1
|
Ozsvari L, Harnos A, Lang Z, Monostori A, Strain S, Fodor I. The Impact of Paratuberculosis on Milk Production, Fertility, and Culling in Large Commercial Hungarian Dairy Herds. Front Vet Sci 2020; 7:565324. [PMID: 33195541 PMCID: PMC7604298 DOI: 10.3389/fvets.2020.565324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
Paratuberculosis (PTBC) is a chronic disease caused by Mycobacterium avium subsp. paratuberculosis (MAP), which is common in dairy herds worldwide, although the scale of its impact on herd productivity is unclear. The aim of our study was to determine the differences between MAP ELISA positive vs. negative cows in terms of milk production and quality, reproductive parameters, and culling. The data of five large dairy herds that participated in the voluntary PTBC testing program in Hungary were analyzed. Cows were tested by ELISA (IDEXX Paratuberculosis Screening Ab Test, IDEXX Laboratories, Inc., Westbrook, ME, USA) using milk samples collected during official performance testing. The outcome of the initial screening test involving all milking cows in the herds was used for the classification of the cows. The 305-day milk production, reproduction and culling data of 4,341 dairy cows, and their monthly performance testing results (n = 87,818) were analyzed. Multivariate linear and logistic models, and right censored tobit model were used for the statistical analysis. Test-day and 305-day milk production of ELISA positive cows decreased by 4.6 kg [95% CI: 3.5–5.6 kg, P < 0.0001 (−13.2%)] and 1,030 kg [95% CI: 708–1,352 kg, P < 0.0001 (−9.4%)], compared to their ELISA negative herdmates, respectively. Milk ELISA positive cows had 35.8% higher [95% CI: 17.9–56.4%, P < 0.0001] somatic cell count, on average. Test positive cows conceived 23.2 days later [95% CI: 9.2–37.3 days, P = 0.0012 (+16.5%)] and their calving interval was 33.8 days longer [95% CI: 13.2–54.4 days, P = 0.0013, (+9.7%)], compared to the negative cows, on average. Milk ELISA positive cows were less likely to conceive to first insemination (odds ratio: 0.49, 95% CI: 0.31–0.75, P = 0.0013), and required 0.42 more inseminations to conceive [95% CI: 0.07–0.77, P = 0.0192 (+13.7%)], on average. Milk ELISA positive cows were culled 160.5 days earlier after testing compared to their ELISA negative herdmates (95% CI: 117.5–203.5 days, P < 0.0001). Our results suggest that MAP ELISA positive cows experience decreased milk production, milk quality, fertility, and longevity, which supports the need to control the prevalence of PTBC in dairy herds.
Collapse
Affiliation(s)
- Laszlo Ozsvari
- Department of Veterinary Forensics and Economics, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Andrea Harnos
- Department of Biomathematics and Informatics, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Zsolt Lang
- Department of Biomathematics and Informatics, University of Veterinary Medicine Budapest, Budapest, Hungary
| | | | - Sam Strain
- Animal Health and Welfare NI, Dungannon, Northern Ireland
| | - Istvan Fodor
- Department of Veterinary Forensics and Economics, University of Veterinary Medicine Budapest, Budapest, Hungary
| |
Collapse
|
2
|
Ozsvari L, Lang Z, Monostori A, Kostoulas P, Fodor I. Bayesian estimation of the true prevalence of paratuberculosis in Hungarian dairy cattle herds. Prev Vet Med 2020; 183:105124. [PMID: 32889487 DOI: 10.1016/j.prevetmed.2020.105124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 11/24/2022]
Abstract
Paratuberculosis is a chronic incurable disease caused by Mycobacterium avium subsp. paratuberculosis (MAP), which leads to extensive economic losses on dairy farms, and may also pose serious public health risk to the consumers. The aim of our study was to estimate the true prevalence of paratuberculosis in commercial dairy cattle herds participating in a voluntary MAP testing programme that started in February 2018 in Hungary. Milk samples collected during official milk recording were used for MAP ELISA testing. A Bayesian two-stage hierarchical (herd and animal level) model was fitted to the data. Altogether, 26,437 cows from 51 herds were sampled, which represents 14.4 % of the Hungarian dairy cow population. The median herd size was 477 cows (interquartile range: 331-709). Each studied farm had at least one ELISA positive cow, resulting in a herd-level apparent prevalence of 100 %. The overall within herd apparent prevalence was 5.5 %. Herd-level true prevalence was estimated at 89.1 % [95 % credible interval (CrI): 80.3-95.6%]. Within the infected herds, the median animal-level true prevalence was 4.4 % (3.2-5.8%) for primiparous and 10.3 % (7.9-12.9%) for multiparous cows, respectively. The probability of having an animal-level true prevalence of at least 5% among primiparous cows, within infected herds, was 17.8 %. Similarly, the probability of having an animal-level true prevalence of at least 5% or 10 % among multiparous cows was 100 % and 56 %, respectively. Simulations assuming herd-level true prevalence varying from 50 to 100 % revealed high accuracy of our Bayesian model. Our study showed that a large percentage of the studied Hungarian dairy cattle herds was infected with MAP.
