1
|
Yakut H, Ayyıldız VA, Bekar Z, Kayan M, Kutluhan S. The Relationship of Gastrocnemius-Soleus Muscle Architecture with Balance and Functional Strength in Acute Stroke Patients. J Mot Behav 2024:1-10. [PMID: 38503319 DOI: 10.1080/00222895.2024.2329697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Balance and functional impairment could occur due to the weakness of the gastrocsoleus muscles in acute stroke patients. This study was planned to determine the muscle architecture and its relationship to balance and functional strength functional ability in patients with acute stroke. A cross-sectional analysis of 22 stroke patients (68.59 ± 8.16) was performed in this study. Gastrocnemius muscle thickness and cross-sectional area were significantly greater on the non-paretic than on the paretic sides (p = 0.004, p = 0.005, respectively). Partial correlation analysis showed that soleus muscle thickness and cross-sectional area was significantly correlated with Berg Balance Scale, Single Leg Stance Test, Five Times Sit to Stand Test and Tandem test results in the paretic side (r = 0.49-0.77, p < 0.05). The gastrocnemius muscle thickness of the non-paretic side had a significant relationship with balance (r = 0.45-0.65, p < 0.05). The muscle thickness and cross-sectional area of the soleus muscle on the paretic sides was significantly related with the functional strength and balance after stroke. It may be beneficial to develop clinical assessment and intervention programs focusing on distal plantar flexor muscle groups in order to improve the functional status and balance.
Collapse
Affiliation(s)
- Hatice Yakut
- Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Süleyman Demirel University, Isparta, Turkey
| | - Veysel Atilla Ayyıldız
- Faculty of Medicine, Department of Radiology, Süleyman Demirel University, Isparta, Turkey
| | - Zülal Bekar
- Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Gazi University, Ankara, Turkey
| | - Mustafa Kayan
- Faculty of Medicine, Department of Radiology, Süleyman Demirel University, Isparta, Turkey
| | - Süleyman Kutluhan
- Faculty of Medicine, Department of Neurology, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
2
|
Hussain I, Jany R. Interpreting Stroke-Impaired Electromyography Patterns through Explainable Artificial Intelligence. SENSORS (BASEL, SWITZERLAND) 2024; 24:1392. [PMID: 38474928 DOI: 10.3390/s24051392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Electromyography (EMG) proves invaluable myoelectric manifestation in identifying neuromuscular alterations resulting from ischemic strokes, serving as a potential marker for diagnostics of gait impairments caused by ischemia. This study aims to develop an interpretable machine learning (ML) framework capable of distinguishing between the myoelectric patterns of stroke patients and those of healthy individuals through Explainable Artificial Intelligence (XAI) techniques. The research included 48 stroke patients (average age 70.6 years, 65% male) undergoing treatment at a rehabilitation center, alongside 75 healthy adults (average age 76.3 years, 32% male) as the control group. EMG signals were recorded from wearable devices positioned on the bicep femoris and lateral gastrocnemius muscles of both lower limbs during indoor ground walking in a gait laboratory. Boosting ML techniques were deployed to identify stroke-related gait impairments using EMG gait features. Furthermore, we employed XAI techniques, such as Shapley Additive Explanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), and Anchors to interpret the role of EMG variables in the stroke-prediction models. Among the ML models assessed, the GBoost model demonstrated the highest classification performance (AUROC: 0.94) during cross-validation with the training dataset, and it also overperformed (AUROC: 0.92, accuracy: 85.26%) when evaluated using the testing EMG dataset. Through SHAP and LIME analyses, the study identified that EMG spectral features contributing to distinguishing the stroke group from the control group were associated with the right bicep femoris and lateral gastrocnemius muscles. This interpretable EMG-based stroke prediction model holds promise as an objective tool for predicting post-stroke gait impairments. Its potential application could greatly assist in managing post-stroke rehabilitation by providing reliable EMG biomarkers and address potential gait impairment in individuals recovering from ischemic stroke.
Collapse
Affiliation(s)
- Iqram Hussain
- Department of Anesthesiology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Rafsan Jany
- Department of Computer Science and Engineering, Islamic University and Technology (IUT), Gazipur 1704, Bangladesh
| |
Collapse
|
3
|
Su D, Hu Z, Wu J, Shang P, Luo Z. Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition. Front Neurorobot 2023; 17:1186175. [PMID: 37465413 PMCID: PMC10350518 DOI: 10.3389/fnbot.2023.1186175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Stroke is a significant cause of disability worldwide, and stroke survivors often experience severe motor impairments. Lower limb rehabilitation exoskeleton robots provide support and balance for stroke survivors and assist them in performing rehabilitation training tasks, which can effectively improve their quality of life during the later stages of stroke recovery. Lower limb rehabilitation exoskeleton robots have become a hot topic in rehabilitation therapy research. This review introduces traditional rehabilitation assessment methods, explores the possibility of lower limb exoskeleton robots combining sensors and electrophysiological signals to assess stroke survivors' rehabilitation objectively, summarizes standard human-robot coupling models of lower limb rehabilitation exoskeleton robots in recent years, and critically introduces adaptive control models based on motion intent recognition for lower limb exoskeleton robots. This provides new design ideas for the future combination of lower limb rehabilitation exoskeleton robots with rehabilitation assessment, motion assistance, rehabilitation treatment, and adaptive control, making the rehabilitation assessment process more objective and addressing the shortage of rehabilitation therapists to some extent. Finally, the article discusses the current limitations of adaptive control of lower limb rehabilitation exoskeleton robots for stroke survivors and proposes new research directions.
Collapse
Affiliation(s)
- Dongnan Su
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhigang Hu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Intelligent Rehabilitation Medical Robot Engineering Research Center, Henan University of Science and Technology, Luoyang, China
| | - Jipeng Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Peng Shang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhaohui Luo
- State-Owned Changhong Machinery Factory, Guilin, China
| |
Collapse
|
4
|
Yang H, Wan J, Jin Y, Yu X, Fang Y. EEG- and EMG-Driven Poststroke Rehabilitation: A Review. IEEE SENSORS JOURNAL 2022; 22:23649-23660. [DOI: 10.1109/jsen.2022.3220930] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Affiliation(s)
- Haiyang Yang
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Jiacheng Wan
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Ying Jin
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xixia Yu
- Department of Internal Medicine, Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Yinfeng Fang
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
5
|
Albanese GA, Falzarano V, Holmes MWR, Morasso P, Zenzeri J. A Dynamic Submaximal Fatigue Protocol Alters Wrist Biomechanical Properties and Proprioception. Front Hum Neurosci 2022; 16:887270. [PMID: 35712530 PMCID: PMC9196583 DOI: 10.3389/fnhum.2022.887270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Fatigue is a temporary condition that arises as a result of intense and/or prolonged use of muscles and can affect skilled human performance. Therefore, the quantitative analysis of these effects is a topic of crucial interest in both ergonomics and clinical settings. This study introduced a novel protocol, based on robotic techniques, to quantitatively assess the effects of fatigue on the human wrist joint. A wrist manipulandum was used for two concurrent purposes: (1) implementing the fatigue task and (2) assessing the functional changes both before and at four time points after the end of the fatigue task. Fourteen participants completed the experimental protocol, which included the fatigue task and assessment sessions over 2 days. Specifically, the assessments performed are related to the following indicators: (1) isometric forces, (2) biomechanical properties of the wrist, (3) position sense, and (4) stretch reflexes of the muscles involved. The proposed fatigue task was a short-term, submaximal and dynamic wrist flexion/extension task designed with a torque opposing wrist flexion. A novel task termination criterion was employed and based on a percentage decrease in the mean frequency of muscles measured using surface electromyography. The muscle fatigue analysis demonstrated a change in mean frequency for both the wrist flexors and extensors, however, only the isometric flexion force decreased 4 min after the end of the task. At the same time point, wrist position sense was significantly improved and stiffness was the lowest. Viscosity presented different behaviors depending on the direction evaluated. At the end of the experiment (about 12 min after the end of the fatigue task), wrist position sense recovered to pre-fatigue values, while biomechanical properties did not return to their pre-fatigue values. Due to the wide variety of fatigue tasks proposed in the literature, it has been difficult to define a complete framework that presents the dynamic of fatigue-related changes in different components associated with wrist function. This work enables us to discuss the possible causes and the mutual relationship of the changes detected after the same task.
