1
|
Shariatifar H, Ranjbarian F, Hajiahmadi F, Farasat A. A comprehensive review on methotrexate containing nanoparticles; an appropriate tool for cancer treatment. Mol Biol Rep 2022; 49:11049-11060. [PMID: 36097117 DOI: 10.1007/s11033-022-07782-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
For more than seven decades, methotrexate has been used all over the world for treatment of different diseases such as: cancer, autoimmune diseases, and rheumatoid arthritis. Several studies have addressed its formula, efficacy, and delivery methods in recent years. These studies have been focused on the effectiveness of different nanoparticles on drug delivery, delivery of the drug to the target cells, and attenuation of harm to the host cell. Whereas, the main usages of methotrexate are in cancer treatment field, this review provided a brief perspective into using different nanoparticles and their role in the treatment of different cancers.
Collapse
Affiliation(s)
- Hanifeh Shariatifar
- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fateme Ranjbarian
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fahimeh Hajiahmadi
- Department of Medical Imaging Technology (Molecular Imaging), School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
2
|
Liu J, Hong S, Yang J, Zhang X, Wang Y, Wang H, Peng J, Hong L. Targeting purine metabolism in ovarian cancer. J Ovarian Res 2022; 15:93. [PMID: 35964092 PMCID: PMC9375293 DOI: 10.1186/s13048-022-01022-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
Purine, an abundant substrate in organisms, is a critical raw material for cell proliferation and an important factor for immune regulation. The purine de novo pathway and salvage pathway are tightly regulated by multiple enzymes, and dysfunction in these enzymes leads to excessive cell proliferation and immune imbalance that result in tumor progression. Maintaining the homeostasis of purine pools is an effective way to control cell growth and tumor evolution, and exploiting purine metabolism to suppress tumors suggests interesting directions for future research. In this review, we describe the process of purine metabolism and summarize the role and potential therapeutic effects of the major purine-metabolizing enzymes in ovarian cancer, including CD39, CD73, adenosine deaminase, adenylate kinase, hypoxanthine guanine phosphoribosyltransferase, inosine monophosphate dehydrogenase, purine nucleoside phosphorylase, dihydrofolate reductase and 5,10-methylenetetrahydrofolate reductase. Purinergic signaling is also described. We then provide an overview of the application of purine antimetabolites, comprising 6-thioguanine, 6-mercaptopurine, methotrexate, fludarabine and clopidogrel. Finally, we discuss the current challenges and future opportunities for targeting purine metabolism in the treatment-relevant cellular mechanisms of ovarian cancer.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shasha Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Peng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Ruel NM, Nguyen KH, Kim CS, Andrade LPS, Hammond JR. Impact of SLC43A3/ENBT1 expression and function on 6-mercaptopurine transport and cytotoxicity in human acute lymphoblastic leukemia cells. J Pharmacol Exp Ther 2022; 382:335-345. [PMID: 35798387 DOI: 10.1124/jpet.122.001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022] Open
Abstract
6-Mercaptopurine (6-MP) is used extensively in the treatment of acute lymphoblastic leukemia (ALL) and inflammatory bowel diseases. Our lab determined previously, using a recombinant HEK293 cell model, that the SLC43A3-encoded equilibrative nucleobase transporter 1 (ENBT1) transports 6-MP into cells and significantly impacts the cytotoxicity of 6-MP in that model. To further investigate the clinical relevance of this finding, we now extend this work to an analysis of the impact of SLC43A3/ENBT1 expression and function on 6-MP uptake and cytotoxicity in leukemic lymphoblasts, the therapeutic target of 6-MP in ALL. A panel of ALL cell lines was assessed for SLC43A3/ENBT1 expression, ENBT1 function, and sensitivity to 6-MP. There was a significant difference in SLC43A3 expression among the cell lines that positively correlated with the rate of ENBT1-mediated 6-MP uptake. Cells with the lowest expression of SLC43A3 (SUP-B15: Vmax - 22 {plus minus} 5 pmol/µl/s) were also significantly less sensitive to 6-MP induced cytotoxicity than were the highest expressing cells (ALL-1: Vmax - 69 {plus minus} 10 pmol/µl/s). Furthermore, knockdown of ENBT1 using shRNAi in RS4;11 cells caused a significant decrease in ENBT1-mediated 6-MP uptake (Vmax: RS4;11 - 40 {plus minus} 4 pmol/µl/s; RS4;11 shRNAi - 26 {plus minus} 3 pmol/µl/s) and 6-MP cytotoxicity (EC50: RS4;11: 0.58 {plus minus} 0.05 µM; RS4;11 shRNAi: 1.44 {plus minus} 0.59 µM). This study showed that ENBT1 is a major contributor to 6-MP uptake in leukemia cell lines, and may prove to be a biomarker for the therapeutic efficacy of 6-MP in patients with ALL. Significance Statement This study shows that ENBT1 is responsible for the transport of 6-MP into leukemia cells and that its level of expression can impact the cytotoxicity of 6-MP. Further studies are warranted to investigate the therapeutic implications in patient populations.
