages at multiple loci across the genome, as estimated by SSR (simple sequence repeat) markers. Such preferential transmission of parental alleles was also found in equally divided crop-wild/weed hybrid lineages with or without a particular neutral SSR identifier. We conclude that selecting either a transgene or neutral marker as an identifier to create hybrid lineages will result in different genomic background of the lineages due to non-random transmission of parental alleles. Non-random allele transmission may misrepresent the outcomes of fitness effects. We therefore propose seeking other means to evaluate fitness effects of transgenes for assessing environmental impact caused by crop-to-wild/weed gene flow.
Collapse
Affiliation(s)
- Zhe Wang
- Ministry of Education Key Laboratory for biodiversity science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, 200433, China
| | - Lei Wang
- Ministry of Education Key Laboratory for biodiversity science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, 200433, China
| | - Zhi Wang
- Ministry of Education Key Laboratory for biodiversity science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, 200433, China
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for biodiversity science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
13
|
Gene Introgression in Weeds Depends on Initial Gene Location in the Crop: Brassica napus- Raphanus raphanistrum Model. Genetics 2017; 206:1361-1372. [PMID: 28533439 DOI: 10.1534/genetics.117.201715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/07/2017] [Indexed: 11/18/2022] Open
Abstract
The effect of gene location within a crop genome on its transfer to a weed genome remains an open question for gene flow assessment. To elucidate this question, we analyzed advanced generations of intergeneric hybrids, derived from an initial pollination of known oilseed rape varieties (Brassica napus, AACC, 2n = 38) by a local population of wild radish (Raphanus raphanistrum, RrRr, 2n = 18). After five generations of recurrent pollination, 307 G5 plants with a chromosome number similar to wild radish were genotyped using 105 B. napus specific markers well distributed along the chromosomes. They revealed that 49.8% of G5 plants carried at least one B. napus genomic region. According to the frequency of B. napus markers (0-28%), four classes were defined: Class 1 (near zero frequency), with 75 markers covering ∼70% of oilseed rape genome; Class 2 (low frequency), with 20 markers located on 11 genomic regions; Class 3 (high frequency), with eight markers on three genomic regions; and Class 4 (higher frequency), with two adjacent markers detected on A10. Therefore, some regions of the oilseed rape genome are more prone than others to be introgressed into wild radish. Inheritance and growth of plant progeny revealed that genomic regions of oilseed rape could be stably introduced into wild radish and variably impact the plant fitness (plant height and seed number). Our results pinpoint that novel technologies enabling the targeted insertion of transgenes should select genomic regions that are less likely to be introgressed into the weed genome, thereby reducing gene flow.
Collapse
|
14
|
Ostrowski MF, Prosperi JM, David J. Potential Implications of Climate Change on Aegilops Species Distribution: Sympatry of These Crop Wild Relatives with the Major European Crop Triticum aestivum and Conservation Issues. PLoS One 2016; 11:e0153974. [PMID: 27100790 PMCID: PMC4839726 DOI: 10.1371/journal.pone.0153974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/06/2016] [Indexed: 11/23/2022] Open
Abstract
Gene flow from crop to wild relatives is a common phenomenon which can lead to reduced adaptation of the wild relatives to natural ecosystems and/or increased adaptation to agrosystems (weediness). With global warming, wild relative distributions will likely change, thus modifying the width and/or location of co-occurrence zones where crop-wild hybridization events could occur (sympatry). This study investigates current and 2050 projected changes in sympatry levels between cultivated wheat and six of the most common Aegilops species in Europe. Projections were generated using MaxEnt on presence-only data, bioclimatic variables, and considering two migration hypotheses and two 2050 climate scenarios (RCP4.5 and RCP8.5). Overall, a general decline in suitable climatic conditions for Aegilops species outside the European zone and a parallel increase in Europe were predicted. If no migration could occur, the decline was predicted to be more acute outside than within the European zone. The potential sympatry level in Europe by 2050 was predicted to increase at a higher rate than species richness, and most expansions were predicted to occur in three countries, which are currently among the top four wheat producers in Europe: Russia, France and Ukraine. The results are also discussed with regard to conservation issues of these crop wild relatives.
Collapse
Affiliation(s)
- Marie-France Ostrowski
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes, Montpellier Supagro, France
- Montpellier Supagro, Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes, Montpellier Supagro, France
| | - Jean-Marie Prosperi
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes, Montpellier Supagro, France
| | - Jacques David
- Montpellier Supagro, Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes, Montpellier Supagro, France
| |
Collapse
|
15
|
Lu B, Yang X, Ellstrand NC. Fitness correlates of crop transgene flow into weedy populations: a case study of weedy rice in China and other examples. Evol Appl 2016; 9:857-70. [PMID: 27468304 PMCID: PMC4947148 DOI: 10.1111/eva.12377] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/02/2016] [Indexed: 02/04/2023] Open
Abstract
Whether transgene flow from crops to cross‐compatible weedy relatives will result in negative environmental consequences has been the topic of discussion for decades. An important component of environmental risk assessment depends on whether an introgressed transgene is associated with a fitness change in weedy populations. Several crop‐weed pairs have received experimental attention. Perhaps, the most worrisome example is transgene flow from genetically engineered cultivated rice, a staple for billions globally, to its conspecific weed, weedy rice. China's cultivated/weedy rice system is one of the best experimentally studied systems under field conditions for assessing how the presence of transgenes alters the weed's fitness and the likely impacts of that fitness change. Here, we present the cultivated/weedy rice system as a case study on the consequences of introgressed transgenes in unmanaged populations. The experimental work on this system reveals considerable variation in fitness outcomes ‐ increased, decreased, and none ‐ based on the transgenic trait, its introgressed genomic background, and the environment. A review of similar research from a sample of other crop‐wild pairs suggests such variation is the rule. We conclude such variation in fitness correlates supports the case‐by‐case method of biosafety regulation is sound.