Collapse
Affiliation(s)
- Giulia A. Albanese
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
- *Correspondence: Giulia A. Albanese,
| | - Valeria Falzarano
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Michael W. R. Holmes
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Pietro Morasso
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy
| | - Jacopo Zenzeri
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
6
|
Mashayekhi M, Moghaddam MM. Emg-driven Fatigue-based Self-adapting Admittance Control of a Hand Rehabilitation Robot. J Biomech 2022; 138:111104. [DOI: 10.1016/j.jbiomech.2022.111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 01/31/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
|
7
|
Prados-Román E, Cabrera-Martos I, López-López L, Rodríguez-Torres J, Torres-Sánchez I, Ortiz-Rubio A, Valenza MC. Deficits underlying handgrip performance in mildly affected chronic stroke persons. Top Stroke Rehabil 2020; 28:190-197. [PMID: 32758034 DOI: 10.1080/10749357.2020.1803574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Knowledge of the deficits underlying handgrip performance is fundamental for the development of targeted interventions. OBJECTIVES The purpose of this study was to evaluate maximal handgrip strength, fatigue resistance, grip work, and muscle fatigue in mildly affected stroke persons. METHODS We conducted a prospective observational study. A total of 20 individuals after a first unilateral ischemic/hemorrhagic chronic stroke (months poststroke: mean 33.64 ± 19.60), mildly affected according to functional score (FIM: 112.71 ± 16.14) and with arm motor impairment (upper-extremity Fugl-Meyer score: mean 57.07 ± 7.82 on the contralesional side); and 20 sex and age-matched controls were included. The outcomes assessed were maximal handgrip strength evaluated through maximal voluntary contraction, fatigue resistance defined as the seconds during which grip strength dropped to 50% of its maximum and gripwork, which was calculated using the equation grip work = maximal grip strength * 0.75 * fatigue resistance. Muscle fatigue was assessed using surface electromyography during a sustained contraction over 50% of maximal voluntary contraction. RESULTS Persons with stroke demonstrated significantly reduced handgrip performance regarding maximal handgrip strength, resistance to fatigue, grip work, and muscle fatigue for the contralesional hand. In addition, a reduced grip resistance and muscle fatigue was shown for the ipsilesional hand compared with controls. We found no effect of the hemispheric side of the lesion on the grip performance measures assessed. CONCLUSIONS Our findings provide evidence that handgrip performance remain impaired after 6 months after stroke, and may serve as a target for interventions to improve these abilities after stroke.
Collapse
Affiliation(s)
- Esther Prados-Román
- Department of Physical Therapy, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Irene Cabrera-Martos
- Department of Physical Therapy, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Laura López-López
- Department of Physical Therapy, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Janet Rodríguez-Torres
- Department of Physical Therapy, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Irene Torres-Sánchez
- Department of Physical Therapy, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Araceli Ortiz-Rubio
- Department of Physical Therapy, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Marie Carmen Valenza
- Department of Physical Therapy, Faculty of Health Sciences, University of Granada, Granada, Spain
| |
Collapse
|
8
|
Shin H, Suresh NL, Rymer WZ, Hu X. Relative contribution of different altered motor unit control to muscle weakness in stroke: a simulation study. J Neural Eng 2019; 15:016014. [PMID: 28994667 DOI: 10.1088/1741-2552/aa925d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Chronic muscle weakness impacts the majority of individuals after a stroke. The origins of this hemiparesis is multifaceted, and an altered spinal control of the motor unit (MU) pool can lead to muscle weakness. However, the relative contribution of different MU recruitment and discharge organization is not well understood. In this study, we sought to examine these different effects by utilizing a MU simulation with variations set to mimic the changes of MU control in stroke. APPROACH Using a well-established model of the MU pool, this study quantified the changes in force output caused by changes in MU recruitment range and recruitment order, as well as MU firing rate organization at the population level. We additionally expanded the original model to include a fatigue component, which variably decreased the output force with increasing length of contraction. Differences in the force output at both the peak and fatigued time points across different excitation levels were quantified and compared across different sets of MU parameters. MAIN RESULTS Across the different simulation parameters, we found that the main driving factor of the reduced force output was due to the compressed range of MU recruitment. Recruitment compression caused a decrease in total force across all excitation levels. Additionally, a compression of the range of MU firing rates also demonstrated a decrease in the force output mainly at the higher excitation levels. Lastly, changes to the recruitment order of MUs appeared to minimally impact the force output. SIGNIFICANCE We found that altered control of MUs alone, as simulated in this study, can lead to a substantial reduction in muscle force generation in stroke survivors. These findings may provide valuable insight for both clinicians and researchers in prescribing and developing different types of therapies for the rehabilitation and restoration of lost strength after stroke.
Collapse
Affiliation(s)
- Henry Shin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 144 MacNider Hall, Chapel Hill, NC, United States of America
| | | | | | | |
Collapse
|
9
|
Angelova S, Ribagin S, Raikova R, Veneva I. Power frequency spectrum analysis of surface EMG signals of upper limb muscles during elbow flexion – A comparison between healthy subjects and stroke survivors. J Electromyogr Kinesiol 2018; 38:7-16. [DOI: 10.1016/j.jelekin.2017.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/08/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022] Open
|
10
|
de Kam D, Roelofs JMB, Bruijnes AKBD, Geurts ACH, Weerdesteyn V. The Next Step in Understanding Impaired Reactive Balance Control in People With Stroke: The Role of Defective Early Automatic Postural Responses. Neurorehabil Neural Repair 2017; 31:708-716. [PMID: 28691582 PMCID: PMC5714159 DOI: 10.1177/1545968317718267] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background and objective. Postural muscle responses are often impaired after stroke. We aimed to identify the contribution of deficits in very early postural responses to poorer reactive balance capacity, with a particular focus on reactive stepping as a key strategy for avoiding falls. Methods. A total of 34 chronic stroke survivors and 17 controls were subjected to translational balance perturbations in 4 directions. We identified the highest perturbation intensity that could be recovered without stepping (single stepping threshold [SST]) and with maximally 1 step (multiple stepping threshold [MST]). We determined onset latencies and response amplitudes of 7 leg muscles bilaterally and identified associations with balance capacity. Results. People with stroke had a lower MST than controls in all directions. Side steps resulted in a higher lateral MST than crossover steps but were less common toward the paretic side. Postural responses were delayed and smaller in amplitude on the paretic side only. We observed the strongest associations between gluteus medius (GLUT) onset and amplitude and MST toward the paretic side (R2 = 0.33). Electromyographic variables were rather weakly associated with forward and backward MSTs (R2 = 0.10-0.22) and with SSTs (R2 = 0.08-0.15). Conclusions. Delayed and reduced paretic postural responses are associated with impaired reactive stepping after stroke. Particularly, fast and vigorous activity of the GLUT is imperative for overcoming large sideways perturbations, presumably because it facilitates the effective use of side steps. Because people with stroke often fall toward the paretic side, this finding indicates an important target for training.
Collapse
Affiliation(s)
- Digna de Kam
- 1 Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Alexander C H Geurts
- 1 Radboud University Medical Center, Nijmegen, Netherlands.,2 Sint Maartenskliniek Research, Nijmegen, Netherlands
| | - Vivian Weerdesteyn
- 1 Radboud University Medical Center, Nijmegen, Netherlands.,2 Sint Maartenskliniek Research, Nijmegen, Netherlands
| |
Collapse
|
11
|
Rasool G, Afsharipour B, Suresh NL, Rymer WZ. Spatial Analysis of Multichannel Surface EMG in Hemiplegic Stroke. IEEE Trans Neural Syst Rehabil Eng 2017; 25:1802-1811. [PMID: 28320672 DOI: 10.1109/tnsre.2017.2682298] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated spatial activation patterns of upper extremity muscles during isometric force generation in both intact persons and in hemispheric stroke survivors. We used a 128-channel surface electromyogram (EMG) grid to record the electrical activity of biceps brachii muscles during these contractions. EMG data were processed to develop 2-D root mean square (RMS) maps of muscle activity. Our objective was to determine whether motor impairments following stroke were associated with changes in the muscle activity maps and in the spatial distribution of muscular activation. We found that, for a given subject, spatial patterns in muscle activity maps were consistent across all measured contraction levels differing only the RMS EMG. However, the maps from opposite arms (stroke-affected versus non-affected) of stroke survivors were significantly different from each other, especially when compared with the differences observed intact participants. Our analyses revealed that chronic stroke altered the size and location of the active region in these maps. The former is potentially related to disruption of fiber and tissue structure, possibly linked to factors such as extracellular fat accumulation, connective tissue infiltration, muscle fiber atrophy, fiber shortening, and fiber loss. Changes in spatial patterns in muscle activity maps may also be linked to a shift in the location of the innervation zone or the endplate region of muscles. Furthermore, the textural analysis of EMG activity maps showed a larger pixel-to-pixel variability in stroke-affected muscles. Alterations in the muscle activity maps were also related to functional impairment (estimated using Fugl-Meyer score) and to the degree of spasticity (estimated using the modified Ashworth scale). Overall, our investigation revealed that the muscle architecture and morphology were significantly altered in the chronic stroke.