Collapse
Affiliation(s)
| | | | - Chan S Kim
- Pharmacology, University of Alberta, Canada
| | | | | |
Collapse
|
4
|
Cheng CP, Liu ST, Chiu YL, Huang SM, Ho CL. The Inhibitory Effects of 6-Thioguanine and 6-Mercaptopurine on the USP2a Target Fatty Acid Synthase in Human Submaxillary Carcinoma Cells. Front Oncol 2021; 11:749661. [PMID: 34956872 PMCID: PMC8702617 DOI: 10.3389/fonc.2021.749661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022] Open
Abstract
Overexpression of the deubiquitinase USP2a leads to stabilization of fatty acid synthase (FAS), the levels of which are often elevated in aggressive human cancers. Consequently, there is an urgent need for inhibitors to suppress the deubiquitination activity of USP2a so as to upregulate FAS protein degradation. We first analyzed the relationship between the expression level of USP2a and survival using The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (HNSC) data collection. Our results suggested survival rates were lower among HNSC patients expressing higher levels of USP2a. We then investigated two thiopurine drugs, 6-thioguanine (6-TG) and 6-mercaptopurine (6-MP), to determine whether they could potentially serve as inhibitors of USP2a. Western blot analysis showed that levels of two USP2a target proteins, FAS and Mdm2, were dose-dependently decreased in A253 submaxillary carcinoma cells treated with 6-TG or 6‐MP. Responding to the degradation of Mdm2, levels of p53 were increased. We found that 6-TG and 6-MP also suppressed levels of both USP2a mRNA and protein, suggesting these two thiopurines do not act solely through direct inhibition of USP2a. The effects of 6-TG and 6-MP were not cell type-specific, as they elicited similar decreases in FAS protein in leukemia, prostate and cervical cancer cell lines. 6-TG and 6-MP had effects on several cell cycle proteins, including another USP2a target protein, cyclin D1. The populations of cells in subG1 and S phase were increased by 6-TG and 6-MP, which was accompanied by reductions in G1 phase cells. In untreated cells, USP2a transfection increased FAS and cyclin D1 levels compared to an enzyme-dead USP2a C276A mutant, which lacked deubiquitinating activity. However, USP2a transfection failed to reverse the suppressive effects of 6‐TG and 6-MP on FAS levels. In summary, these findings suggest 6-TG and 6-MP reduce the stability of some USP2a targets, including FAS and Mdm2, by inhibiting USP2a-catalyzed deubiquitination in some cancer cells. Our work also provides repurposing evidence supporting 6‐TG and 6-MP as target therapeutic drugs, such as USP2a/FAS in this study.
Collapse
Affiliation(s)
- Chiao-Pei Cheng
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Ching-Liang Ho
- Division of Hematology and Oncology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
5
|
Gilda SS, Kolling WM, Nieto M, McPherson T. Stability and Beyond-Use Date of a Compounded Thioguanine Suspension. J Pharm Technol 2021; 37:23-29. [PMID: 34752544 DOI: 10.1177/8755122520952436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Thioguanine (TG) is available only in the form of 40 mg tablets in the United States, and the patient population in which TG is used comprises mostly children. Recognizing its importance as a therapeutic agent and limited stability data for its compounded preparation, the United States Pharmacopoeia has listed TG in its priority list of compounded preparations monographs. Objective: The goal of the present study was to generate stability data and establish a beyond-use date for compounded TG suspension. Methods: Suspensions were compounded using TG tablets and ORA-Plus and ORA-Sweet as vehicles. A robust high-performance liquid chromatography method was developed and validated. TG and guanine (G) in suspensions were quantified immediately after compounding and at regular intervals for 90 days. Physical stability of suspensions was evaluated by observation of organoleptic properties. Results: Results from the study indicate that average TG levels in suspensions remained above 90% of the starting concentration and G formation was less than 2.5% for 90 days. There was no statistically significant difference in the amount of TG degraded over 90 days between suspensions stored at room temperature and in refrigerated conditions. There was also no statistically significant difference in G concentration of suspensions between day 0 and day 90. Conclusion: TG suspensions are stable for 90 days when stored at room temperature or refrigerated conditions and the beyond-use date can be set to 90 days.