Collapse
Affiliation(s)
- Bao‐Rong Lu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering Department of Ecology and Evolutionary Biology Fudan University Shanghai China
| | - Xiao Yang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering Department of Ecology and Evolutionary Biology Fudan University Shanghai China
| | - Norman C. Ellstrand
- Department of Botany and Plant Sciences Center for Conservation Biology University of California Riverside CA USA
- Center for Invasive Species Research University of California Riverside CA USA
| |
Collapse
|
16
|
|
17
|
Efficacy of insect-resistance Bt/CpTI transgenes in F 5 –F 7 generations of rice crop–weed hybrid progeny: implications for assessing ecological impact of transgene flow. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0885-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Cheung KW, Razeq FM, Sauder CA, James T, Martin SL. Bidirectional but asymmetrical sexual hybridization between Brassica carinata and Sinapis arvensis (Brassicaceae). JOURNAL OF PLANT RESEARCH 2015; 128:469-480. [PMID: 25698113 DOI: 10.1007/s10265-015-0702-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
With transgenic crop development it is important to evaluate the potential for transgenes to escape into populations of wild, weedy relatives. Ethiopian mustard (Brassica carinata, BBCC) is easily transformed and is being investigated for uses from biodiesel fuels to biopharmaceuticals. However, little work has been done evaluating its ability to cross with relatives such as wild mustard (Sinapsis arvensis, SrSr), an abundant, cosmopolitan weedy relative. Here we conducted bidirectional crosses with Ethiopian mustard as a maternal parent in 997 crosses and paternal parent in 1,109 crosses. Hybrids were confirmed using flow cytometry and species-specific ITS molecular markers and indicate a high hybridization rate of 6.43 % between Ethiopian mustard (♀) and wild mustard (♂) and a lower, but not insignificant, hybridization rate of 0.01 % in the reverse direction. The majority of the hybrids were homoploid (BCSr) with less than 1 % of pollen production of their parents and low seed production (0.26 seeds/pollination) in crosses and backcrosses indicating a potential for advanced generation hybrids. The accession used had a significant effect on hybrid seed production with different accessions of Ethopian mustard varying in their production of hybrid offspring from 2.69 to 16.34 % and one accession of wild mustard siring almost twice as many hybrid offspring per flower as the other. One pentaploid (BBCCSr) and one hexaploid (BBCCSrSr) hybrid were produced and had higher pollen viability, though no and low seed production, respectively. As wild mustard is self-incompatible and the outcrossing rate of Ethiopian mustard has been estimated as 30 % potential for hybrid production in the wild appears to be high, though the hybridization rate found here represents a worst case scenario as it does not incorporate pre-pollination barriers. Hybridization in the wild needs to be directly evaluated as does the propensity of Ethiopian mustard to volunteer.
Collapse
Affiliation(s)
- Kyle W Cheung
- Eastern Cereal and Oilseed Research Centre, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | | | | | | | | |
Collapse
|
19
|
Roumet M, Cayre A, Latreille M, Muller MH. Quantifying temporal isolation: a modelling approach assessing the effect of flowering time differences on crop-to-weed pollen flow in sunflower. Evol Appl 2015; 8:64-74. [PMID: 25667603 PMCID: PMC4310582 DOI: 10.1111/eva.12222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/15/2014] [Indexed: 01/08/2023] Open
Abstract
Flowering time divergence can be a crucial component of reproductive isolation between sympatric populations, but few studies have quantified its actual contribution to the reduction of gene flow. In this study, we aimed at estimating pollen-mediated gene flow between cultivated sunflower and a weedy conspecific sunflower population growing in the same field and at quantifying, how it is affected by the weeds' flowering time. For that purpose, we extended an existing mating model by including a temporal distance (i.e. flowering time difference between potential parents) effect on mating probabilities. Using phenological and genotypic data gathered on the crop and on a sample of the weedy population and its offspring, we estimated an average hybridization rate of approximately 10%. This rate varied strongly from 30% on average for weeds flowering at the crop flowering peak to 0% when the crop finished flowering and was affected by the local density of weeds. Our result also suggested the occurrence of other factors limiting crop-to-weed gene flow. This level of gene flow and its dependence on flowering time might influence the evolutionary fate of weedy sunflower populations sympatric to their crop relative.