Collapse
Affiliation(s)
- L Ozsvari
- Department of Veterinary Forensics and Economics, University of Veterinary Medicine Budapest, Budapest, Hungary.
| | - Zs Lang
- Department of Biomathematics and Informatics, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - A Monostori
- Livestock Performance Testing Ltd., Gödöllő, Hungary
| | - P Kostoulas
- Faculty of Veterinary Science, University of Thessaly, Volos, 43100, Greece
| | - I Fodor
- Department of Veterinary Forensics and Economics, University of Veterinary Medicine Budapest, Budapest, Hungary
| |
Collapse
|
3
|
Picasso-Risso C, Grau A, Bakker D, Nacar J, Mínguez O, Perez A, Alvarez J. Association between results of diagnostic tests for bovine tuberculosis and Johne's disease in cattle. Vet Rec 2019; 185:693. [PMID: 31554708 DOI: 10.1136/vr.105336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 08/01/2019] [Accepted: 08/28/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Bovine tuberculosis (bTB) diagnosis is impaired by numerous factors including cross-reactivity with Mycobacterium avium subspecies paratuberculosis, which causes Johne's disease (JD). In addition, the effect of repeated bTB-intradermal testing on the performance of JD diagnostic tests is not fully understood. This study aimed to evaluate the impact of repeated bTB-intradermal tests under field conditions in Spain on the JD serological status of cattle. METHODS bTB-positive herds (n=264) from Castilla-y-Leon region were selected and matched with officially tuberculosis-free control herds. The association between JD and bTB status at the herd level was assessed using conditional logistic regression and, in herds with both JD-positive and bTB-positive animals, a Bayesian hierarchical mixed-effect model was used for individual-level analysis. RESULTS A significantly higher risk of being JD positive (OR: 1.48; 95 per cent CI: 1.01 to 2.15) was found for bTB-positive herds compared with controls. Individual results indicated that cattle tested more than three times per year, within the last 90 days and more than 12 months were more likely to be JD positive. A skin test-related boost in antibody response could be the cause of an apparent increase of the sensitivity of the JD-absorbed ELISA. CONCLUSION The results demonstrate the interaction between bTB repeated testing and JD individual and herd-level results and this improved knowledge will facilitate the design of more effective control programmes in herds coinfected with two of the most important endemic diseases affecting cattle in Spain.