Collapse
|
6
|
Abstract
Herpes simplex virus 1 (HSV-1) infects eye corneal tissues leading to herpetic stromal keratitis (HSK), which is one of the leading causes of blindness. Here in our study, we found that 6-thioguanine (6-TG), a once clinically approved medication for child acute myelogenous leukemia, inhibited multiple strains of HSV-1 infection in vitro and in vivo. 6-TG is more potent than acyclovir (ACV) and ganciclovir (GCV), with the 50% inhibitory concentration (IC50) of 6-TG at 0.104 μM with high stimulation index (SI) (SI = 6,475.48) compared to the IC50 of ACV at 1.253 μM and the IC50 of GCV at 1.257 μM. In addition, 6-TG at 500 μM topically applied to the eyes with HSV-1 infection significantly inhibits HSV-1 replication, alleviates virus-induced HSK pathogenesis, and improves eye conditions. More importantly, 6-TG is effective against ACV-resistant HSV-1 strains, including HSV-1/153 and HSV-1/blue. Knockdown of Rac1 with small interfering RNA (siRNA) negatively affected HSV-1 replication, suggesting that Rac1 facilitated HSV-1 replication. Following HSV-1 infection of human corneal epithelial cells (HCECs), endogenous Rac1 activity was upregulated by glutathione S-transferase (GST) pulldown assay. We further found that Rac1 was highly expressed in the corneal tissue of HSK patients compared to normal individuals. Mechanistic study showed that 6-TG inhibited HSV-1 replication by targeting Rac1 activity in HSV-1 infected cells, and the Rac1 is critical in the pathogenesis of HSK. Our results indicated that 6-TG is a promising therapeutic molecule for the treatment of HSK. IMPORTANCE We reported the discovery of 6-TG inhibition of HSV-1 infection and its inhibitory roles in HSK both in vitro and in vivo. 6-TG was shown to possess at least 10× more potent inhibitory activity against HSV-1 than ACV and GCV and, more importantly, inhibit ACV/GCV-resistant mutant viruses. Animal model studies showed that gel-formulated 6-TG topically applied to eyes locally infected with HSV-1 could significantly inhibit HSV-1 replication, alleviate virus-induced HSK pathogenesis, and improve eye conditions. Further study showed that HSV-1 infection upregulated Rac1 expression, and knockdown of Rac1 using siRNA markedly restricted HSV-1 replication, suggesting that Rac1 is required for HSV-1 replication. In addition, we also documented that Rac1 is highly expressed in corneal tissues from HSK patients, indicating that Rac1 is associated with HSK pathogenesis. In view of the high potency of 6-TG, low cytotoxicity, targeting a distinct therapeutic target, we suggest that 6-TG is a potential candidate for development as a therapeutic agent for HSK therapy.
Collapse
|
7
|
Kurosawa T, Tega Y, Sako D, Mochizuki T, Yamaguchi T, Kawabata K, Inoue K, Ito N, Kusuhara H, Deguchi Y. Transport Characteristics of 6-Mercaptopurine in Brain Microvascular Endothelial Cells Derived From Human Induced Pluripotent Stem Cells. J Pharm Sci 2021; 110:3484-3490. [PMID: 34102205 DOI: 10.1016/j.xphs.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/25/2023]
Abstract
The likelihood of reoccurrence of acute lymphoblastic leukemia is influenced by the cerebral concentration of the therapeutic agent 6-mercaptopurine (6-MP) during treatment. Therefore, it is important to understand the blood-brain barrier (BBB) transport mechanism of 6-MP. The purpose of this study was to characterize this mechanism using human induced pluripotent stem cell-derived microvascular endothelial cells (hiPS-BMECs). The permeability coefficient of 6-MP across hiPS-BMECs monolayer in the basal-to-apical direction (B-to-A) was significantly greater than that in the opposite direction (A-to-B). The inhibition profiles of 6-MP transport in the A-to-B direction were different from those in the B-to-A direction. Transport in the A-to-B direction was mainly inhibited by adenine (an inhibitor of equilibrative nucleobase transporter 1; ENBT1), while transport in the B-to-A direction was significantly reduced by inhibitors of multidrug resistance-associated proteins (MRPs), especially zaprinast (an MRP5 inhibitor). Immunocytochemical analyses demonstrated the expression of ENBT1 and MRP5 proteins in hiPS-BMECs. We confirmed that the cellular uptake of 6-MP is decreased by ENBT1 inhibitors in hiPS-BMECs and by knockdown of ENBT1 in hCMEC/D3 cells. These results suggest that ENBT1 and MRP5 make substantial contributions to the transport of 6-MP in hiPS-BMECs and hCMEC/D3 cells.