Collapse
Affiliation(s)
- Marie Roumet
- INRA, UMR 1334, Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP) Montpellier Cedex 1, France ; ETH Zurich, Institute of Integrative Biology (IBZ) Zurich, Switzerland
| | - Adeline Cayre
- INRA, UMR 1334, Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP) Montpellier Cedex 1, France
| | - Muriel Latreille
- INRA, UMR 1334, Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP) Montpellier Cedex 1, France
| | - Marie-Hélène Muller
- INRA, UMR 1334, Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP) Montpellier Cedex 1, France
| |
Collapse
|
20
|
Zhao W, Meng J, Wang B, Zhang L, Xu Y, Zeng QY, Li Y, Mao JF, Wang XR. Weak crossability barrier but strong juvenile selection supports ecological speciation of the hybrid pine Pinus densata on the Tibetan plateau. Evolution 2014; 68:3120-33. [PMID: 25065387 PMCID: PMC4278550 DOI: 10.1111/evo.12496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022]
Abstract
Determining how a new hybrid lineage can achieve reproductive isolation is a key to understanding the process and mechanisms of homoploid hybrid speciation. Here, we evaluated the degree and nature of reproductive isolation between the ecologically successful hybrid species Pinus densata and its parental species P. tabuliformis and P. yunnanensis. We performed interspecific crosses among the three species to assess their crossability. We then conducted reciprocal transplantation experiments to evaluate their fitness differentiation, and to examine how natural populations representing different directions of introgression differ in adaptation. The crossing experiments revealed weak genetic barriers among the species. The transplantation trials showed manifest evidence of local adaptation as the three species all performed best in their native habitats. Pinus densata populations from the western edge of its distribution have evolved a strong local adaptation to the specific habitat in that range; populations representing different directions of introgressants with the two parental species all showed fitness disadvantages in this P. densata habitat. These observations illustrate that premating isolation through selection against immigrants from other habitat types or postzygotic isolation through selection against backcrosses between the three species is strong. Thus, ecological selection in combination with endogenous components and geographic isolation has likely played a significant role in the speciation of P. densata.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Statement on a conceptual framework for the risk assessment of certain food additives re‐evaluated under Commission Regulation (EU) No 257/2010. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
22
|
Scientific Opinion on application (EFSA‐GMO‐BE‐2011‐101) for the placing on the market of herbicide‐tolerant genetically modified oilseed rape MON 88302 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
23
|
Estimation of in situ mating systems in wild sorghum (Sorghum bicolor (L.) Moench) in Ethiopia using SSR-based progeny array data: implications for the spread of crop genes into the wild. J Genet 2013; 92:3-10. [PMID: 23640403 DOI: 10.1007/s12041-013-0214-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Because transgenic sorghum (Sorghum bicolor L.) is being developed for Africa, we investigated the potential for transgenes to spread to conspecific wild/weedy sorghum populations in Ethiopia, which is considered the centre of origin of cultivated sorghum. In the current study, the extent of outcrossing, and uniparental and biparental inbreeding were investigated in seven wild/weedy sorghum populations collected at elevations ranging from 631 to 1709 m. Based on allele frequency data of 1120 progenies and 140 maternal plants from five polymorphic microsatellite markers, outcrossing rates were estimated using standard procedures. The average multilocus outcrossing rate was 0.51, with a range of 0.31-0.65 among populations, and the family outcrossing rate was in the extreme range of 0 to 100%. The highest outcrossing (t(m) = 0.65) was recorded in a weedy population that was intermixed with an improved crop variety in Abuare (Wello region). It was also observed that the inbreeding coefficient of the progenies (F(p)) tend to be more than the inbreeding coefficient of both their maternal parents (F(m)) and the level of inbreeding expected at equilibrium (F(eq)), which is a characteristic of predominantly outbreeding species. Biparental inbreeding was evident in all populations and averaged 0.24 (range = 0.10-0.33). The high outcrossing rates of wild/weedy sorghum populations in Ethiopia indicate a high potential for crop genes (including transgenes) to spread within the wild pool. Therefore, effective risk management strategies may be needed if the introgression of transgenes or other crop genes from improved cultivars into wild or weedy populations is deemed to be undesirable.
Collapse
|
24
|
Kuroda Y, Kaga A, Tomooka N, Yano H, Takada Y, Kato S, Vaughan D. QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields. Ecol Evol 2013; 3:2150-68. [PMID: 23919159 PMCID: PMC3728954 DOI: 10.1002/ece3.606] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to identify quantitative trait loci (QTL) affecting fitness of hybrids between wild soybean (Glycine soja) and cultivated soybean (Glycine max). Seed dormancy and seed number, both of which are important for fitness, were evaluated by testing artificial hybrids of G. soja × G. max in a multiple-site field trial. Generally, the fitness of the F1 hybrids and hybrid derivatives from self-pollination was lower than that of G. soja due to loss of seed dormancy, whereas the fitness of hybrid derivatives with higher proportions of G. soja genetic background was comparable with that of G. soja. These differences were genetically dissected into QTL for each population. Three QTLs for seed dormancy and one QTL for total seed number were detected in the F2 progenies of two diverse cross combinations. At those four QTLs, the G. max alleles reduced seed number and severely reduced seed survival during the winter, suggesting that major genes acquired during soybean adaptation to cultivation have a selective disadvantage in natural habitats. In progenies with a higher proportion of G. soja genetic background, the genetic effects of the G. max alleles were not expressed as phenotypes because the G. soja alleles were dominant over the G. max alleles. Considering the highly inbreeding nature of these species, most hybrid derivatives would disappear quickly in early self-pollinating generations in natural habitats because of the low fitness of plants carrying G. max alleles.
Collapse
Affiliation(s)
- Yosuke Kuroda
- National Institute of Agrobiological Sciences 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Adugna A. Ecotypic variation for seed dormancy, longevity and germination requirements in wild/weedy Sorghum bicolor in Ethiopia: implications for seed mediated transgene dispersal and persistence. SPRINGERPLUS 2013; 2:248. [PMID: 23772355 PMCID: PMC3682103 DOI: 10.1186/2193-1801-2-248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/24/2013] [Indexed: 11/10/2022]
Abstract
Seed dispersal is one of the vehicles of gene flow in plants. If a seed carrying transgene(s) is dispersed into the environment, the fate can be determined by its persistence in the soil bank, which can also vary in different ecotypes of a species and the physical environment of the soil including temperature and moisture. This study aimed at investigating ecotypic differences in wild sorghum for dormancy and longevity and their response to varying levels of temperature and moisture for seed germination to aid efforts to predict the potential risk of transgene flow via seeds and persistence in the soil. Wild sorghum seed was collected from different geographical regions in Ethiopia and buried for a maximum of 24 months in the soil. In a separate study, three levels of constant temperature and five levels of osmotic potential (Ψs) were used to investigate variation in wild sorghum ecotypes for seed germination. Viability of buried seeds declined over time, but the rate of decline differed among ecotypes. Better seed longevity was observed at 20 cm soil depth than 10 cm in two wild sorghum ecotypes. Crop seeds depleted within the first six months regardless of the burial depth whereas on the average 1.24% viability was observed in wild sorghum seed after 24 months of burial in the soil. Ecotypic differences were also evident in response to varying temperature and Ψs. Therefore, dispersed seeds carrying crop genes (including transgenes) could persist in the soil for considerable period of time, which may have implications for transgene flow and persistence.