Collapse
Affiliation(s)
- Catalina Picasso-Risso
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, USA .,Facultad de Veterinaria, Universidad de la Republica, Montevideo, Uruguay
| | - Ana Grau
- Servicio de Sanidad Animal, Junta de Castilla y Leon, Valladolid, Castilla y León, Spain
| | | | - Jesus Nacar
- Servicio de Sanidad Animal, Junta de Castilla y Leon, Valladolid, Castilla y León, Spain
| | - Olga Mínguez
- Sanidad Animal, Junta de Castilla y Leon, Valladolid, Castilla y León, Spain
| | - Andres Perez
- Veterinary Population Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain.,Universidad Complutense de Madrid Facultad de Veterinaria, Madrid, Comunidad de Madrid, Spain
| |
Collapse
|
4
|
Whittington R, Donat K, Weber MF, Kelton D, Nielsen SS, Eisenberg S, Arrigoni N, Juste R, Sáez JL, Dhand N, Santi A, Michel A, Barkema H, Kralik P, Kostoulas P, Citer L, Griffin F, Barwell R, Moreira MAS, Slana I, Koehler H, Singh SV, Yoo HS, Chávez-Gris G, Goodridge A, Ocepek M, Garrido J, Stevenson K, Collins M, Alonso B, Cirone K, Paolicchi F, Gavey L, Rahman MT, de Marchin E, Van Praet W, Bauman C, Fecteau G, McKenna S, Salgado M, Fernández-Silva J, Dziedzinska R, Echeverría G, Seppänen J, Thibault V, Fridriksdottir V, Derakhshandeh A, Haghkhah M, Ruocco L, Kawaji S, Momotani E, Heuer C, Norton S, Cadmus S, Agdestein A, Kampen A, Szteyn J, Frössling J, Schwan E, Caldow G, Strain S, Carter M, Wells S, Munyeme M, Wolf R, Gurung R, Verdugo C, Fourichon C, Yamamoto T, Thapaliya S, Di Labio E, Ekgatat M, Gil A, Alesandre AN, Piaggio J, Suanes A, de Waard JH. Control of paratuberculosis: who, why and how. A review of 48 countries. BMC Vet Res 2019; 15:198. [PMID: 31196162 PMCID: PMC6567393 DOI: 10.1186/s12917-019-1943-4] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Paratuberculosis, a chronic disease affecting ruminant livestock, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). It has direct and indirect economic costs, impacts animal welfare and arouses public health concerns. In a survey of 48 countries we found paratuberculosis to be very common in livestock. In about half the countries more than 20% of herds and flocks were infected with MAP. Most countries had large ruminant populations (millions), several types of farmed ruminants, multiple husbandry systems and tens of thousands of individual farms, creating challenges for disease control. In addition, numerous species of free-living wildlife were infected. Paratuberculosis was notifiable in most countries, but formal control programs were present in only 22 countries. Generally, these were the more highly developed countries with advanced veterinary services. Of the countries without a formal control program for paratuberculosis, 76% were in South and Central America, Asia and Africa while 20% were in Europe. Control programs were justified most commonly on animal health grounds, but protecting market access and public health were other factors. Prevalence reduction was the major objective in most countries, but Norway and Sweden aimed to eradicate the disease, so surveillance and response were their major objectives. Government funding was involved in about two thirds of countries, but operations tended to be funded by farmers and their organizations and not by government alone. The majority of countries (60%) had voluntary control programs. Generally, programs were supported by incentives for joining, financial compensation and/or penalties for non-participation. Performance indicators, structure, leadership, practices and tools used in control programs are also presented. Securing funding for long-term control activities was a widespread problem. Control programs were reported to be successful in 16 (73%) of the 22 countries. Recommendations are made for future control programs, including a primary goal of establishing an international code for paratuberculosis, leading to universal acknowledgment of the principles and methods of control in relation to endemic and transboundary disease. An holistic approach across all ruminant livestock industries and long-term commitment is required for control of paratuberculosis.