Collapse
Affiliation(s)
- Toshiki Kurosawa
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Yuma Tega
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Daiki Sako
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoko Yamaguchi
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Naoki Ito
- Department of Pediatrics, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiharu Deguchi
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan.
| |
Collapse
|
8
|
Potent synthetic and endogenous ligands for the adopted orphan nuclear receptor Nurr1. Exp Mol Med 2021; 53:19-29. [PMID: 33479411 PMCID: PMC8080818 DOI: 10.1038/s12276-021-00555-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
Until recently, Nurr1 (NR4A2) was known as an orphan nuclear receptor without a canonical ligand-binding domain, featuring instead a narrow and tight cavity for small molecular ligands to bind. In-depth characterization of its ligand-binding pocket revealed that it is highly dynamic, with its structural conformation changing more than twice on the microsecond-to-millisecond timescale. This observation suggests the possibility that certain ligands are able to squeeze into this narrow space, inducing a conformational change to create an accessible cavity. The cocrystallographic structure of Nurr1 bound to endogenous ligands such as prostaglandin E1/A1 and 5,6-dihydroxyindole contributed to clarifying the crucial roles of Nurr1 and opening new avenues for therapeutic interventions for neurodegenerative and/or inflammatory diseases related to Nurr1. This review introduces novel endogenous and synthetic Nurr1 agonists and discusses their potential effects in Nurr1-related diseases.
Collapse
|
9
|
Zimdahl Kahlin A, Helander S, Wennerstrand P, Vikingsson S, Mårtensson LG, Appell ML. Pharmacogenetic studies of thiopurine methyltransferase genotype-phenotype concordance and effect of methotrexate on thiopurine metabolism. Basic Clin Pharmacol Toxicol 2020; 128:52-65. [PMID: 32865889 PMCID: PMC7821157 DOI: 10.1111/bcpt.13483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/30/2022]
Abstract
The discovery and implementation of thiopurine methyltransferase (TPMT) pharmacogenetics has been a success story and has reduced the suffering from serious adverse reactions during thiopurine treatment of childhood leukaemia and inflammatory bowel disease. This MiniReview summarizes four studies included in Dr Zimdahl Kahlin's doctoral thesis as well as the current knowledge on this field of research. The genotype‐phenotype concordance of TPMT in a cohort of 12 663 individuals with clinically analysed TPMT status is described. Notwithstanding the high concordance, the benefits of combined genotyping and phenotyping for TPMT status determination are discussed. The results from the large cohort also demonstrate that the factors of gender and age affect TPMT enzyme activity. In addition, characterization of four previously undescribed TPMT alleles (TPMT*41, TPMT*42, TPMT*43 and TPMT*44) shows that a defective TPMT enzyme could be caused by several different mechanisms. Moreover, the folate analogue methotrexate (MTX), used in combination with thiopurines during maintenance therapy of childhood leukaemia, affects the metabolism of thiopurines and interacts with TPMT, not only by binding and inhibiting the enzyme activity but also by regulation of its gene expression.
Collapse
Affiliation(s)
- Anna Zimdahl Kahlin
- Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sara Helander
- Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Patricia Wennerstrand
- Division of Chemistry, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Svante Vikingsson
- Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lars-Göran Mårtensson
- Division of Chemistry, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Malin Lindqvist Appell
- Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Yao P, Qu XM, Ren S, Ren XD, Su N, Zhao N, Wang L, Cheng L, Weng BB, Sun FJ, Huang Q. Scorpion primer PCR analysis for genotyping of allele variants of thiopurine s‑methyltransferase*3. Mol Med Rep 2020; 22:1994-2002. [PMID: 32705177 PMCID: PMC7411393 DOI: 10.3892/mmr.2020.11283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
Thiopurine S-methyltransferase (TPMT) plays an important role in the metabolism of thiopurines. Mutations in the TPMT gene can affect drug activity, which may have adverse effects in humans. Thus, genotyping can help elucidate genetic determinants of drug response to thiopurines and optimize the selection of drug therapies for individual patients, effectively avoiding palindromia during maintenance treatment caused by insufficient dosing and the serious side effects caused by excessive doses. The current available detection methods used for TPMT*3B and TPMT*3C are complex, costly and time-consuming. Therefore, innovative detection methods for TPMT genotyping are urgently required. The aim of the present study was to establish and optimize a simple, specific and timesaving TPMT genotyping method. Using the principles of Web-based Allele-Specific PCR and competitive real-time fluorescent allele-specific PCR (CRAS-PCR), two pairs of Scorpion primers were designed for the detection of TPMT*3B and *3C, respectively, and a mutation in TPMT*3A was inferred based on data from TPMT*3B and *3C. In total, 226 samples from volunteers living in Chongqing were used for CRAS-PCR to detect TPMT*3 mutations. Results showed that nine (3.98%) were mutant (MT) heterozygotes and none were MT homozygotes for TPMT*3C, and no TPMT*3A and TPMT*3B mutations were found. Three TPMT*3C MT heterozygotes were randomly selected for DNA sequencing, and CRAS-PCR results were consistent with the sequencing results. In conclusion, in order to improve simplicity, specificity and efficiency, the present study established and optimized CRAS-PCR assays for commonly found mutant alleles of TPMT*3A (G460A and A719G), TPMT*3B (G460A), and TPMT*3C (A719G).