Collapse
Affiliation(s)
- Asfaw Adugna
- Melkassa Agricultural Research Center, P.O. Box 1085, Adama, Ethiopia
| |
Collapse
|
26
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape events Ms8, Rf3 and Ms8 × Rf3 for import, processing and feed uses in Austria. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape event GT73 for import, processing and feed uses in Austria. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Scientific Opinion on application (EFSA‐GMO‐NL‐2010‐87) for the placing on the market of genetically modified herbicide tolerant oilseed rape GT73 for food containing or consisting of, and food produced from or containing ingredients produced from, oilseed rape GT73 (with the exception of refined oil and food additives) under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Scientific Opinion on application (EFSA-GMO-BE-2010-81) for the placing on the market of genetically modified herbicide-tolerant oilseed rape Ms8, Rf3 and Ms8 × Rf3 for food containing or consisting of, and food produced from or containing ingredients pro. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
30
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape event GT73 for import, processing and feed uses in Austria. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
31
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape events Ms8, Rf3 and Ms8 × Rf3 for import, processing and feed uses in Austria. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
32
|
Yang X, Wang F, Su J, Lu BR. Limited fitness advantages of crop-weed hybrid progeny containing insect-resistant transgenes (Bt/CpTI) in transgenic rice field. PLoS One 2012; 7:e41220. [PMID: 22815975 PMCID: PMC3398902 DOI: 10.1371/journal.pone.0041220] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/18/2012] [Indexed: 11/21/2022] Open
Abstract
Background The spread of insect-resistance transgenes from genetically engineered (GE) rice to its coexisting weedy rice (O. sativa f. spontanea) populations via gene flow creates a major concern for commercial GE rice cultivation. Transgene flow to weedy rice seems unavoidable. Therefore, characterization of potential fitness effect brought by the transgenes is essential to assess environmental consequences caused by crop-weed transgene flow. Methodology/Principal Findings Field performance of fitness-related traits was assessed in advanced hybrid progeny of F4 generation derived from a cross between an insect-resistant transgenic (Bt/CpTI) rice line and a weedy strain. The performance of transgene-positive hybrid progeny was compared with the transgene-negative progeny and weedy parent in pure and mixed planting of transgenic and nontransgenic plants under environmental conditions with natural vs. low insect pressure. Results showed that under natural insect pressure the insect-resistant transgenes could effectively suppress target insects and bring significantly increased fitness to transgenic plants in pure planting, compared with nontransgenic plants (including weedy parent). In contrast, no significant differences in fitness were detected under low insect pressure. However, such increase in fitness was not detected in the mixed planting of transgenic and nontransgenic plants due to significantly reduced insect pressure. Conclusions/Significance Insect-resistance transgenes may have limited fitness advantages to hybrid progeny resulted from crop-weed transgene flow owning to the significantly reduced ambient target insect pressure when an insect-resistant GE crop is grown. Given that the extensive cultivation of an insect-resistant GE crop will ultimately reduce the target insect pressure, the rapid spread of insect-resistance transgenes in weedy populations in commercial GE crop fields may be not likely to happen.
Collapse
Affiliation(s)
- Xiao Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, China
| | - Feng Wang
- Fujian Province Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jun Su
- Fujian Province Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
33
|
Kitamoto N, Kaga A, Kuroda Y, Ohsawa R. A model to predict the frequency of integration of fitness-related QTLs from cultivated to wild soybean. Transgenic Res 2012; 21:131-8. [PMID: 21544624 DOI: 10.1007/s11248-011-9516-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 04/19/2011] [Indexed: 11/27/2022]
Abstract
With the proliferation of genetically modified (GM) products and the almost exponential growth of land use for GM crops, there is a growing need to develop quantitative approaches to estimating the risk of escape of transgenes into wild populations of crop relatives by natural hybridization. We assessed the risk of transgene escape by constructing a population genetic model based on information on fitness-related QTLs obtained from an F (2) population of wild soybean G. soja × cultivated soybean Glycine max. Simulation started with ten F (1) and 990 wild soybeans reproducing by selfing or outcrossing. Seed production was determined from the genetic effects of two QTLs for number of seeds (SN). Each seed survived winter according to the maternal genotype at three QTLs for winter survival (WS). We assumed that one neutral transgene was inserted at various sites and calculated its extinction rate. The presence of G. max alleles at SN and WS QTLs significantly decreased the probability of introgression of the neutral transgene at all insertion sites equally. The presence of G. max alleles at WS QTLs lowered the risk more than their presence at SN QTLs. Although most model studies have concentrated only on genotypic effects of transgenes, we show that the presence of fitness-related domestication genes has a large effect on the risk of transgene escape. Our model offers the advantage of considering the effects of both domestication genes and a transgene, and they can be widely applied to other wild × crop relative complexes.