Collapse
Affiliation(s)
- Richard Whittington
- School of Veterinary Science, Faculty of Science, University of Sydney, 425 Werombi Road, Camden, NSW 2570 Australia
| | - Karsten Donat
- Animal Health Service, Thuringian Animal Diseases Fund, 07745 Jena, Germany
- Clinic for Obstetrics, Gynecology and Andrology with Veterinary Ambulance, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | | | - David Kelton
- Department of Population Medicine, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Søren Saxmose Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | | | - Norma Arrigoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 29027 Podenzano, Italy
| | - Ramon Juste
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Asturias Spain
| | - Jose Luis Sáez
- Ministry of Agriculture and Fisheries, Food and Environment, ES-28071 Madrid, Spain
| | - Navneet Dhand
- School of Veterinary Science, Faculty of Science, University of Sydney, 425 Werombi Road, Camden, NSW 2570 Australia
| | - Annalisa Santi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 29027 Podenzano, Italy
| | - Anita Michel
- Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110 South Africa
| | - Herman Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1 Canada
| | - Petr Kralik
- Veterinary Research Institute, 621 00 Brno, Czech Republic
| | | | - Lorna Citer
- Animal Health Ireland, Carrick on Shannon, Co. Leitrim, N41 WN27 Republic of Ireland
| | - Frank Griffin
- Disease Research Limited, Invermay Agricultural Centre, Mosgiel, 9092 New Zealand
| | - Rob Barwell
- Animal Health Australia, Turner, ACT 2612 Australia
| | | | - Iva Slana
- Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Heike Koehler
- Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 07743 Jena, Germany
| | - Shoor Vir Singh
- Deparment of Biotechnology, GLA University, Mathura, Uttar Pradesh 281 406 India
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826 South Korea
| | - Gilberto Chávez-Gris
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de México, 76750 Tequisquiapan, Queretaro, Mexico
| | - Amador Goodridge
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama City, 0843-01103 Panama
| | - Matjaz Ocepek
- National Veterinary Institute, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Joseba Garrido
- Instituto Vasco de Investigacion y Desarrollo Agrario-NEIKER, 48160 Derio, Bizkaia Spain
| | | | - Mike Collins
- School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, 53706-1102 USA
| | | | - Karina Cirone
- Instituto Nacional de Tecnologia Agropecuaria, 7620 Balcarce, Argentina
| | | | - Lawrence Gavey
- Biosecurity Queensland, Department of Agriculture and Fisheries, Toowoomba, Queensland 4350 Australia
| | - Md Tanvir Rahman
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | | | | | - Cathy Bauman
- Department of Population Medicine, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Gilles Fecteau
- Faculté de Médecine Vétérinaire, University of Montreal, Quebec, J2S 6Z9 Canada
| | - Shawn McKenna
- Atlantic Veterinary College, Charlottetown, Prince Edward Island C1A 4P3 Canada
| | - Miguel Salgado
- Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Jorge Fernández-Silva
- Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Antioquia 050034076 Colombia
| | | | - Gustavo Echeverría
- Instituto de Investigación en Salud Pública y Zoonosis, Universidad Central del Ecuador, 17-03-100 Quito, Ecuador
| | - Jaana Seppänen
- Finnish Food Authority, Mustialankatu 3, 00790 Helsinki, Finland
| | - Virginie Thibault
- ANSES Laboratoire de Ploufragan-Plouzané-Niort and GDS France, CS 28440, 79024 Niort Cedex, France
| | - Vala Fridriksdottir
- Institute for Experimental Pathology at Keldur, University of Iceland, IS-112 Reykjavík, Iceland
| | | | - Masoud Haghkhah
- School of Veterinary Medicine, Shiraz University, Shiraz, 71441-69155 Iran
| | - Luigi Ruocco
- Ministry of Health, General Directorate of Animal Health and Veterinary Medicines, 00144 Rome, Italy
| | - Satoko Kawaji
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856 Japan
| | - Eiichi Momotani
- Comparative Medical Research Institute, Tsukuba, Ibaraki 305-0856 Japan
| | - Cord Heuer
- School of Veterinary Sciences, Massey University, Palmerston North, 4441 New Zealand
| | | | - Simeon Cadmus
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Joanna Szteyn
- Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-718 Olsztyn, Poland
| | | | - Ebba Schwan
- Swedish Farm and Animal Health, 62254 Romakloster, Sweden
| | | | - Sam Strain
- Animal Health and Welfare Northern Ireland, Dungannon Enterprise Centre, Dungannon, BT71 6JT UK
| | - Mike Carter
- USDA-APHIS-Veterinary Services, Riverdale, MD 20737 USA
| | - Scott Wells
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108 USA
| | - Musso Munyeme
- School of Veterinary Medicine, The University of Zambia, 10101 Lusaka, Zambia
| | - Robert Wolf
- Fachabteilung Gesundheit und Pflegemanagement, 8010 Graz, Austria
| | - Ratna Gurung
- National Centre for Animal Health, Serbithang, Bhutan
| | - Cristobal Verdugo
- Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Christine Fourichon
- Oniris – INRA, Department Farm Animal Health and Public Health, 44307 Nantes cedex 3, France
| | - Takehisa Yamamoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856 Japan
| | - Sharada Thapaliya
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Rampur, Chitwan Nepal
| | - Elena Di Labio
- Federal Food Safety and Veterinary Office, 3003 Bern, Switzerland
| | - Monaya Ekgatat
- National Institute of Animal Health, Chatuchak, Bangkok, 10900 Thailand
| | - Andres Gil
- Facultad de Veterinaria, Lasplaces 1620, CP 11600 Montevideo, Uruguay
| | | | - José Piaggio
- Facultad de Veterinaria, Lasplaces 1620, CP 11600 Montevideo, Uruguay
| | - Alejandra Suanes
- Ministry of Livestock Agriculture and Fisheries of Uruguay, CP 11300 Montevideo, Uruguay
| | - Jacobus H. de Waard
- Servicio Autonomo Instituto de Biomedicina, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
5
|
Beaunée G, Vergu E, Joly A, Ezanno P. Controlling bovine paratuberculosis at a regional scale: Towards a decision modelling tool. J Theor Biol 2017; 435:157-183. [DOI: 10.1016/j.jtbi.2017.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 01/07/2023]
|
6
|
Kirkeby C, Græsbøll K, Nielsen SS, Toft N, Halasa T. Epidemiological and economic consequences of purchasing livestock infected with Mycobacterium avium subsp. paratuberculosis. BMC Vet Res 2017; 13:202. [PMID: 28655323 PMCID: PMC5488427 DOI: 10.1186/s12917-017-1119-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/19/2017] [Indexed: 12/29/2022] Open
Abstract
Background Paratuberculosis (PTB) is a chronic disease which may lead to reduced milk yield, lower animal welfare and death in cattle. The causative agent is Mycobacterium avium subsp. paratuberculosis (MAP). The economic consequences are particularly important incentives in the control and eradication of the infection. One strategy to control PTB in a herd is to purchase animals from farms with a low risk of MAP infection. We wanted to investigate the epidemiological and economic consequences of buying livestock from different supplier farms of low, medium or high risk, as well as farms with unknown status. We also wanted to estimate the probability of spontaneous fadeout if the farmer of an initially MAP-free herd bought a specified number of infected animals in a single year, or continually bought infected animals. This was achieved through simulation modeling, and the effects of consistently introducing one, five or ten infected animals annually into an initially infection-free herd was also modeled. Results Our findings show that once infected, a farm can relatively safely purchase animals from other low and medium-risk farms without experiencing an increase in the prevalence, highlighting the importance of certification programmes. Furthermore, farms free of MAP are highly susceptible and cannot purchase more than a small number of animals per year without having a high risk of being infected. The probability of spontaneous fadeout after 10 years was 82% when introducing a single infected animal into an initially MAP-free herd. When purchasing ten infected animals, this probability was 46%. The continual purchase of infected animals resulted in very low probabilities of spontaneous fadeout. Conclusions We demonstrated that MAP-free farms can purchase a small number of animals, preferably from certified farms, each year and still remain free of MAP. Already infected farms have little risk of increasing the prevalence on a farm when purchasing animals from other farms.
Collapse
Affiliation(s)
- Carsten Kirkeby
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, bygning 204, 2800, Kgs. Lyngby, Denmark.