Collapse
Affiliation(s)
- Pu Yao
- Department of Laboratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, P.R. China
| | - Xue-Mei Qu
- Department of Laboratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, P.R. China
| | - Sai Ren
- Department of Laboratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, P.R. China
| | - Xiao-Dong Ren
- Department of Laboratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, P.R. China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, P.R. China
| | - Na Zhao
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Liu Wang
- Department of Laboratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, P.R. China
| | - Lin Cheng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Bang-Bi Weng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Feng-Jun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, P.R. China
| |
Collapse
|
11
|
Ren H, Chen F, Li X, He Y. A new insight of structures, bonding and electronic properties for 6-mercaptopurine and Ag 8 clusters configurations: a theoretical perspective. BMC Chem 2019; 13:55. [PMID: 31384803 PMCID: PMC6661816 DOI: 10.1186/s13065-019-0573-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/11/2019] [Indexed: 11/29/2022] Open
Abstract
Background Many reports have also shown that the silver nanoparticles can effectively increase the anticancer drug activity and intensely enhance the drug curative effect. The adsorption of 6MP on nanomaterials has received a lot of attentions because of the drug coordination to its chemotherapeutic activity. The geometrical structures, chemical bonds, molecular orbital properties as well as density of states for the configurations were analyzed to deeply understand the interactions between the 6MP and Ag8 clusters for high effect anticancer drug production. Results In this work, the density functional theory B3LYP has been used to investigate the structures and properties of the configurations between 6-mercaptopurine (6MP) and Ag8 clusters using 6-311++G** level as well as an effective pseudo potential LANL2DZ. The geometries of ten configurations were optimized with full freedom. The geometrical structures, chemical bonds, molecular orbital properties as well as density of states for partial configurations were analyzed based on the density functional calculations. Polarizable continuum solvent model (PCM) in self-consistent reaction field (SCRF) were used for the aqueous calculations. The influences of temperature and pressure on the stability of the predominant configurations in the gas phase were further considered using standard statistical thermodynamic methods from 50 to 500 K and at 1 bar or 100 bar. Conclusion The result shows that there are ten stable configurations in the gas phase and there is a strong chemical bond between a Ag and S atom in the most stable configuration. The analysis of density of states also shows that the Ag–S chemical bond in the most stable configuration has been formed. Moreover, the results show that the temperature and the pressure will significantly influence the stability of the configurations in the gas phase. Additionally, when the solvent effect was considered, we found that there are only seven stable configurations and the solvent have different effect on various configurations.![]() Electronic supplementary material The online version of this article (10.1186/s13065-019-0573-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongjiang Ren
- Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi'an University, Taibai South Road 168#, Xi'an, 710065 China
| | - Fan Chen
- Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi'an University, Taibai South Road 168#, Xi'an, 710065 China
| | - Xiaojun Li
- Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi'an University, Taibai South Road 168#, Xi'an, 710065 China
| | - Yaping He
- Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi'an University, Taibai South Road 168#, Xi'an, 710065 China
| |
Collapse
|
12
|
Simultaneous Quantification of Methotrexate and Its Metabolite 7-Hydroxy-Methotrexate in Human Plasma for Therapeutic Drug Monitoring. Int J Anal Chem 2019; 2019:1536532. [PMID: 30853983 PMCID: PMC6378003 DOI: 10.1155/2019/1536532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/30/2018] [Accepted: 12/11/2018] [Indexed: 02/05/2023] Open
Abstract
Objective To establish and validate a simple, sensitive, and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the determination of methotrexate (MTX) and its major metabolite 7-hydroxy-methotrexate (7-OH-MTX) in human plasma. Method The chromatographic separation was achieved on a Zorbax C18 column (3.5 μm, 2.1 × 100 mm) using a gradient elution with methanol (phase B) and 0.2% formic acid aqueous solution (phase A). The flow rate was 0.3 mL/min with analytical time of 3.5 min. Mass spectrometry detection was performed in a triple-quadruple tandem mass spectrometer under positive ion mode with the following mass transitions: m/z 455.1/308.1 for MTX, 471.0/324.1 for 7-OH-MTX, and 458.2/311.1 for internal standard. The pretreatment procedure was optimized with dilution after one-step protein precipitation. Results The calibration range of methotrexate and 7-OH-MTX was 5.0-10000.0 ng/mL. The intraday and interday precision and accuracy were less than 15% and within ±15% for both analytes. The recovery for MTX and 7-OH-MTX was more than 90% and the matrix effect ranged from 97.90% to 117.60%. Conclusion The method was successfully developed and applied to the routine therapeutic drug monitoring of MTX and 7-OH-MTX in human plasma.