Collapse
|
12
|
Conrad MO, Qiu D, Hoffmann G, Zhou P, Kamper DG. Analysis of muscle fiber conduction velocity during finger flexion and extension after stroke. Top Stroke Rehabil 2017; 24:262-268. [PMID: 28054504 DOI: 10.1080/10749357.2016.1277482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Stroke survivors experience greater strength deficits during finger extension than finger flexion. Prior research indicates relatively little observed weakness is directly attributable to muscle atrophy. Changes in other muscle properties, however, may contribute to strength deficits. OBJECTIVES This study measured muscle fiber conduction velocity (MFCV) in a finger flexor and extensor muscle to infer changes in muscle fiber-type after stroke. METHODS Conduction velocity was measured using a linear EMG surface electrode array for both extensor digitorum communis and flexor digitorum superficialis in 12 stroke survivors with chronic hand hemiparesis and five control subjects. Measurements were made in both hands for all subjects. Stroke survivors had either severe (n = 5) or moderate (n = 7) hand impairment. RESULTS Absolute MFCV was significantly lower in the paretic hand of severely impaired stroke patients compared to moderately impaired patients and healthy control subjects. The relative MFCV between the two hands, however, was quite similar for flexor muscles across all subjects and for extensor muscles for the neurologically intact control subjects. However, MFCV for finger extensors was smaller in the paretic as compared to the nonparetic hand for both groups of stroke survivors. CONCLUSIONS One explanation for reduced MFCV may be a type-II to type-I muscle fiber, especially in extrinsic extensors. Clinically, therapists may use this information to develop therapeutic exercises targeting loss of type-II fiber in extensor muscles.
Collapse
Affiliation(s)
- Megan O Conrad
- a Department of Industrial and Systems Engineering , School of Engineering and Applied Science, Oakland University , Rochester , MI , USA
| | - Dan Qiu
- b Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA.,c Sensory Motor Performance Program , Rehabilitation Institute of Chicago & Northwestern University , Chicago , IL , USA
| | - Gilles Hoffmann
- d Department of Neurological Sciences , Rush University Medical Center , Chicago , IL , USA
| | - Ping Zhou
- e Department of Physical Medicine and Rehabilitation , University of Texas Health Science Center , Houston , TX , USA.,f Guangdong Provincial Work Injury Rehabilitation Center , Guangzhou , China
| | - Derek G Kamper
- g UNC/NC State Joint Department of Biomedical Engineering , NC State University , Raleigh , NC , USA
| |
Collapse
|
13
|
Zhang X, Wang D, Yu Z, Chen X, Li S, Zhou P. EMG-Torque Relation in Chronic Stroke: A Novel EMG Complexity Representation With a Linear Electrode Array. IEEE J Biomed Health Inform 2016; 21:1562-1572. [PMID: 27845680 DOI: 10.1109/jbhi.2016.2626399] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study examines the electromyogram (EMG)-torque relation for chronic stroke survivors using a novel EMG complexity representation. Ten stroke subjects performed a series of submaximal isometric elbow flexion tasks using their affected and contralateral arms, respectively, while a 20-channel linear electrode array was used to record surface EMG from the biceps brachii muscles. The sample entropy (SampEn) of surface EMG signals was calculated with both global and local tolerance schemes. A regression analysis was performed between SampEn of each channel's surface EMG and elbow flexion torque. It was found that a linear regression can be used to well describe the relation between surface EMG SampEn and the torque. Each channel's root mean square (RMS) amplitude of surface EMG signal in the different torque level was computed to determine the channel with the highest EMG amplitude. The slope of the regression (observed from the channel with the highest EMG amplitude) was smaller on the impaired side than on the nonimpaired side in 8 of the 10 subjects, regardless of the tolerance scheme (global or local) and the range of torques (full or matched range) used for comparison. The surface EMG signals from the channels above the estimated muscle innervation zones demonstrated significantly lower levels of complexity compared with other channels between innervation zones and muscle tendons. The study provides a novel point of view of the EMG-torque relation in the complexity domain, and reveals its alterations post stroke, which are associated with complex neural and muscular changes post stroke. The slope difference between channels with regard to innervation zones also confirms the relevance of electrode position in surface EMG analysis.
Collapse
|
14
|
Berenpas F, Martens AM, Weerdesteyn V, Geurts AC, van Alfen N. Bilateral changes in muscle architecture of physically active people with chronic stroke: A quantitative muscle ultrasound study. Clin Neurophysiol 2016; 128:115-122. [PMID: 27888744 DOI: 10.1016/j.clinph.2016.10.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/05/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Changes in muscle architecture after stroke are usually assessed by investigating inter-limb differences. As a result bilateral changes of muscle architecture might be missed. Our aim was to investigate whether bilateral architectural changes in skeletal muscle can be detected in chronic, physically active stroke patients using quantitative muscle ultrasound (QMUS). METHODS Twenty-eight patients (mean time since stroke 5.2years, median Brunnström stage 4) were recruited. QMUS images were obtained bilaterally from 2 arm and 4 leg muscles. Corrected echogenicity (muscle ultrasound grayvalue) and muscle thickness were compared to reference values obtained from healthy subjects. Correlations of muscle changes with demographic, clinical and neurophysiological characteristics were explored. RESULTS Out of 6 muscles, a significant increase in mean echogenicity was found in 4 paretic and 3 non-paretic side muscles. Significant decreases in mean muscle thickness were found in 2 paretic side muscles and 1 non-paretic side muscle. Echogenicity of the medial gastrocnemius correlated moderately with walking speed (inversely) and time since stroke. CONCLUSIONS This study showed that QMUS is a feasible technique to investigate architectural changes in skeletal muscles in the chronic phase of stroke and that abnormalities can be found in muscles on both the hemiparetic and non-paretic side. SIGNIFICANCE Intriguing data on bilateral changes in muscles of people with stroke is presented. Directions for future research are provided.
Collapse
Affiliation(s)
- Frank Berenpas
- Radboud University Medical Center, Donders Centre for Neuroscience, Department of Rehabilitation, Nijmegen, The Netherlands.
| | - Anne-Marieke Martens
- Radboud University Medical Center, Donders Centre for Neuroscience, Department of Rehabilitation, Nijmegen, The Netherlands
| | - Vivian Weerdesteyn
- Radboud University Medical Center, Donders Centre for Neuroscience, Department of Rehabilitation, Nijmegen, The Netherlands
| | - Alexander C Geurts
- Radboud University Medical Center, Donders Centre for Neuroscience, Department of Rehabilitation, Nijmegen, The Netherlands
| | - Nens van Alfen
- Radboud University Medical Center, Donders Centre for Neuroscience, Department of Neurology, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Li L, Shin H, Li X, Li S, Zhou P. Localized Electrical Impedance Myography of the Biceps Brachii Muscle during Different Levels of Isometric Contraction and Fatigue. SENSORS 2016; 16:s16040581. [PMID: 27110795 PMCID: PMC4851095 DOI: 10.3390/s16040581] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/11/2016] [Accepted: 04/17/2016] [Indexed: 11/16/2022]
Abstract
This study assessed changes in electrical impedance myography (EIM) at different levels of isometric muscle contraction as well as during exhaustive exercise at 60% maximum voluntary contraction (MVC) until task failure. The EIM was performed on the biceps brachii muscle of 19 healthy subjects. The results showed that there was a significant difference between the muscle resistance (R) measured during the isometric contraction and when the muscle was completely relaxed. Post hoc analysis shows that the resistance increased at higher contractions (both 60% MVC and MVC), however, there were no significant changes in muscle reactance (X) during the isometric contractions. The resistance also changed during different stages of the fatigue task and there were significant decreases from the beginning of the contraction to task failure as well as between task failure and post fatigue rest. Although our results demonstrated an increase in resistance during isometric contraction, the changes were within 10% of the baseline value. These changes might be related to the modest alterations in muscle architecture during a contraction. The decrease in resistance seen with muscle fatigue may be explained by an accumulation of metabolites in the muscle tissue.
Collapse
Affiliation(s)
- Le Li
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston; TIRR Memorial Hermann Research Center, Houston, TX 77030, USA.
| | - Henry Shin
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston; TIRR Memorial Hermann Research Center, Houston, TX 77030, USA.
| | - Xiaoyan Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston; TIRR Memorial Hermann Research Center, Houston, TX 77030, USA.
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston; TIRR Memorial Hermann Research Center, Houston, TX 77030, USA.
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston; TIRR Memorial Hermann Research Center, Houston, TX 77030, USA.