| | - Kaare Græsbøll
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, bygning 204, 2800, Kgs. Lyngby, Denmark.,DTU Compute, Section for Dynamical Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Bygning 324, 2800, Kgs. Lyngby, Denmark
| | - Søren Saxmose Nielsen
- Department of Large Animal Sciences, Section for Animal Welfare and DiseaseControl, University of Copenhagen, Grønnegaardsvej 8, 1870 Frb. C, København, Denmark
| | - Nils Toft
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, bygning 204, 2800, Kgs. Lyngby, Denmark
| | - Tariq Halasa
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, bygning 204, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Garcia AB, Shalloo L. Invited review: The economic impact and control of paratuberculosis in cattle. J Dairy Sci 2016; 98:5019-39. [PMID: 26074241 DOI: 10.3168/jds.2014-9241] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/20/2015] [Indexed: 11/19/2022]
Abstract
Paratuberculosis (also called Johne's disease) is a chronic disease caused by Mycobacterium avium ssp. paratuberculosis (MAP) that affects ruminants and other animals. The epidemiology of paratuberculosis is complex and the clinical manifestations and economic impact of the disease in cattle can be variable depending on factors such as herd management, age, infection dose, and disease prevalence, among others. Additionally, considerable challenges are faced in the control of paratuberculosis in cattle, such as the lack of accurate and reliable diagnostic tests. Nevertheless, efforts are directed toward the control of this disease because it can cause substantial economic losses to the cattle industry mainly due to increased premature culling, replacement costs, decreased milk yield, reduced feed conversion efficiency, fertility problems, reduced slaughter values, and increased susceptibility to other diseases or conditions. The variability and uncertainty surrounding the estimations of paratuberculosis prevalence and impact influence the design, implementation, and efficiency of control programs in diverse areas of the world. This review covers important aspects of the economic impact and control of paratuberculosis, including challenges related to disease detection, estimations of the prevalence and economic effects of the disease, and the implementation of control programs. The control of paratuberculosis can improve animal health and welfare, increase productivity, reduce potential market problems, and increase overall business profitability. The benefits that can derive from the control of paratuberculosis need to be communicated to all industry stakeholders to promote the implementation of control programs. Moreover, if the suspected link between Johne's disease in ruminants and Crohn's disease in humans was established, significant economic losses could be expected, particularly for the dairy industry, making the control of this disease a priority across dairy industries internationally.
Collapse
Affiliation(s)
- A B Garcia
- Animal and Grassland Research and Innovation Centre, Teagasc Moorepark, Fermoy, Co. Cork, Ireland.
| | - L Shalloo
- Animal and Grassland Research and Innovation Centre, Teagasc Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
8
|
Sá LDME, Oliveira JMD, Santos GR, Brandespim DF, Silva Júnior JLD, Mota RA, Pinheiro Júnior JW. Avaliação sorológica e de fatores de risco para a infecção por Mycobacterium avium subsp. paratuberculosis em rebanhos leiteiros da Microrregião de Garanhuns, Pernambuco. PESQUISA VETERINARIA BRASILEIRA 2013. [DOI: 10.1590/s0100-736x2013000300006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objetivou-se com esse trabalho realizar um inquérito epidemiológico da infecção por Mycobacterium avium subsp. paratuberculosis (MAP) em bovinos leiteiros da microrregião de Garanhuns, Pernambuco, Brasil. Para este estudo foram coletadas amostras sanguíneas de 408 animais, provenientes de 19 rebanhos localizados em 15 municípios. O exame sorológico foi realizado por Ensaio Imunoenzimático (ELISA) indireto para detecção de anticorpos frente ao MAP. Em todas as propriedades, foi aplicado um questionário investigativo para análise dos fatores de risco, e as coordenadas geográficas coletadas por um aparelho de Global Position System (GPS) para realização da distribuição espacial. A prevalência da infecção por MAP foi de 2,7% (11/408; I.C. 1,4-4,9). O número de focos foi 47,4% (9/19). Na análise de regressão logística foi identificado como fator de risco a taxa anual de nascimentos superior a 51 bezerros/ano (OR 3,8; I.C. 1,1-13,1). Desta forma, conclui-se que a infecção por MAP encontra-se presente nos rebanhos bovinos leiteiros da microrregião estudada e que medidas de controle baseadas nos fatores de risco identificados devem ser implementadas com o objetivo de reduzir o número de focos da infecção.