Collapse
|
13
|
Coulthard SA, McGarrity S, Sahota K, Berry P, Redfern CPF. Three Faces of Mercaptopurine Cytotoxicity In Vitro: Methylation, Nucleotide Homeostasis, and Deoxythioguanosine in DNA. Drug Metab Dispos 2018; 46:1191-1199. [PMID: 29884651 DOI: 10.1124/dmd.118.081844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/01/2018] [Indexed: 11/22/2022] Open
Abstract
Mercaptopurine (MP) is a cytotoxic thiopurine important for the treatment of cancer and autoimmune diseases. MP and other thiopurine drugs undergo extensive intracellular metabolism, but the mechanisms of action are poorly characterized. In particular, it is unknown how different metabolites contribute to cytotoxicity and incorporation of thiopurine bases into DNA. The aim of this study was to ask whether cytotoxicity results from the incorporation of thioguanosine nucleotides into DNA, an alternative thiopurine metabolite, or a combination of factors. Therefore, we measured the cytotoxicity, metabolism, and incorporation of thioguanosine into DNA in response to MP or MP metabolites. Thiopurine metabolites varied in cytotoxicity, with methyl-thioinosine-mono-phosphate and thioguanosine-tri-phosphate the most toxic, and the methyl-thioguanosine nucleotides the least. We show, using liquid chromatography-tandem mass spectrometry, how different metabolites may perturb biochemical pathways, particularly disrupting guanosine nucleotide homeostasis, that may contribute to the mechanism of action of thiopurines. Although there was no correlation between metabolite cytotoxicity and the levels of 6-methylthioinosine-mono-phosphate or thioguanosine incorporation into DNA as individual factors, a combined analysis suggested that these factors together had a major influence on cytotoxicity. This study emphasizes the importance of enzymes of nucleotide homeostasis, methylation, and demethylation in thiopurine effects. These results will facilitate the development of dynamic biochemical models of thiopurine biochemistry that will improve our understanding of mechanisms of action in relevant target tissues.
Collapse
Affiliation(s)
- Sally A Coulthard
- Northern Institute of Cancer Research (S.A.C., S.M., P.B., C.P.F.R.) and Institute of Cellular Medicine (S.A.C., K.S.), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah McGarrity
- Northern Institute of Cancer Research (S.A.C., S.M., P.B., C.P.F.R.) and Institute of Cellular Medicine (S.A.C., K.S.), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kalvin Sahota
- Northern Institute of Cancer Research (S.A.C., S.M., P.B., C.P.F.R.) and Institute of Cellular Medicine (S.A.C., K.S.), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Philip Berry
- Northern Institute of Cancer Research (S.A.C., S.M., P.B., C.P.F.R.) and Institute of Cellular Medicine (S.A.C., K.S.), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chris P F Redfern
- Northern Institute of Cancer Research (S.A.C., S.M., P.B., C.P.F.R.) and Institute of Cellular Medicine (S.A.C., K.S.), Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
14
|
Fiorelli AI, Lourenço-Filho DD, Tavares ER, Carvalho PO, Marques AF, Gutierrez PS, Maranhão RC, Stolf NAG. Methotrexate associated to lipid core nanoparticles improves cardiac allograft vasculopathy and the inflammatory profile in a rabbit heart graft model. ACTA ACUST UNITED AC 2017; 50:e6225. [PMID: 28832763 PMCID: PMC5561808 DOI: 10.1590/1414-431x20176225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/11/2017] [Indexed: 11/25/2022]
Abstract
Coronary allograft vasculopathy is an inflammatory-proliferative process that compromises the long-term success of heart transplantation and has no effective treatment. A lipid nanoemulsion (LDE) can carry chemotherapeutic agents in the circulation and concentrates them in the heart graft. The aim of the study was to investigate the effects of methotrexate (MTX) associated to LDE. Rabbits fed a 0.5% cholesterol diet and submitted to heterotopic heart transplantation were treated with cyclosporine A (10 mg·kg–1·day–1 orally) and allocated to treatment with intravenous LDE-MTX (4 mg/kg, weekly, n=10) or with weekly intravenous saline solution (control group, n=10), beginning on the day of surgery. Animals were euthanized 6 weeks later. Compared to controls, grafts of LDE-MTX treated rabbits showed 20% reduction of coronary stenosis, with a four-fold increase in vessel lumen and 80% reduction of macrophage staining in grafts. Necrosis was attenuated by LDE-MTX. Native hearts of both LDE-MTX and Control groups were apparently normal. Gene expression of lipoprotein receptors was significantly greater in grafts compared to native hearts. In LDE-MTX group, gene expression of the pro-inflammatory factors tumor necrosis factor-α, monocyte chemoattractant protein-1, interleukin-18, vascular cell adhesion molecule-1, and matrix metalloproteinase-12 was strongly diminished whereas expression of anti-inflammatory interleukin-10 increased. LDE-MTX promoted improvement of the cardiac allograft vasculopathy and diminished inflammation in heart grafts.