- Guangdong Work Injury Rehabilitation Center, Guangzhou 510440, China.
| |
Collapse
|
16
|
Hoffmann G, Conrad MO, Qiu D, Kamper DG. Contributions of voluntary activation deficits to hand weakness after stroke. Top Stroke Rehabil 2016; 23:384-392. [PMID: 26427599 DOI: 10.1179/1945511915y.0000000023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Hemiparetic stroke survivors often exhibit profound weakness in the digits of the paretic hand, but the relative contribution of potential biomechanical and neurological impairment mechanisms is not known. Establishing sources of impairment would help in guiding treatment. OBJECTIVE The present study sought to quantify the role of diminished capacity to voluntarily active finger flexor and extensor muscles as one possible neurological mechanism. METHODS Two groups of stroke survivors with "severe" (N = 9) or "moderate" (N = 9) hand impairment and one group of neurologically intact individuals (N = 9) participated. Subjects were asked to create isometric flexion force and extension force, respectively, with the tip of the middle finger. The maximum voluntary force (MVF) and the maximum stimulated force (MSF) produced by an applied train of electrical current pulses (MSF) were recorded for flexion and extension. Percent voluntary activation (PVA) was computed from MVF and MSF. RESULTS Significant deficits in both MVF and PVA were observed for stroke subjects compared to control subjects. For example, activation deficits were >80% for extensor digitorum communis (EDC) for the "severe" group. Maximum voluntary force and PVA deficits were greater for EDC than for flexor digitorum superficialis (FDS) for stroke subjects with severe impairment. Maximum voluntary force and PVA correlated significantly for stroke subjects but not for control subjects. CONCLUSIONS Although extrinsic finger muscles could be successfully recruited electrically, voluntary excitation of these muscles was substantially limited in stroke survivors. Thus, finger weakness after stroke results predominantly from the inability to fully activate the muscle voluntarily.
Collapse
Affiliation(s)
- Gilles Hoffmann
- a Sensory Motor Performance Program , Rehabilitation Institute of Chicago , IL , USA
| | - Megan O Conrad
- a Sensory Motor Performance Program , Rehabilitation Institute of Chicago , IL , USA
| | - Dan Qiu
- b Illinois Institute of Technology , Biomedical Engineering , Chicago , IL , USA
| | - Derek G Kamper
- a Sensory Motor Performance Program , Rehabilitation Institute of Chicago , IL , USA.,b Illinois Institute of Technology , Biomedical Engineering , Chicago , IL , USA
| |
Collapse
|
17
|
Yao B, Zhang X, Li S, Li X, Chen X, Klein CS, Zhou P. Analysis of linear electrode array EMG for assessment of hemiparetic biceps brachii muscles. Front Hum Neurosci 2015; 9:569. [PMID: 26557068 PMCID: PMC4615822 DOI: 10.3389/fnhum.2015.00569] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
This study presents a frequency analysis of surface electromyogram (EMG) signals acquired by a linear electrode array from the biceps brachii muscles bilaterally in 14 hemiparetic stroke subjects. For different levels of isometric contraction ranging from 10 to 80% of the maximum voluntary contraction (MVC), the power spectra of 19 bipolar surface EMG channels arranged proximally to distally along the muscle fibers were examined in both paretic and contralateral muscles. It was found that across all stroke subjects, the median frequency (MF) and the mean power frequency (MPF), averaged from different surface EMG channels, were significantly smaller in the paretic muscle compared to the contralateral muscle at each of the matched percent MVC contractions. The muscle fiber conduction velocity (MFCV) was significantly slower in the paretic muscle than in the contralateral muscle. No significant correlation between the averaged MF, MPF, or MFCV vs. torque was found in both paretic and contralateral muscles. However, there was a significant positive correlation between the global MFCV and MF. Examination of individual EMG channels showed that electrodes closest to the estimated muscle innervation zones produced surface EMG signals with significantly higher MF and MPF than more proximal or distal locations in both paretic and contralateral sides. These findings suggest complex central and peripheral neuromuscular alterations (such as selective loss of large motor units, disordered control of motor units, increased motor unit synchronization, and atrophy of muscle fibers, etc.) which can collectively influence the surface EMG signals. The frequency difference with regard to the innervation zone also confirms the relevance of electrode position in surface EMG analysis.
Collapse
Affiliation(s)
- Bo Yao
- Biomedical Engineering Program, University of Science and Technology of China Hefei, China ; Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, and TIRR Memorial Hermann Research Center, Houston TX, USA
| | - Xu Zhang
- Biomedical Engineering Program, University of Science and Technology of China Hefei, China
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, and TIRR Memorial Hermann Research Center, Houston TX, USA
| | - Xiaoyan Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, and TIRR Memorial Hermann Research Center, Houston TX, USA
| | - Xiang Chen
- Biomedical Engineering Program, University of Science and Technology of China Hefei, China
| | - Cliff S Klein
- Guangdong Work Injury Rehabilitation Center Guangzhou, China
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, and TIRR Memorial Hermann Research Center, Houston TX, USA ; Guangdong Work Injury Rehabilitation Center Guangzhou, China
| |
Collapse
|
18
|
Abstract
Every body structure is wrapped in connective tissue, or fascia, creating a structural continuity that gives form and function to every tissue and organ. Currently, there is still little information on the functions and interactions between the fascial continuum and the body system; unfortunately, in medical literature there are few texts explaining how fascial stasis or altered movement of the various connective layers can generate a clinical problem. Certainly, the fascia plays a significant role in conveying mechanical tension, in order to control an inflammatory environment. The fascial continuum is essential for transmitting muscle force, for correct motor coordination, and for preserving the organs in their site; the fascia is a vital instrument that enables the individual to communicate and live independently. This article considers what the literature offers on symptoms related to the fascial system, trying to connect the existing information on the continuity of the connective tissue and symptoms that are not always clearly defined. In our opinion, knowing and understanding this complex system of fascial layers is essential for the clinician and other health practitioners in finding the best treatment strategy for the patient.
Collapse
Affiliation(s)
- Bruno Bordoni
- Department of Cardiology, IRCCS S Maria Nascente, Don Carlo Gnocchi Foundation, Milan, Italy ; CRESO Osteopathic Centre for Research and Studies, Milan, Italy
| | - Emiliano Zanier
- CRESO Osteopathic Centre for Research and Studies, Milan, Italy ; EdiAcademy, Milan, Italy
| |
Collapse
|
19
|
Differences in Plantar Flexor Fascicle Length and Pennation Angle between Healthy and Poststroke Individuals and Implications for Poststroke Plantar Flexor Force Contributions. Stroke Res Treat 2014; 2014:919486. [PMID: 25147753 PMCID: PMC4134812 DOI: 10.1155/2014/919486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 01/22/2023] Open
Abstract
Poststroke plantar flexor muscle weakness has been attributed to muscle atrophy and impaired activation, which cannot collectively explain the limitations in force-generating capability of the entire muscle group. It is of interest whether changes in poststroke plantar flexor muscle fascicle length and pennation angle influence the individual force-generating capability and whether plantar flexor weakness is due to uniform changes in individual muscle force contributions. Fascicle lengths and pennation angles for the soleus, medial, and lateral gastrocnemius were measured using ultrasound and compared between ten hemiparetic poststroke subjects and ten healthy controls. Physiological cross-sectional areas and force contributions to poststroke plantar flexor torque were estimated for each muscle. No statistical differences were observed for any muscle fascicle lengths or for the lateral gastrocnemius and soleus pennation angles between paretic, nonparetic, and healthy limbs. There was a significant decrease (P < 0.05) in the paretic medial gastrocnemius pennation angle compared to both nonparetic and healthy limbs. Physiological cross-sectional areas and force contributions were smaller on the paretic side. Additionally, bilateral muscle contributions to plantar flexor torque remained the same. While the architecture of each individual plantar flexor muscle is affected differently after stroke, the relative contribution of each muscle remains the same.
Collapse
|
20
|
Li X, Liu J, Li S, Wang YC, Zhou P. Examination of hand muscle activation and motor unit indices derived from surface EMG in chronic stroke. IEEE Trans Biomed Eng 2014; 61:2891-8. [PMID: 24967982 DOI: 10.1109/tbme.2014.2333034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we used muscle and motor unit indices, derived from convenient surface electromyography (EMG) measurements, for examination of paretic muscle changes post stroke. For 12 stroke subjects, compound muscle action potential and voluntary surface EMG signals were recorded from paretic and contralateral first dorsal interosseous, abductor pollicis brevis, and abductor digiti minimi muscles. Muscle activation index (AI), motor unit number index (MUNIX), and motor unit size index (MUSIX) were then calculated for each muscle. There was a significant AI reduction for all the three muscles in paretic side compared with contralateral side, providing an evidence of muscle activation deficiency after stroke. The hand MUNIX (defined by summing the values from the three muscles) was significantly reduced in paretic side compared with contralateral side, whereas the hand MUSIX was not significantly different. Furthermore, diverse changes in MUNIX and MUSIX were observed from the three muscles. A major feature of the present examinations is the primary reliance on surface EMG, which offers practical benefits because it is noninvasive, induces minimal discomfort and can be performed quickly.