Collapse
Affiliation(s)
- N Kitamoto
- Laboratory of Plant Breeding, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | |
Collapse
|
34
|
Song X, Wang Z, Qiang S. Agronomic performance of F1, F2 and F3 hybrids between weedy rice and transgenic glufosinate-resistant rice. PEST MANAGEMENT SCIENCE 2011; 67:921-931. [PMID: 21370396 DOI: 10.1002/ps.2132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND Studies of hybrid fitness, of which agronomic performance may be an indicator, can help in evaluating the potential for introgression of a transgene from a transgenic crop to wild relatives. The objective of this study was to assess the agronomic performance of reciprocal hybrids between two transgenic glufosinate-resistant rice lines, Y0003 and 99-t, and two weedy rice accessions, WR1 and WR2, in the greenhouse. RESULTS F1 hybrids displayed heterosis in height, flag leaf area and number of spikelets per panicle. The agronomic performance of F1 between WR1 and Y0003 was not affected by crossing direction. The tiller and panicle numbers of F1 individuals were higher than their F2 counterparts. However, these traits did not change significantly from the F2 to the F3 generation or in hybrids with weedy rice as maternal or paternal plants. For all hybrids, the in vitro germination rates of fresh pollen were similar and significantly lower than those of their parents, seed sets were similar to or of lower value than those of weedy rice parents and seed shattering characteristics were partially suppressed, but the survival of hybrids over winter in the field was similar to that of weedy rice parents. All F1, F2 and F3 hybrids had similar composite agronomic performance to weedy rice parents. CONCLUSION There was no significant decrease in the composite agronomic performance of any of the hybrids compared with weedy rice. This implies that gene flow from transgenic cultivated rice to weedy rice could occur under natural conditions.
Collapse
Affiliation(s)
- Xiaoling Song
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | | | | |
Collapse
|
35
|
Wesseler J, Scatasta S, Hadji Fall E. Chapter 7 The Environmental Benefits and Costs of Genetically Modified (GM) Crops. FRONTIERS OF ECONOMICS AND GLOBALIZATION 2011. [DOI: 10.1108/s1574-8715(2011)0000010012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Yang X, Xia H, Wang W, Wang F, Su J, Snow AA, Lu BR. Transgenes for insect resistance reduce herbivory and enhance fecundity in advanced generations of crop-weed hybrids of rice. Evol Appl 2011; 4:672-84. [PMID: 25568014 PMCID: PMC3352537 DOI: 10.1111/j.1752-4571.2011.00190.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/18/2011] [Indexed: 01/19/2023] Open
Abstract
Gene flow from transgenic crops allows novel traits to spread to sexually compatible weeds. Traits such as resistance to insects may enhance the fitness of weeds, but few studies have tested for these effects under natural field conditions. We created F2 and F3 crop–weed hybrid lineages of genetically engineered rice (Oryza sativa) using lines with two transgene constructs, cowpea trypsin inhibitor (CpTI) and a Bt transgene linked to CpTI (Bt/CpTI). Experiments conducted in Fuzhou, China, demonstrated that CpTI alone did not significantly affect fecundity, although it reduced herbivory. In contrast, under certain conditions, Bt/CpTI conferred up to 79% less insect damage and 47% greater fecundity relative to nontransgenic controls, and a 44% increase in fecundity relative to the weedy parent. A small fitness cost was detected in F3 progeny with Bt/CpTI when grown under low insect pressure and direct competition with transgene-negative controls. We conclude that Bt/CpTI transgenes may introgress into co-occurring weedy rice populations and contribute to greater seed production when target insects are abundant. However, the net fitness benefits that are associated with Bt/CpTI could be ephemeral if insect pressure is lacking, for example, because of widespread planting of Bt cultivars that suppress target insect populations.
Collapse
Affiliation(s)
- Xiao Yang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University Shanghai, China
| | - Hui Xia
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University Shanghai, China
| | - Wei Wang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University Shanghai, China
| | - Feng Wang
- Fujian Province Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences Fuzhou, China
| | - Jun Su
- Fujian Province Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences Fuzhou, China
| | - Allison A Snow
- Department of Evolution, Ecology & Organismal Biology, Ohio State University Columbus, OH, USA
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University Shanghai, China
| |
Collapse
|
37
|
Devos Y, Hails RS, Messéan A, Perry JN, Squire GR. Feral genetically modified herbicide tolerant oilseed rape from seed import spills: are concerns scientifically justified? Transgenic Res 2011; 21:1-21. [PMID: 21526422 DOI: 10.1007/s11248-011-9515-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
One of the concerns surrounding the import (for food and feed uses or processing) of genetically modified herbicide tolerant (GMHT) oilseed rape is that, through seed spillage, the herbicide tolerance (HT) trait will escape into agricultural or semi-natural habitats, causing environmental or economic problems. Based on these concerns, three EU countries have invoked national safeguard clauses to ban the marketing of specific GMHT oilseed rape events on their territory. However, the scientific basis for the environmental and economic concerns posed by feral GMHT oilseed rape resulting from seed import spills is debatable. While oilseed rape has characteristics such as secondary dormancy and small seed size that enable it to persist and be redistributed in the landscape, the presence of ferals is not in itself an environmental or economic problem. Crucially, feral oilseed rape has not become invasive outside cultivated and ruderal habitats, and HT traits are not likely to result in increased invasiveness. Feral GMHT oilseed rape has the potential to introduce HT traits to volunteer weeds in agricultural fields, but would only be amplified if the herbicides to which HT volunteers are tolerant were used routinely in the field. However, this worst-case scenario is most unlikely, as seed import spills are mostly confined to port areas. Economic concerns revolve around the potential for feral GMHT oilseed rape to contribute to GM admixtures in non-GM crops. Since feral plants derived from cultivation (as distinct from import) occur at too low a frequency to affect the coexistence threshold of 0.9% in the EU, it can be concluded that feral GMHT plants resulting from seed import spills will have little relevance as a potential source of pollen or seed for GM admixture. This paper concludes that feral oilseed rape in Europe should not be routinely managed, and certainly not in semi-natural habitats, as the benefits of such action would not outweigh the negative effects of management.