Collapse
Affiliation(s)
- A I Fiorelli
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - D D Lourenço-Filho
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E R Tavares
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - P O Carvalho
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A F Marques
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - P S Gutierrez
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R C Maranhão
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.,Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - N A G Stolf
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
15
|
Influence of Drugs Carried in Lipid Nanoparticles in Coronary Disease of Rabbit Transplanted Heart. Ann Thorac Surg 2017; 104:577-583. [DOI: 10.1016/j.athoracsur.2016.12.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/17/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022]
|
16
|
Gharebaghi F, Dalali N, Ahmadi E, Danafar H. Preparation of wormlike polymeric nanoparticles coated with silica for delivery of methotrexate and evaluation of anticancer activity against MCF7 cells. J Biomater Appl 2017; 31:1305-1316. [DOI: 10.1177/0885328217698063] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methotrexate is one of the most effective drugs that is commonly used in the treatment of cancer. However, its application is limited due to low solubility, high toxicity and rapid metabolism. Therefore, in the present study, worm-like polymeric nanoparticles as carrier of methotrexate were prepared using biodegradable copolymers (mPEG–PCL). The impact of nanoparticles’ geometry on the loading, delivery and drug’s anti-cancer activity was investigated. The di-block copolymer mPEG–PCL was being synthesized by a ring opening polymerization of ɛ-caprolactone in the presence of mPEG as the initiator and Sn(oct)2 as the catalyst. It was used for the preparation of worm-like micelles and coated with silica, so that their structures are stable after drying. The synthesized copolymers and nanoparticles were characterized by FTIR, HNMR, GPC, XRD, TGA, DLS, and FE-SEM analyses. The efficiencies of drug loading and release of nanoparticles as in vitro, was studied by high performance liquid chromatography. The MTT method was used to estimate the toxicity on MCF-7 cell category. The obtained results showed that the nanoparticles were worm-like particles with less than 150 nm diameter and about 1 µm length. The loading and encapsulation efficiencies of drug by the worm-like nanoparticles were 3.5 ± 0.14% and 65.6 ± 0.12%, respectively, while they were obtained as 2.1 ± 0.08% and 26 ± 0.10%, respectively, for spherical nanoparticles. The methotrexate diffusional behavior of worm-like nanoparticles was compared with that of the spherical ones. On the other hand, the anti-cancer activity of MTX-loaded nanoparticles was more than the free drug. The results of the MTT assay showed strong and dose-dependent inhibition of cell (MCF-7 category) growth by the nanoparticles compared with MTX. The inhibitory concentrations (IC50 i.e. reduction viability of cell to 50%) obtained for worm-like, spherical nanoparticles and free drug (incubation times 72 h) were 8.25 ± 0.20, 9.15 ± 0.17, 12.28 ± 0.15 µg/mL, respectively. It can be concluded that application of non-spherical nanoparticles is a better and more effective strategy for controlled and slow release of methotrexate in the treatment of cancer.
Collapse
Affiliation(s)
- Farhad Gharebaghi
- Faculty of Science, Phase Separation & FIA Lab., Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - Naser Dalali
- Faculty of Science, Phase Separation & FIA Lab., Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - Ebrahim Ahmadi
- Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - Hossein Danafar
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
17
|
Wang H, Qian J, Ding F. Recent advances in engineered chitosan-based nanogels for biomedical applications. J Mater Chem B 2017; 5:6986-7007. [DOI: 10.1039/c7tb01624g] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in the preparation and biomedical applications of engineered chitosan-based nanogels has been comprehensively reviewed.
Collapse
Affiliation(s)
- Hongxia Wang
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| | - Jun Qian
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| | - Fuyuan Ding
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
18
|
Huang Y, Liu J, Cui Y, Li H, Sun Y, Fan Y, Zhang X. Reduction-triggered breakable micelles of amphiphilic polyamide amine-g-polyethylene glycol for methotrexate delivery. BIOMED RESEARCH INTERNATIONAL 2014; 2014:904634. [PMID: 24895626 PMCID: PMC4005151 DOI: 10.1155/2014/904634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 12/22/2022]
Abstract
Reduction-triggered breakable polymeric micelles incorporated with MTX were prepared using amphiphilic PAA-g-PEG copolymers having S-S bonds in the backbone. The micelles were spherical with diameters less than 70 nm. The micelles could encapsulate the hydrophobic MTX in the hydrophobic core. The drug loading content and drug loading efficiency of the micelles were highly dependent on the copolymer chemical structure, ranging from 2.9 to 7.5% and 31.9 to 82.5%, respectively. Both the drug loading content and drug loading efficiency increased along with more hydrophobic segments in the copolymers. In normal circumstance, these micelles were capable of keeping stable and hold most of the MTX in the core, stabilizing the incorporated MTX through the π-π stacking with the phenyl groups in the backbone of the copolymers. In reductive environments that mimicked the intracellular compartments, the entire MTX payload could be quickly released due to the reduction-triggered breakage of the micelles. These micelles showed good antiproliferative activity against several cancer cell lines, including KB, 4T-1 and HepG2, especially within the low drug concentration scope.