Collapse
|
21
|
Li X, Shin H, Zhou P, Niu X, Liu J, Rymer WZ. Power spectral analysis of surface electromyography (EMG) at matched contraction levels of the first dorsal interosseous muscle in stroke survivors. Clin Neurophysiol 2014; 125:988-94. [PMID: 24268816 DOI: 10.1016/j.clinph.2013.09.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 11/24/2022]
|
22
|
Boudarham J, Roche N, Teixeira M, Hameau S, Robertson J, Bensmail D, Zory R. Relationship between neuromuscular fatigue and spasticity in chronic stroke patients: A pilot study. J Electromyogr Kinesiol 2014; 24:292-9. [DOI: 10.1016/j.jelekin.2013.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 10/10/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022] Open
|
23
|
Huq R, Wang R, Lu E, Hebert D, Lacheray H, Mihailidis A. Development of a fuzzy logic based intelligent system for autonomous guidance of post-stroke rehabilitation exercise. IEEE Int Conf Rehabil Robot 2013; 2013:6650472. [PMID: 24187289 DOI: 10.1109/icorr.2013.6650472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper presents preliminary studies in developing a fuzzy logic based intelligent system for autonomous post-stroke upper-limb rehabilitation exercise. The intelligent system autonomously varies control parameters to generate different haptic effects on the robotic device. The robotic device is able to apply both resistive and assistive forces for guiding the patient during the exercise. The fuzzy logic based decision-making system estimates muscle fatigue of the patient using exercise performance and generates a combination of resistive and assistive forces so that the stroke survivor can exercise for longer durations with increasing control. The fuzzy logic based system is initially developed using a study with healthy subjects and preliminary results are also presented to validate the developed system with healthy subjects. The next stage of this work will collect data from stroke survivors for further development of the system.
Collapse
|
24
|
Avila MA, Romaguera F, Oliveira AB, Camargo PR, Salvini TF. Bilateral impairments of shoulder abduction in chronic hemiparesis: Electromyographic patterns and isokinetic muscle performance. J Electromyogr Kinesiol 2013; 23:712-20. [DOI: 10.1016/j.jelekin.2012.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/07/2012] [Accepted: 12/14/2012] [Indexed: 11/27/2022] Open
|
25
|
Improving Motor Activation Patterns After Stroke with Wii-based Movement Therapy. STIMULATION AND INHIBITION OF NEURONS 2013. [DOI: 10.1007/978-1-62703-233-9_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
26
|
Sions JM, Tyrell CM, Knarr BA, Jancosko A, Binder-Macleod SA. Age- and stroke-related skeletal muscle changes: a review for the geriatric clinician. J Geriatr Phys Ther 2012; 35:155-61. [PMID: 22107952 PMCID: PMC3290755 DOI: 10.1519/jpt.0b013e318236db92] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Independently, aging and stroke each have a significant negative impact on skeletal muscle, but the potential cumulative effects of aging and stroke have not been explored. Optimal interventions for individuals post stroke may include those that specifically target skeletal muscle. Addressing changes in muscles may minimize activity limitations and enhance participation post stroke. This article reviews the impact of aging and stroke on muscle morphology and composition, including fiber atrophy, reductions in muscle cross-sectional area, changes in muscle fiber distributions, and increases in intramuscular fat. Relationships between changes in muscle structure, muscle function, and physical mobility are reviewed. Clinical recommendations that preserve and enhance skeletal muscle in the aging adult and individuals post stroke are discussed. Future research directions that include systematic comparison of the differences in skeletal muscle between younger and older adults who have sustained a stroke are suggested.
Collapse
Affiliation(s)
- Jaclyn Megan Sions
- Biomechanics and Movement Science Program, University of Delaware, Newark, USA.
| | | | | | | | | |
Collapse
|
27
|
Knorr S, Rice CL, Garland SJ. Perspective on neuromuscular factors in poststroke fatigue. Disabil Rehabil 2012; 34:2291-9. [DOI: 10.3109/09638288.2012.683233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Li X, Rymer WZ, Li G, Zhou P. The effects of notch filtering on electrically evoked myoelectric signals and associated motor unit index estimates. J Neuroeng Rehabil 2011; 8:64. [PMID: 22112379 PMCID: PMC3305526 DOI: 10.1186/1743-0003-8-64] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 11/23/2011] [Indexed: 12/14/2022] Open
Abstract
Background Notch filtering is the most commonly used technique for suppression of power line and harmonic interference that often contaminate surface electromyogram (EMG) signals. Notch filters are routinely included in EMG recording instrumentation, and are used very often during clinical recording sessions. The objective of this study was to quantitatively assess the effects of notch filtering on electrically evoked myoelectric signals and on the related motor unit index measurements. Methods The study was primarily based on an experimental comparison of M wave recordings and index estimates of motor unit number and size, with the notch filter function of the EMG machine (Sierra Wave EMG system, Cadwell Lab Inc, Kennewick, WA, USA) turned on and off, respectively. The comparison was implemented in the first dorsal interosseous (FDI) muscle from the dominant hand of 15 neurologically intact subjects and bilaterally in 15 hemiparetic stroke subjects. Results On average, for intact subjects, the maximum M wave amplitude and the motor unit number index (MUNIX) estimate were reduced by approximately 22% and 18%, respectively, with application of the built-in notch filter function in the EMG machine. This trend held true when examining the paretic and contralateral muscles of the stroke subjects. With the notch filter on vs. off, across stroke subjects, we observed a significant decrease in both maximum M wave amplitude and MUNIX values in the paretic muscles, as compared with the contralateral muscles. However, similar reduction ratios were obtained for both maximum M wave amplitude and MUNIX estimate. Across muscles of both intact and stroke subjects, it was observed that notch filtering does not have significant effects on motor unit size index (MUSIX) estimate. No significant difference was found in MUSIX values between the paretic and contralateral muscles of the stroke subjects. Conclusions The notch filter function built in the EMG machine may significantly reduce the M wave amplitude and the MUNIX measurement. However, the notch filtering does not jeopardize the evaluation of the reduction ratio in maximum M wave amplitude and MUNIX estimate of the paretic muscles of stroke subjects when compared with the contralateral muscles.
Collapse
Affiliation(s)
- Xiaoyan Li
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, USA
| | | | | | | |
Collapse
|
29
|
The origins of neuromuscular fatigue post-stroke. Exp Brain Res 2011; 214:303-15. [DOI: 10.1007/s00221-011-2826-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 08/02/2011] [Indexed: 11/25/2022]
|
30
|
Li X, Wang YC, Suresh NL, Rymer WZ, Zhou P. Motor unit number reductions in paretic muscles of stroke survivors. ACTA ACUST UNITED AC 2011; 15:505-12. [PMID: 21478079 DOI: 10.1109/titb.2011.2140379] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this study is to assess whether there is evidence of spinal motoneuron loss in paretic muscles of stroke survivors, using an index measurement called motor unit number index (MUNIX). MUNIX, a recently developed novel neurophysiological technique, provides an index proportional to the number of motor units in a muscle, but not necessarily an accurate absolute count. The MUNIX technique was applied to the first dorsal interosseous (FDI) muscle bilaterally in nine stroke subjects. The area and power of the maximum M-wave and the interference pattern electromyogram (EMG) at different contraction levels were used to calculate the MUNIX. A motor unit size index (MUSizeIndex) was also calculated using maximum M-wave recording and the MUNIX values. We observed a significant decrease in both maximum M-wave amplitude and MUNIX values in the paretic FDI muscles, as compared with the contralateral muscles. Across all subjects, the maximum M-wave amplitude was 6.4 ± 2.3 mV for the paretic muscles and 9.7 ± 2.0 mV for the contralateral muscles (p < 0.001). These measurements, in combination with voluntary EMG recordings, resulted in the MUNIX value of 109 ± 53 for the paretic muscles, much lower than the MUNIX value of 153 ± 38 for the contralateral muscles ( p < 0.01). No significant difference was found in MUSizeIndex values between the paretic and contralateral muscles. However, the range of MUSizeIndex values was slightly wider for paretic muscles (48.8-93.3 μV) than the contralateral muscles (51.7-84.4 μV). The findings from the index measurements provide further evidence of spinal motoneuron loss after a hemispheric brain lesion.