Collapse
|
9
|
Surveillance system sensitivities and probability of freedom from Mycobacterium avium subsp. paratuberculosis infection in Swedish cattle. Prev Vet Med 2013; 108:47-62. [DOI: 10.1016/j.prevetmed.2012.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/03/2012] [Accepted: 07/15/2012] [Indexed: 11/17/2022]
|
10
|
Marcé C, Ezanno P, Weber MF, Seegers H, Pfeiffer DU, Fourichon C. Invited review: modeling within-herd transmission of Mycobacterium avium subspecies paratuberculosis in dairy cattle: a review. J Dairy Sci 2010; 93:4455-70. [PMID: 20854979 DOI: 10.3168/jds.2010-3139] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 06/07/2010] [Indexed: 11/19/2022]
Abstract
Epidemiological models have been developed to test hypotheses on Mycobacterium avium ssp. paratuberculosis (Map) transmission in a herd, and to compare different paratuberculosis control strategies and alternatives for certification-and-surveillance schemes. The models are simplified representations of existing biological processes tailored to the questions they are intended to answer. Such models depend on available knowledge about the underlying processes, notably in relation to pathogen transmission. All decisions relating to integration of specific aspects of the herd structure and transmission mechanisms as well as modeling objective will influence model behavior and simulation results. This paper examines assumptions on pathogen transmission and risk mitigation represented in 8 epidemiological models of within-herd Map transmission in dairy cattle. We describe available models' structure and examine them in the context of current knowledge about host infection and pathogen transmission pathways. We investigate how population structure and herd management are modeled with regard to their influence on contact structure and pathogen transmission. We show that assumptions about routes of transmission and their contribution within a herd vary greatly among models. Gaps of knowledge that are pivotal to defining transmission equations and parameters, such as variation of susceptibility with age and variability of pattern of shedding, are identified. Quantitative estimates of this incomplete information should be targeted by future research. Existing models could be improved by considering indirect transmission via the environment taking account of Map survival and contact structure between animals in a herd, and by including calf-to-calf transmission, which has recently been proven as being important.
Collapse
Affiliation(s)
- C Marcé
- INRA, ONIRIS, UMR1300 Bioagression, Epidémiologie et Analyse de Risque, BP 40706, F-44307 Nantes, France.
| | | | | | | | | | | |
Collapse
|
11
|
Good M, Clegg T, Sheridan H, Yearsely D, O'Brien T, Egan J, Mullowney P. Prevalence and distribution of paratuberculosis (Johne's disease) in cattle herds in Ireland. Ir Vet J 2009; 62:597-606. [PMID: 21851740 PMCID: PMC3113810 DOI: 10.1186/2046-0481-62-9-597] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A simple random survey was conducted in Ireland during 2005 to estimate the ELISA-prevalence of paratuberculosis, commonly called Johne's disease (JD), in the cattle population. Serum samples were collected from all 20,322 females/breeding bulls over 12 months-of-age in 639 herds. All samples were tested using a commercially available absorbed ELISA. The overall prevalence of infected herds, based on the presence of at least one ELISA-positive animal, was 21.4% (95% CI 18.4%-24.9%). Herd prevalence levels amongst dairy herds (mean 31.5%; 95% CI: 24.6%, 39.3%) was higher than among beef herds (mean 17.9%; 95% CI: 14.6%-21.8%). However, the animal level prevalence was similar. The true prevalence among all animals tested, was calculated to be 2.86% (95%CI: 2.76, 2.97) and for animals >= 2 yrs, it was 3.30% (95%CI: 3.17, 3.43). For animals in beef herds, true prevalence was 3.09% (95%CI: 2.93, 3.24), and for those in dairy herds, 2.74% (95%CI: 2.59, 2.90). The majority of herds had only one ELISA-positive infected animal. Only 6.4% (95% CI 4.7%-8.7%) of all herds had more than one ELISA-positive infected animal; 13.3% (CI 8.7%-19.7%) of dairy herds ranging from two to eight ELISA-positive infected animals; and, 3.9% beef herds (CI 2.4%-6.2%) ranging from two to five ELISA-positive infected animals. The true prevalence of herds infected and shedding Mycobacterium avium subspecies paratuberculosis is estimated to be 9.5% for all herd types; 20.6% for dairy herds; and 7.6% for beef herds. If ELISA positive animals <2-years-of-age are excluded, the true herd prevalene reduces to: 9.3% for all herd types; 19.6% for dairy herds; and 6.3% for beef herds based on a test specificity (Sp) of 99.8% and test sensitivity (Se) (i.e., ability to detect culture-positive, infected animals shedding at any level) of 27.8-28.9%.