Collapse
Affiliation(s)
- Yann Devos
- European Food Safety Authority, GMO Unit, Largo Natale Palli 5/A, 43121, Parma, Italy.
| | | | | | | | | |
Collapse
|
38
|
Mizuguti A. Fundamental study for ecological risk assessment and evaluation of genetically modified crops, especially soybean (Glycine max) and canola (Brassica napus) in Japan. ACTA ACUST UNITED AC 2011. [DOI: 10.3719/weed.56.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
39
|
Londo JP, Bautista NS, Sagers CL, Lee EH, Watrud LS. Glyphosate drift promotes changes in fitness and transgene gene flow in canola (Brassica napus) and hybrids. ANNALS OF BOTANY 2010; 106:957-65. [PMID: 20852306 PMCID: PMC2990662 DOI: 10.1093/aob/mcq190] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/17/2010] [Accepted: 08/23/2010] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS With the advent of transgenic crops, genetically modified, herbicide-resistant Brassica napus has become a model system for examining the risks and potential ecological consequences of escape of transgenes from cultivation into wild compatible species. Escaped transgenic feral B. napus and hybrids with compatible weedy species have been identified outside of agriculture and without the apparent selection for herbicide resistance. However, herbicide (glyphosate) exposure can extend beyond crop field boundaries, and a drift-level of herbicide could function as a selective agent contributing to increased persistence of transgenes in the environment. METHODS The effects of a drift level (0·1 × the field application rate) of glyphosate herbicide and varied levels of plant competition were examined on plant fitness-associated traits and gene flow in a simulated field plot, common garden experiment. Plants included transgenic, glyphosate-resistant B. napus, its weedy ancestor B. rapa, and hybrid and advanced generations derived from them. KEY RESULTS The results of this experiment demonstrate reductions in reproductive fitness for non-transgenic genotypes and a contrasting increase in plant fitness for transgenic genotypes as a result of glyphosate-drift treatments. Results also suggest that a drift level of glyphosate spray may influence the movement of transgenes among transgenic crops and weeds and alter the processes of hybridization and introgression in non-agronomic habitats by impacting flowering phenology and pollen availability within the community. CONCLUSIONS The results of this study demonstrate the potential for persistence of glyphosate resistance transgenes in weedy plant communities due to the effect of glyphosate spray drift on plant fitness. Additionally, glyphosate drift has the potential to change the gene-flow dynamics between compatible transgenic crops and weeds, simultaneously reducing direct introgression into weedy species while contributing to an increase in the transgenic seed bank.
Collapse
Affiliation(s)
- Jason P Londo
- National Research Council Associate, 200 SW 35th Street, Corvallis, OR 97333, USA.
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Sahoo L, Schmidt JJ, Pedersen JF, Lee DJ, Lindquist JL. Growth and fitness components of wild x cultivated Sorghum bicolor (Poaceae) hybrids in Nebraska. AMERICAN JOURNAL OF BOTANY 2010; 97:1610-7. [PMID: 21616796 DOI: 10.3732/ajb.0900170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
PREMISE OF THE STUDY Gene flow from crops to wild relatives has received considerable attention since the advent of genetically modified crops. Numerous researchers have found wild-crop hybrids to be nearly as fit as their wild parents, which suggests that crop genes may persist in wild populations. Components of the ecological fitness of cultivated sorghum, its wild relative, shattercane, and their hybrids have not been studied. • METHODS To assess the potential for gene introgression into shattercane, we crossed cultivated sorghum to a single inbred shattercane line to produce F(1) hybrids and measured growth and several components of ecological fitness in relation to both parents in Nebraska, USA. • KEY RESULTS Germination of F(1) seeds was similar to that of its shattercane parent except at high temperatures, where it was as sensitive as the sorghum parent. The F(1) grew taller and produced more biomass than either parent, but the F(1) leaf area index was intermediate. Fecundity of the F(1) plant was similar to that of shattercane and much greater than that of cultivated sorghum. • CONCLUSIONS Considering all data, the ecological fitness of shattercane × cultivated sorghum F(1) hybrids may be equivalent to the wild shattercane parent, which suggests that crop genes that are either neutral or beneficial to shattercane would persist in populations within agroecosystems.
Collapse
Affiliation(s)
- Lilyrani Sahoo
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 279 Plant Science Hall, Lincoln, Nebraska 68583-0817, USA
| | | | | | | | | |
Collapse
|
42
|
Song X, Wang Z, Zuo J, Huangfu C, Qiang S. Potential gene flow of two herbicide-tolerant transgenes from oilseed rape to wild B. juncea var. gracilis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1501-10. [PMID: 20151105 DOI: 10.1007/s00122-010-1271-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 01/19/2010] [Indexed: 05/17/2023]
Abstract
Four successive reciprocal backcrosses between F(1) (obtained from wild Brassica juncea as maternal plants and transgenic glyphosate- or glufosinate-tolerant oilseed rape, B. napus, as paternal plants) or subsequent herbicide-tolerant backcross progenies and wild B. juncea were achieved by hand pollination to assess potential transgene flow. The third and forth reciprocal backcrosses produced a number of seeds per silique similar to that of self-pollinated wild B. juncea, except in plants with glufosinate-tolerant backcross progeny used as maternal plants and wild B. juncea as paternal plants, which produced fewer seeds per silique than did self-pollinated wild B. juncea. Germination percentages of reciprocal backcross progenies were high and equivalent to those of wild B. juncea. The herbicide-tolerant first reciprocal backcross progenies produced fewer siliques per plant than did wild B. juncea, but the herbicide-tolerant second or third reciprocal backcross progenies did not differ from the wild B. juncea in siliques per plant. The herbicide-tolerant second and third reciprocal backcross progenies produced an amount of seeds per silique similar to that of wild B. juncea except for with the glufosinate-tolerant first and second backcross progeny used as maternal plants and wild B. juncea as paternal plants. In the presence of herbicide selection pressure, inheritance of the glyphosate-tolerant transgene was stable across the second and third backcross generation, whereas the glufosinate-tolerant transgene was maintained, despite a lack of stabilized introgression. The occurrence of fertile, transgenic weed-like plants after only three crosses (F(1), first backcross, second backcross) suggests a potential rapid spread of transgenes from oilseed rape into its wild relative wild B. juncea. Transgene flow from glyphosate-tolerant oilseed rape might be easier than that from glufosinate-tolerant oilseed rape to wild B. juncea. The original insertion site of the transgene could affect introgression.