Collapse
Affiliation(s)
- Xiaoyan Li
- Sensory Motor Performance Program of Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
31
|
Horstman AM, Gerrits KH, Beltman MJ, Koppe PA, Janssen TW, de Haan A. Intrinsic properties of the knee extensor muscles after subacute stroke. Arch Phys Med Rehabil 2010; 91:123-8. [PMID: 20103406 DOI: 10.1016/j.apmr.2009.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 11/17/2022]
Abstract
UNLABELLED Horstman AM, Gerrits KH, Beltman MJ, Koppe PA, Janssen, TW, de Haan A. Intrinsic properties of the knee extensor muscles after subacute stroke. OBJECTIVE To characterize muscle properties of paretic lower-limb (PL) and nonparetic lower-limb (NL) knee extensors in patients with subacute stroke. DESIGN Case-control study. SETTING Rehabilitation center research laboratory. PARTICIPANTS Patients with subacute stroke (n=14) and able-bodied age-matched control subjects (n=12). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Half relaxation times (HRTs) and maximal rates of torque development (MRTDs) were assessed as indicators of contractile speed using both voluntary and electrically evoked contractions. Moreover, changes in torque were measured during a fatigue protocol (35 electrically evoked intermittent contractions; 1.5s on, 2s off) and recovery. RESULTS No differences among groups were found for normalized MRTDs during electrically evoked contractions (P=.117). However, during voluntary contractions both PLs (53% of control, P=.022) and NL (71% of control, P<.001) had significantly lower MRTD compared with control. Both PL (134% of control, P=.001) and NL (123% of control, P=.032) had significantly higher HRTs than control, indicating muscle slowing in patients with subacute stroke. PLs fatigued more and faster than control (P=.011) and both PL and NL recovered slower (P<.001). CONCLUSIONS The changes in HRTs and fatigue suggest adaptations in muscle properties toward slower, more fatigable muscle shortly after stroke. The inability to make use of contractile speed because of impaired neural activation seems the most limiting factor during the initial phase of torque development in PL. Thus, besides strengthening, muscle endurance and speed should also be addressed during rehabilitation.
Collapse
Affiliation(s)
- Astrid M Horstman
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Renner CIE, Bungert-Kahl P, Hummelsheim H. Change of strength and rate of rise of tension relate to functional arm recovery after stroke. Arch Phys Med Rehabil 2009; 90:1548-56. [PMID: 19735783 DOI: 10.1016/j.apmr.2009.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 02/07/2009] [Accepted: 02/18/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To examine the relationship between individual strength parameters and functional motor ability over time during rehabilitation in stroke patients. DESIGN A multiple-baseline experiment with assessment at inclusion and after 3 and 6 weeks. SETTING Secondary-care rehabilitation center. PARTICIPANTS A convenience sample of 16 subacute stroke patients. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Maximal voluntary force and rate of rise of tension of hand grip, wrist extension, and elbow flexion and extension were recorded at all 3 times. At the same time, functional motor assessments were evaluated by the Action Research Arm Test (ARAT), Box and Block test, and Rivermead Test. RESULTS We found no correlation between maximal voluntary force increases of various muscle contractions measurements. Neither the increase of grip strength nor that of wrist extension force correlated with improvement in ARAT score. Yet the improvement in the rate of rise of tension of hand grip (Spearman rho=.91) and of wrist extension (Spearman rho=.73) correlated with the improvement of the ARAT score and explained 77% of the variance of the ARAT. CONCLUSIONS The change in the rate of rise of tension of the hand grip has a better predictive value for the functional recovery compared to the change in maximal voluntary force in patients with moderate arm and hand weakness after stroke. The rate of rise of tension of hand grip seems an adequate quantifiable parameter to detect small improvements during functional recovery.
Collapse
Affiliation(s)
- Caroline I E Renner
- Neurological Rehabilitation Center, University of Leipzig, Leipzig, Germany.
| | | | | |
Collapse
|
33
|
Sanjak M, Konopacki R, Capasso R, Roelke KA, Peper SM, Houdek AM, Waclawik A, Brooks BR. Dissociation between mechanical and myoelectrical manifestation of muscle fatigue in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2009; 5:26-32. [PMID: 15204021 DOI: 10.1080/14660820310017551] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Motor fatigue, during 30 seconds of maximum voluntary isometric contraction (MVIC) was simultaneously evaluated by the decline in mechanical force output, and from the compression in the power spectrum obtained from surface electromyogram (sEMG). Measurements were performed in patients diagnosed with amyotrophic lateral sclerosis (ALS) and normal control (NC) in two muscle groups, elbow flexors (EF) and ankle dorsiflexors (DF). The decline in force output, as a manifestation of mechanical fatigue, was digitally calculated online by partitioning the force versus time curve to determine the percent of MVIC reduction over a 30 sec period and was expressed as force fatigue index (FFI). The compression in the sEMG power spectrum, as a manifestation of myoelectrical fatigue, was tracked by calculating the median frequency shift (MFS) from the first 5 sec to the last 5 sec of the 30 sec MVIC using digital Fast Fourier Transformation. In ALS patients, the significantly higher reduction in mechanical force output during the 30 sec MVIC (higher FFI) was accompanied with significantly less compression in the sEMG power spectrum (less MFS) as compared to NC (P < or =0.005) in the two muscle groups. This dissociation between the mechanical and myoelectrical manifestation of muscle fatigue in ALS indicates that a reduction in muscle fiber conduction velocity (MFCV) may be a contributing peripheral factor in the pathogenesis of muscle fatigue in ALS. Alterations in motor unit functionality, especially in type II fast motor unit muscle fibers, and structural damage in denervated muscle fibers may contribute to the lower MFCV during motor fatigue in ALS patients.
Collapse
Affiliation(s)
- M Sanjak
- Department of Neurology, H/6 577 ALS Clinical Research Center, Medical School, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53799, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Moreau NG, Li L, Geaghan JP, Damiano DL. Contributors to fatigue resistance of the hamstrings and quadriceps in cerebral palsy. Clin Biomech (Bristol, Avon) 2009; 24:355-60. [PMID: 19264384 PMCID: PMC2727679 DOI: 10.1016/j.clinbiomech.2009.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 01/22/2009] [Accepted: 01/30/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND The purpose of this study was to elucidate relationships between quadriceps and hamstrings voluntary muscle fatigue and upper motor lesion impairments in cerebral palsy in order to gain a better understanding of their contribution to the observed fatigue resistance. METHODS Seventeen ambulatory subjects with cerebral palsy (mean age: 17.0, SD=4.8 years) were recruited. Quantitative measures of strength, spasticity, cocontraction, and stiffness for both muscle groups were collected on an isokinetic dynamometer and entered in a factor analysis. The resulting factors were used as independent variables in a multiple regression analysis with quadriceps and hamstrings fatigue as dependent variables. FINDINGS Five independent factors explained 90% of the variance. In order of loadings, higher hamstring cocontraction and spasticity and lower hamstring strength were associated with lower levels of hamstring fatigue. Higher quadriceps cocontraction and lower quadriceps strength were the most predictive of lower levels of quadriceps fatigue. INTERPRETATION Greater motor impairments of the agonist muscle, particularly cocontraction, spasticity, and weakness, were associated with lower rates of muscle fatigue of the same muscle during performance of a voluntary fatigue protocol for the hamstrings and quadriceps. Muscles are highly adaptable; therefore, the results of this study suggest that the observed fatigue resistance may be due to the effect of the primary neural insult on motor unit recruitment and rate modulation or the result of secondary adaptations to spasticity, weakness, or excessive cocontraction.
Collapse
Affiliation(s)
- Noelle G Moreau
- Department of Health Professions, Medical University of South Carolina, Charleston, SC (USA), Department of Physical Therapy, Washington University, St. Louis, MO (USA)
| | - Li Li
- Department of Kinesiology, Louisiana State University, Baton Rouge, LA (USA)
| | - James P Geaghan
- Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA (USA)
| | - Diane L Damiano
- Department of Rehabilitation Medicine, National Institutes of Health Clinical Center, Bethesda MD (USA)
| |
Collapse
|
35
|
Kallenberg LAC, Hermens HJ. Motor unit properties of biceps brachii in chronic stroke patients assessed with high-density surface EMG. Muscle Nerve 2009; 39:177-85. [PMID: 19034958 DOI: 10.1002/mus.21090] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to investigate motor unit (MU) characteristics of the biceps brachii in poststroke patients using high-density surface electromyography (sEMG). Eighteen chronic hemiparetic stroke patients took part. The Fugl-Meyer score for the upper extremity was assessed. Subjects performed an isometric step contraction consisting of force levels from 5%-50% maximal voluntary contraction while sEMG of the biceps brachii was recorded with a two-dimensional 16-channel electrode array. This was repeated for both sides. Motor unit action potentials (MUAPs) were extracted from the EMG signals, and their root-mean-square value (RMS(MUAP), reflecting MU size) and mean frequency of the power spectrum (FMEAN(MUAP), reflecting recruitment threshold) were calculated. FMEAN(MUAP) was smaller on the affected than on the unaffected side, indicating an increased contribution of low-threshold MUs, possibly related to degeneration of high-threshold MUs. The ratio of RMS(MUAP) on the affected side divided by that on the unaffected side correlated significantly with the Fugl-Meyer score. This ratio may reflect the extent to which reinnervation has occurred on the affected side.