Collapse
Affiliation(s)
- M Good
- Department of Agriculture, Fisheries and Food, Kildare Street, Dublin 2, Ireland.
| | | | | | | | | | | | | |
Collapse
|
12
|
Richardson E, Mee J, Sánchez-Miguel C, Crilly J, More S. Demographics of cattle positive for Mycobacterium avium subspecies paratuberculosis by faecal culture, from submissions to the Cork Regional Veterinary Laboratory. Ir Vet J 2009; 62:398-405. [PMID: 21851736 PMCID: PMC3113751 DOI: 10.1186/2046-0481-62-6-398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The demography of bovine infections caused by Mycobacterium avium subspecies paratuberculosis (MAP) in Ireland is poorly defined. The objective of this study was to describe the demographics of cattle positive to MAP on faecal culture, based on submissions to the Cork Regional Veterinary Laboratory (Cork RVL) from 1994 to 2006. The study focused on all available faecal samples from adult cattle with non-responsive chronic diarrhoea that were submitted by private veterinary practitioners to Cork RVL for MAP culture. For each MAP-positive by faecal culture animal, data were collated from Cork RVL and Cattle Movement Monitoring Scheme (CMMS) records. Johne's disease (JD) was confirmed in 110 animals from 86 herds by the Cork RVL between 1994 and 2006, with a rate of positive cases between 15% and 18% over last four years of the study. Two breeds (Holstein/Friesian or Limousin) made up 78% of submissions. Movements were assessed for the 57 study animals with available movement information, 90% died within one year of the test and 26% tested positive in the herd they were born into. The study provides preliminary information about movement trends and demographics of animals with MAP positive submissions. Although the study area is restricted, it includes the most intensive (and economically-important) dairy region in Ireland. The demographics of JD infection from the study area are in agreement with international reports. Further work is required to determine demographic trends, incidence and prevalence of JD throughout Ireland. It is hoped this work may contribute to the development of a surveillance strategy for MAP by regional veterinary laboratories.
Collapse
Affiliation(s)
- Ekb Richardson
- Moorepark Dairy Production Research Centre, Teagasc, Fermoy, Co, Cork, Ireland.
| | | | | | | | | |
Collapse
|
13
|
Hoogendam K, Richardson E, Mee J. Paratuberculosis sero-status and milk production, SCC and calving interval in Irish dairy herds. Ir Vet J 2009; 62 Suppl 4:265-71. [PMID: 21851733 PMCID: PMC3339344 DOI: 10.1186/2046-0481-62-4-265] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to investigate the impact of paratuberculosis sero-status on milk yield, fat, protein, somatic cell count and calving interval in Irish dairy herds. Serum from all animals over 12 months of age (n = 2,602) in 34 dairy herds was tested for antibodies to Mycobacterium avium subsp. paratuberculosis using an ELISA. Herds were categorised by sero-status into positive, non-negative and negative, where a positive herd contained two or more positive cows, a non-negative herd contained only one positive cow and a negative herd contained no positive cows. Data at animal, parity and herd-level were analysed by multiple regression using general linear models. Positive herds (mean herd size = 129 cows) and non-negative herds (81 cows) were larger than negative herds (72 cows) (P < 0.01). Negative herds had the highest economic breeding index (EBI), while positive herds had the highest estimated breeding value (EBV) for milk yield. There was no significant effect of paratuberculosis sero-status at animal, parity or herd-level on milk yield, milk fat or protein production, somatic cell count score (SCCS) or calving interval. Negative herds tended to have a lower SCCS than positive and nonnegative herds (P = 0.087). This study only examined the effects of paratuberculosis sero-status but did not examine the clinical effects of Johne's disease at the farm or dairy industry levels.
Collapse
Affiliation(s)
- K Hoogendam
- Teagasc, Moorepark Dairy Production Research Centre, Fermoy, Co, Cork, Ireland.
| | | | | |
Collapse
|