Collapse
Affiliation(s)
- Xiaoling Song
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | |
Collapse
|
43
|
Ghosh A, Haccou P. Quantifying stochastic introgression processes with hazard rates. Theor Popul Biol 2010; 77:171-80. [DOI: 10.1016/j.tpb.2010.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 12/16/2009] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
|
44
|
Rose CW, Millwood RJ, Moon HS, Rao MR, Halfhill MD, Raymer PL, Warwick SI, Al-Ahmad H, Gressel J, Stewart CN. Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard) x Brassica napus (oilseed rape) hybrid populations. BMC Biotechnol 2009; 9:93. [PMID: 19878583 PMCID: PMC2780409 DOI: 10.1186/1472-6750-9-93] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 10/31/2009] [Indexed: 11/10/2022] Open
Abstract
Background One theoretical explanation for the relatively poor performance of Brassica rapa (weed) × Brassica napus (crop) transgenic hybrids suggests that hybridization imparts a negative genetic load. Consequently, in hybrids genetic load could overshadow any benefits of fitness enhancing transgenes and become the limiting factor in transgenic hybrid persistence. Two types of genetic load were analyzed in this study: random/linkage-derived genetic load, and directly incorporated genetic load using a transgenic mitigation (TM) strategy. In order to measure the effects of random genetic load, hybrid productivity (seed yield and biomass) was correlated with crop- and weed-specific AFLP genomic markers. This portion of the study was designed to answer whether or not weed × transgenic crop hybrids possessing more crop genes were less competitive than hybrids containing fewer crop genes. The effects of directly incorporated genetic load (TM) were analyzed through transgene persistence data. TM strategies are proposed to decrease transgene persistence if gene flow and subsequent transgene introgression to a wild host were to occur. Results In the absence of interspecific competition, transgenic weed × crop hybrids benefited from having more crop-specific alleles. There was a positive correlation between performance and number of B. napus crop-specific AFLP markers [seed yield vs. marker number (r = 0.54, P = 0.0003) and vegetative dry biomass vs. marker number (r = 0.44, P = 0.005)]. However under interspecific competition with wheat or more weed-like conditions (i.e. representing a situation where hybrid plants emerge as volunteer weeds in subsequent cropping systems), there was a positive correlation between the number of B. rapa weed-specific AFLP markers and seed yield (r = 0.70, P = 0.0001), although no such correlation was detected for vegetative biomass. When genetic load was directly incorporated into the hybrid genome, by inserting a fitness-mitigating dwarfing gene that that is beneficial for crops but deleterious for weeds (a transgene mitigation measure), there was a dramatic decrease in the number of transgenic hybrid progeny persisting in the population. Conclusion The effects of genetic load of crop and in some situations, weed alleles might be beneficial under certain environmental conditions. However, when genetic load was directly incorporated into transgenic events, e.g., using a TM construct, the number of transgenic hybrids and persistence in weedy genomic backgrounds was significantly decreased.
Collapse
Affiliation(s)
- Christy W Rose
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37966 USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gene flow from genetically modified rice to its wild relatives: Assessing potential ecological consequences. Biotechnol Adv 2009; 27:1083-1091. [PMID: 19463932 DOI: 10.1016/j.biotechadv.2009.05.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pollen-mediated gene flow is the major pathway for transgene escape from GM rice to its wild relatives. Transgene escape to wild Oryza species having AA-genome will occur if GM rice is released to environments with these wild Oryza species. Transgenes may persist to and spread in wild populations after gene flow, resulting unwanted ecological consequences. For assessing the potential consequences caused by transgene escape, it is important to understand the actual gene flow frequencies from GM rice to wild relatives, transgene expression and inheritance in the wild relatives, as well as fitness changes that brought to wild relatives by the transgenes. This article reviews studies on transgene escape from rice to its wild relatives via gene flow and its ecological consequences. A framework for assessing potential ecological consequences caused by transgene escape from GM rice to its wild relatives is discussed based on studies of gene flow and fitness changes.
Collapse
|
46
|
Song X, Munns K, Qiang S, Blackshaw R, Sharma R. Detection and quantification of 5 enolpyruvylshikimate-3-phosphate synthase (cp4 epsps) upon Brassica napus × Brassica juncea outcrossing using real-time PCR. Eur Food Res Technol 2009. [DOI: 10.1007/s00217-009-1008-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Devos Y, De Schrijver A, Reheul D. Quantifying the introgressive hybridisation propensity between transgenic oilseed rape and its wild/weedy relatives. ENVIRONMENTAL MONITORING AND ASSESSMENT 2009; 149:303-322. [PMID: 18253849 DOI: 10.1007/s10661-008-0204-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 01/16/2008] [Indexed: 05/25/2023]
Abstract
In order to estimate the introgressive hybridisation propensity (IHP) between genetically modified (GM) oilseed rape (Brassica napus) and certain of its cross-compatible wild/weedy relatives at the landscape level, a conceptual approach was developed. A gene flow index was established enclosing the successive steps to successfully achieve introgressive hybridisation: wild/weedy relatives and oilseed rape should co-occur, have overlapping flowering periods, be compatible, produce viable and fertile progeny, and the transgenes should persist in natural/weedy populations. Each step was described and scored, resulting in an IHP value for each cross-compatible oilseed rape wild/weedy relative. The gene flow index revealed that Brassica rapa has the highest introgressive hybridisation propensity (IHP value = 11.5), followed by Hirschfeldia incana and Raphanus raphanistrum (IHP = 6.7), Brassica juncea (IHP = 5.1), Diplotaxis tenuifolia and Sinapis arvensis (IHP = 4.5) in Flanders. Based on the IHP values, monitoring priorities can be defined within the pool of cross-compatible wild/weedy oilseed rape relatives. Moreover, the developed approach enables to select areas where case-specific monitoring of GM oilseed rape could be done in order to detect potential adverse effects on cross-compatible wild/weedy relatives resulting from vertical gene flow. The implementation of the proposed oilseed rape-wild relative gene flow index revealed that the survey design of existing botanical survey networks does not suit general surveillance needs of GM crops in Belgium. The encountered hurdles to implement the gene flow index and proposals to acquire the missing data are discussed.