Collapse
Affiliation(s)
- Laura A C Kallenberg
- Roessingh Research and Development, P.O. Box 310, 7500 AH Enschede, The Netherlands.
| | | |
Collapse
|
36
|
Gerrits KH, Beltman MJ, Koppe PA, Konijnenbelt H, Elich PD, de Haan A, Janssen TW. Isometric Muscle Function of Knee Extensors and the Relation With Functional Performance in Patients With Stroke. Arch Phys Med Rehabil 2009; 90:480-7. [DOI: 10.1016/j.apmr.2008.09.562] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/11/2008] [Accepted: 09/04/2008] [Indexed: 12/01/2022]
|
37
|
Kesar TM, Ding J, Wexler AS, Perumal R, Maladen R, Binder-Macleod SA. Predicting muscle forces of individuals with hemiparesis following stroke. J Neuroeng Rehabil 2008; 5:7. [PMID: 18304360 PMCID: PMC2292738 DOI: 10.1186/1743-0003-5-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 02/27/2008] [Indexed: 11/10/2022] Open
Abstract
Background Functional electrical stimulation (FES) has been used to improve function in individuals with hemiparesis following stroke. An ideal functional electrical stimulation (FES) system needs an accurate mathematical model capable of designing subject and task-specific stimulation patterns. Such a model was previously developed in our laboratory and shown to predict the isometric forces produced by the quadriceps femoris muscles of able-bodied individuals and individuals with spinal cord injury in response to a wide range of clinically relevant stimulation frequencies and patterns. The aim of this study was to test our isometric muscle force model on the quadriceps femoris, ankle dorsiflexor, and ankle plantar-flexor muscles of individuals with post-stroke hemiparesis. Methods Subjects were seated on a force dynamometer and isometric forces were measured in response to a range of stimulation frequencies (10 to 80-Hz) and 3 different patterns. Subject-specific model parameter values were obtained by fitting the measured force responses from 2 stimulation trains. The model parameters thus obtained were then used to obtain predicted forces for a range of frequencies and patterns. Predicted and measured forces were compared using intra-class correlation coefficients, r2 values, and model error relative to the physiological error (variability of measured forces). Results Results showed excellent agreement between measured and predicted force-time responses (r2 >0.80), peak forces (ICCs>0.84), and force-time integrals (ICCs>0.82) for the quadriceps, dorsiflexor, and plantar-fexor muscles. The model error was within or below the +95% confidence interval of the physiological error for >88% comparisons between measured and predicted forces. Conclusion Our results show that the model has potential to be incorporated as a feed-forward controller for predicting subject-specific stimulation patterns during FES.
Collapse
Affiliation(s)
- Trisha M Kesar
- 301 McKinly Laboratory, Department of Physical Therapy, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Hu XL, Tong KY, Hung LK. Firing properties of motor units during fatigue in subjects after stroke. J Electromyogr Kinesiol 2006; 16:469-76. [PMID: 16311042 DOI: 10.1016/j.jelekin.2005.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 08/12/2005] [Accepted: 09/16/2005] [Indexed: 10/25/2022] Open
Abstract
The purpose of this work was to investigate the electromyographic (EMG) fatigue representations in muscles of subjects after stroke at the level of motor unit, based on the analysis of mean power frequency (MPF) in the power density spectrum (PDS) for intramuscular EMG and our previous modeling and experiment studies on the neuromuscular transmission failure (NTF). NTF due to the local muscular fatigue had been captured in motor unit signals from healthy subjects during a submaximal fatigue contraction previously. In this study, the EMG signals for the biceps brachii muscles were collected by needle electrodes from the affected and unaffected arms of six hemiplegic subjects after stroke, and from the dominated arm of six healthy subjects during a full maximum voluntary contraction (MVC) and a subsequent 20% MVC. The MPF of EMG trials detected intramuscularly during the full and 20% MVCs, and the parameters of motor unit action potential trains (MUAPTs) during 20% MVC were analyzed in three groups: the normal (from healthy subjects), unaffected (from subjects after stroke), and affected (from subjects after stroke). It was found that during the full MVC the MPFs of the normal and unaffected groups decreased more than the affected when monitored by a moving time window of 2 s. The comparison on the overall MPF during the full MVC for these three groups over the whole time course of the EMG signal (18 s) were: the affected overall MPF was higher than the unaffected (P < 0.05); and the unaffected overall MPF was larger than the normal (P < 0.05). However, no significant decrease in MPF was found for these three groups during 20% MVC. The NTF was captured in most MUAPTs in the groups of the normal and unaffected rather than in the affected group, symbolized by the lowered rates of change (RCs) of firing rate (FR) (P < 0.05), more MUAPTs with positive RCs of maximum oscillation (MO) in MUAPT power density spectra (P < 0.05), and the significant higher RCs of minimum inter-pulse interval (MINI) (P < 0.05) in the normal and unaffected compared to the affected group. Enhanced neural drives to the motor units of the unaffected and affected groups were observed during 20% MVC, which possibly came from the bilateral neural inputs due to the disinhibition of the ipsilateral projections in subjects after stroke. For identifying the fatigue associated with NTF, the motor unit firing parameters, FR, MINI, and MO, were more sensitive than the MPF. The results obtained in this work provided a further understanding on the EMG of the fatigue processes in paretic and non-paretic muscles during voluntary contractions.
Collapse
Affiliation(s)
- X L Hu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | | | | |
Collapse
|
39
|
Hu X, Tong K, Tsang VS, Song R. Joint-Angle–Dependent Neuromuscular Dysfunctions at the Wrist in Persons After Stroke. Arch Phys Med Rehabil 2006; 87:671-9. [PMID: 16635630 DOI: 10.1016/j.apmr.2006.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To evaluate the joint-angle-dependent neuromuscular functions at the affected wrist in hemiplegic subjects after stroke while doing isometric maximal voluntary wrist flexion and extension across different wrist angles. DESIGN We investigated torques during isometric maximal voluntary wrist flexions and extensions at 8 different wrist angles, ranging from -45 degrees to 60 degrees. We used the associated electromyographic activities of 2 agonist and antagonist muscle pairs related to wrist and elbow joints for the analysis of muscular coactivations. We compared the data obtained from poststroke subjects' affected and unaffected sides. SETTING A research laboratory in a rehabilitation center. PARTICIPANTS Eleven subjects with hemiplegia after stroke with passive range of motion (ROM) in the wrist from -45 degrees to 60 degrees. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Directly measured torques, torques after normalization during maximal isometric wrist contractions, and normalized moving average electromyographic signals of each muscle at the tested positions. RESULTS The measured torques of the affected wrists were significantly lower than those of the unaffected wrists at all tested angles during wrist flexion and extension (P<.05). The angle-dependent patterns of the normalized torque across the tested wrist angles varied from those of the unaffected wrists (2-way analysis of variance, P<.05). There were decreases in normalized torques during both flexion and extension at the extended positions in the affected group (P<.05). Abnormal cocontractions were found in agonist and antagonist muscle pairs related to wrist and elbow joints, and between the elbow flexor and wrist extensor when subjects did the wrist contractions on the paretic side, especially at the wrist extended positions. CONCLUSIONS Wrist muscle weakness was distributed unevenly across the selected wrist ROM on the affected side, as represented by the varied patterns of the normalized torque-angle relationship, compared with the unaffected wrists. There were reductions in the selective control of muscle coactivating synergies both single-jointly and cross-jointly in the impaired nervous system during wrist contractions; the extent of these reductions was also related to the wrist angle configuration.
Collapse
Affiliation(s)
- Xiaoling Hu
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong
| | | | | | | |
Collapse
|
40
|
Hu XL, Tong KY, Li L. The mechanomyography of persons after stroke during isometric voluntary contractions. J Electromyogr Kinesiol 2006; 17:473-83. [PMID: 16603386 DOI: 10.1016/j.jelekin.2006.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 10/28/2005] [Accepted: 01/05/2006] [Indexed: 11/23/2022] Open
Abstract
This study was to investigate the properties of mechanomyography (MMG), or muscle sound, of the paretic muscle in the affected side of hemiplegic subjects after stroke during isometric voluntary contractions, in comparison with those from the muscle in the unaffected side of the hemiplegic subjects and from the healthy muscle of unimpaired subjects. MMG and electromyography (EMG) signals were recorded simultaneously from the biceps brachii muscles of the dominant arm of unimpaired subjects (n=5) and the unaffected and affected arms of subjects after stroke (n=8), when performing a fatiguing maximal voluntary contraction (MVC) associated with the decrease in elbow flexion torque, and then submaximal elbow flexions at 20%, 40%, 60% and 80% MVCs. The root mean squared (RMS) values, the mean power frequencies (MPF, in the power density spectrum, PDS) of the EMG and MMG, and the high frequency rate (HF-rate, the ratio of the power above 15Hz in the MMG PDS) were used for the analysis. The MMG RMS decreased more slowly during the MVC in the affected muscle compared to the healthy and unaffected muscles. A transient increase could be observed in the MMG MPFs from the unaffected and healthy muscles during the MVC, associated with the decrease in their simultaneous EMG MPFs due to the muscular fatigue. No significant variation could be seen in the EMG and MMG MPFs in the affected muscles during the MVC. The values in the MPF and HF-rate of MMG from the affected muscles were significantly lower than those from the healthy and unaffected muscles (P<0.05) at the high contraction level (80% MVC). Both the MMG and EMG RMS values in the healthy and unaffected groups were found to be significantly higher than the affected group (P<0.05) at 60% and 80% MVCs. These observations were related to an atrophy of the fast-twitch fibers and a reduction of the neural input in the affected muscles of the hemiplegic subjects. The results in this study suggested MMG could be used as a complementary to EMG for the analysis on muscular characteristics in subjects after stroke.
Collapse
Affiliation(s)
- X L Hu
- The Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Room ST417, Core S, Hong Kong
| | | | | |
Collapse
|
41
|
Abstract
Spastic paresis follows chronic disruption of the central execution of volitional command. Motor function in patients with spastic paresis is subjected over time to three fundamental insults, of which the last two are avoidable: (1) the neural insult itself, which causes paresis, i.e., reduced voluntary motor unit recruitment; (2) the relative immobilization of the paretic body part, commonly imposed by the current care environment, which causes adaptive shortening of the muscles left in a shortened position and joint contracture; and (3) the chronic disuse of the paretic body part, which is typically self-imposed in most patients. Chronic disuse causes plastic rearrangements in the higher centers that further reduce the ability to voluntarily recruit motor units, i.e., that aggravate baseline paresis. Part I of this review focuses on the pathophysiology of the first two factors causing motor impairment in spastic paresis: the vicious cycle of paresis-disuse-paresis and the contracture in soft tissues.
Collapse
Affiliation(s)
- Jean-Michel Gracies
- Department of Neurology, Mount Sinai Medical Center, One Gustave L Levy Place, Annenberg 2/Box 1052, New York, New York 10029-6574, USA.
| |
Collapse
|
42
|
Eng JJ, Dawson AS, Chu KS. Submaximal exercise in persons with stroke: test-retest reliability and concurrent validity with maximal oxygen consumption11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated. Arch Phys Med Rehabil 2004; 85:113-8. [PMID: 14970978 PMCID: PMC3167868 DOI: 10.1016/s0003-9993(03)00436-2] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To establish the test-retest reliability and concurrent validity with maximum oxygen consumption (VO2max) for 3 submaximal exercise tests in persons with chronic stroke: (1) submaximal treadmill test, (2) submaximal cycle ergometer test, and (3) 6-minute walk test (6MWT). DESIGN Prospective study using a convenience sample. SETTING Free-standing tertiary rehabilitation center. PARTICIPANTS A volunteer sample of 12 community-dwelling individuals who had a stroke with moderate motor deficits. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Heart rate, blood pressure, and oxygen consumption (VO2) were assessed during the exercise tests. RESULTS Test-retest reliability was good to excellent for the exercise tests (maximal and submaximal tests). VO2 for all submaximal measures related to VO2max (r range, .66-.80). Neither the 6MWT distance, self-selected gait speed, nor hemodynamic measures related to VO2max. CONCLUSION The VO2 measures of the submaximal exercise tests had excellent reliability and good concurrent validity with VO2max. Submaximal exercise tests may be a method by which to monitor the effects of interventions after a screening test (eg, symptom-limited graded exercise test, dobutamine stress echocardiograph).
Collapse
Affiliation(s)
- Janice J Eng
- School of Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
43
|
Lum PS, Patten C, Kothari D, Yap R. Effects of velocity on maximal torque production in poststroke hemiparesis. Muscle Nerve 2004; 30:732-42. [PMID: 15468340 DOI: 10.1002/mus.20157] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Impaired torque production is a major physical impairment following stroke, and has been studied extensively in isometric conditions. However, functional use of a limb requires torque production during movement, and the effects of velocity on maximal torque production may be abnormally enhanced in the paretic limb. The purpose of this study was to quantify the effects of movement velocity on maximal torque production during isokinetic, concentric flexion and extension of the elbow in poststroke subjects. Three speeds were tested (30, 75, 120 deg/s) over a 100-deg range of motion. To control for strength variations between subjects and limbs, isokinetic torques were normalized by peak isometric torque. As flexion velocity increased, paretic limb torque decreased at a greater rate than in the unaffected limb. During extension, paretic limb torque was much lower than torque in the unaffected limb at all speeds. In both flexion and extension, the disparity between limbs in the constant-velocity torque-angle curves became more pronounced as velocity increased. Torque decreased 44% +/- 7% in flexion and 63% +/- 9% in extension as velocity increased from 30 to 120 deg/s, whereas the corresponding decreases in the unaffected limb were only 9% +/- 5% in flexion and 16% +/- 4% in extension. No electromyographic (EMG) abnormalities were observed during flexion. During extension, EMG data provided evidence for abnormally increased antagonist coactivation in brachioradialis and markedly reduced activation in triceps as potential contributors to the decreased extension torques. The finding that movement velocity produces large deficits in maximal torque might explain why functional use of the paretic limb is often impaired even though isometric strength appears adequate.
Collapse
Affiliation(s)
- Peter S Lum
- Rehabilitation Research and Development Center, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304-1200, USA.
| | | | | | | |
Collapse
|
44
|
McCrea PH, Eng JJ, Hodgson AJ. Time and magnitude of torque generation is impaired in both arms following stroke. Muscle Nerve 2003; 28:46-53. [PMID: 12811772 PMCID: PMC3524262 DOI: 10.1002/mus.10397] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Muscle strength, usually measured as the peak torque during maximal contraction, is impaired in persons with stroke. Time-dependent properties of muscle contraction may also be altered but have not been quantified. We quantified both magnitude (peak torque) and time-dependent parameters (times to develop and reduce torque) in eight different isometric joint actions. Parameters were compared among the more and less affected arms of 20 persons with chronic stroke and the nondominant arms of 10 similarly aged healthy persons. Torque-generation parameters were independent from one another (i.e., low correlations) and highly reliable between trials and days. All parameters were impaired in the more affected arm, whereas peak torque and time to develop torque were impaired in the less affected arm. Following stroke, torque-generation impairments include both magnitude and time-dependent properties and exist not only in the more affected but also in the less affected arm. Clinicians attempting to improve upper-extremity function should employ therapeutic exercises that challenge patients to improve both their strength and speed of muscle contraction.
Collapse
Affiliation(s)
- Patrick H McCrea
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
45
|
Chae J, Yang G, Park BK, Labatia I. Muscle weakness and cocontraction in upper limb hemiparesis: relationship to motor impairment and physical disability. Neurorehabil Neural Repair 2002; 16:241-8. [PMID: 12234087 DOI: 10.1177/154596830201600303] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this article is to describe the relationship between poststroke upper limb muscle weakness and cocontraction, and clinical measures of upper limb motor impairment and physical disability. Electrormyographic (EMG) activity of the paretic and nonparetic wrist flexors and extensors of 26 chronic stroke survivors were recorded during isometric wrist flexion and extension. The root mean square (RMS) of the EMG signal was used as a measure of strength of contraction. A ratio of RMS of antagonist and agonist muscles was used as a measure of cocontraction. Upper limb motor impairment and physical disability were assessed with the Fugl-Meyer motor assessment (FMA) and the arm motor ability test (AMAT), respectively. The strength of muscle contraction was significantly stronger in the nonparetic limb (P < 0.001). The degree of cocontraction was significantly greater in the paretic limb (P < 0.001). The strength of muscle contraction in the paretic limb correlated significantly with FMA (r = 0.62 to 0.87, P < or = 0.001) and AMAT (r = 0.66 to 0.80, P < or = 0.001) scores. Similarly, the degree of cocontraction correlated significantly with FMA (r = -0. 70 to -0.64, P < or = 0.001) and AMAT (r = -0. 72 to -0.62, P < or = 0.001) scores. Muscle weakness and degree of cocontraction correlate significantly with motor impairment and physical disability in upper limb hemiplegia. This relationship may provide insights toward development of specific interventions. However, additional studies are needed to demonstrate a cause and effect relationship.
Collapse
Affiliation(s)
- John Chae
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH 44109, USA.
| | | | | | | |
Collapse
|