Collapse
Affiliation(s)
- Yann Devos
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | | | | |
Collapse
|
48
|
Meirmans PG, Bousquet J, Isabel N. A metapopulation model for the introgression from genetically modified plants into their wild relatives. Evol Appl 2008; 2:160-71. [PMID: 25567858 PMCID: PMC3352369 DOI: 10.1111/j.1752-4571.2008.00050.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 10/28/2008] [Indexed: 11/29/2022] Open
Abstract
Most models on introgression from genetically modified (GM) plants have focused on small spatial scales, modelling gene flow from a field containing GM plants into a single adjacent population of a wild relative. Here, we present a model to study the effect of introgression from multiple plantations into the whole metapopulation of the wild relative. The most important result of the model is that even very low levels of introgression and selection can lead to a high probability that the transgene goes to fixation in the metapopulation. Furthermore, the overall frequency of the transgene in the metapopulation, after a certain number of generations of introgression, depends on the population dynamics. If there is a high rate of migration or a high rate of population turnover, the overall transgene frequency is much higher than with lower rates. However, under an island model of population structure, this increased frequency has only a very small effect on the probability of fixation of the transgene. Considering these results, studies on the potential ecological risks of introgression from GM plants should look not only at the rate of introgression and selection acting on the transgene, but also at the metapopulation dynamics of the wild relative.
Collapse
Affiliation(s)
- Patrick G Meirmans
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre Québec, QC, Canada ; Department of Ecology and Evolution, Université de Lausanne UNIL, Lausanne, Switzerland
| | - Jean Bousquet
- Canada Research Chair in Forest and Environmental Genomics, Pavillon Charles-Eugène-Marchand, Université Laval Québec, QC, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre Québec, QC, Canada ; Canada Research Chair in Forest and Environmental Genomics, Pavillon Charles-Eugène-Marchand, Université Laval Québec, QC, Canada
| |
Collapse
|
49
|
Reuter H, Menzel G, Pehlke H, Breckling B. Hazard mitigation or mitigation hazard? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2008; 15:529-535. [PMID: 18839232 DOI: 10.1007/s11356-008-0049-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 09/21/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND, AIM AND SCOPE Transgenic oilseed rape (Brassica napus L.; OSR) is estimated to be environmentally and economically problematic because volunteers and ferals occur frequently and because of its hybridisation potential with several wild and weedy species. A proposed mitigation strategy aims to reduce survival, in particular in conventional OSR crops, by coupling the transgenic target modification with a dwarfing gene to reduce competitive fitness. Our study allowed us to access potential ecological implications of this strategy. MATERIALS AND METHODS On a large scale (>500 km(2)), we recorded phenological and population parameters of oilseed rape plants for several years in rural and urban areas of Northern Germany (Bremen and surroundings). The characterising parameter were analysed for differences between wild and cultivated plants. RESULTS In rural areas, occurrences of feral and volunteer OSR together had an average density of 1.19 populations per square kilometre, in contrast to urban areas where we found 1.68 feral populations per square kilometre on average. Throughout the survey, the vegetation cover at the locations with feral OSR ranged from less than 10% to 100%. Our investigations gave clear empirical evidence that feral OSR was, on average, at least 41% smaller than cultivated OSR, independent of phenological state after onset of flowering. DISCUSSION The findings can be interpreted as phenotypic adaptation of feral OSR plants. Therefore, it must be asked whether dwarfing could be interpreted as an improvement of pre-adaptation to feral environments. In most of the sites where feral plants occurred, germination and establishment were in locations with disturbed vegetation cover, allowing initial growth without competition. Unless feral establishment of genetically modified dwarfed traits are specifically studied, it would not be safe to assume that the mitigation strategy of dwarfing also reduces dispersal in feral environments. CONCLUSIONS AND RECOMMENDATIONS With respect to OSR, we argue that the proposed mitigation approach could increase escape and persistence of transgene varieties rather than reducing them. We conclude that the development of effective hazard mitigation measures in the risk evaluation of genetically modified organisms requires thorough theoretical and empirical ecological analyses rather than assumptions about abstract fitness categories that apply only in parts of the environment where the plant can occur.
Collapse
Affiliation(s)
- Hauke Reuter
- Department of General and Theoretical Ecology, Centre for Environmental Research and Sustainable Technology (UFT), University of Bremen, P. O. Box 330440, 28334 Bremen, Germany.
| | | | | | | |
Collapse
|
50
|
Opinion of the Scientific Panel on Genetically Modified Organisms on applications (references EFSA‐GMO‐UK‐2005‐25 and EFSA‐GMO‐RX‐T45) for the placing on the market of the glufosinate‐tolerant genetically modified oilseed rape T45, for food and feed uses, import and processing and for renewal of the authorisation of oilseed rape T45 as existing product, both under Regulation (EC) No 1829/2003 from Bayer CropScience. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|