Collapse
Affiliation(s)
- Yihang Huang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Jun Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yani Cui
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Huanan Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
19
|
Sun Y, Huang Y, Bian S, Liang J, Fan Y, Zhang X. Reduction-degradable PEG-b–PAA-b–PEG triblock copolymer micelles incorporated with MTX for cancer chemotherapy. Colloids Surf B Biointerfaces 2013; 112:197-203. [DOI: 10.1016/j.colsurfb.2013.07.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 01/15/2023]
|
20
|
Inhibition of MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia. Blood Cancer J 2013; 3:e101. [PMID: 23353780 PMCID: PMC3556576 DOI: 10.1038/bcj.2012.46] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pediatric leukemia survival rates have improved dramatically over the past decades. However, current treatment protocols are still largely ineffective in cases of relapsed leukemia and are associated with a significant rate of chronic health conditions. Thus, there is a continued need for new therapeutic options. Here, we show that mer receptor tyrosine kinase (MerTK) was abnormally expressed in approximately one half of pediatric T-cell leukemia patient samples and T-cell acute lymphoblastic leukemia (T-ALL) cell lines. Stimulation of MerTK by the ligand Gas6 led to activation of the prosurvival proteins Erk 1/2 and Stat5, and MerTK-dependent activation of the STAT pathway in leukemia represents a novel finding. Furthermore, inhibition of MerTK expression increased the sensitivity of T-ALL cells to treatment with chemotherapeutic agents and decreased the oncogenic potential of the Jurkat T-ALL cell line in a methylcellulose colony-forming assay. Lastly, inhibition of MerTK expression significantly increased median survival in a xenograft mouse model of leukemia (30.5 days vs 60 days, P<0.0001). These results suggest that inhibition of MerTK is a promising therapeutic strategy for the treatment of leukemia and may allow for dose reduction of currently used chemotherapeutics resulting in decreased rates of therapy-associated toxicities.
Collapse
|
21
|
Sarvaiya PJ, Schwartz JR, Hernandez CP, Rodriguez PC, Vedeckis WV. Role of c-Myb in the survival of pre B-cell acute lymphoblastic leukemia and leukemogenesis. Am J Hematol 2012; 87:969-76. [PMID: 22764095 DOI: 10.1002/ajh.23283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/10/2012] [Accepted: 05/22/2012] [Indexed: 12/26/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. The current treatment protocol for ALL involves an intense chemotherapy regimen yielding cure rates of nearly 80%. However, new therapies need to be designed not only to increase the survival rate but also to combat the risk of severe therapy associated toxicities including secondary malignancies, growth problems, organ damage, and infertility. The c-Myb proto-oncogene is highly expressed in immature hematopoietic cells. In this study, we demonstrate that loss of c-Myb itself decreased the viability of these leukemic cells. Additionally, the inhibition of c-Myb caused a decrease in cell proliferation, significantly increased the number of cells in G(0) /G(1) phase of the cell cycle, increased the sensitivity of pre-B-ALL cells to cytotoxic agents in vitro, and significantly delayed disease onset in a mouse model of leukemia. Furthermore, we demonstrate that Bcl-2 is a target of c-Myb in pre-B-ALL cells. Our results identify c-Myb as a potential therapeutic target in pre-B-ALL and suggest that suppression of c-Myb levels or activity, in combination with currently used therapies and/or dose reduction, may lead to a decrease in toxicity and an increase in patient survival rates. Because c-Myb is aberrantly expressed in several other malignancies, targeting c-Myb will have broad clinical applications.
Collapse
Affiliation(s)
- Purvaba J Sarvaiya
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
22
|
Taki K, Fukushima T, Ise R, Horii I, Yoshida T. 6-Mercaptopurine-induced histopathological changes and xanthine oxidase expression in rat placenta. J Toxicol Sci 2012; 37:607-15. [PMID: 22688000 DOI: 10.2131/jts.37.607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The placenta secures the embryo and fetus to the endometrium and releases a variety of steroid and peptide hormones that convert the physiology of a female to that of a pregnant female. Chemical-induced alteration or deviation of placental function in the maternal and extraembryonic tissue can ultimately lead to pregnancy loss, congenital malformation and fetal death. The 6-mercaptopurine (6-MP), an anti-leukemic drug, is known to produce undesired effects on some organs, then the placenta/embryo toxicity of 6-MP was investigated in pregnant rats given 60 mg/kg with two intraperitoneal injections on gestation days (GD) 11 and 12. The rats were sacrificed and their placentas were collected on GD13 or 15. On GD15 small and limb-defected embryos were found in the 6-MP-treated rats. Placental weights were significantly reduced on GD15, as well as a reduced number of cells was detected in the labyrinth zone with both the labyrinth and basal zones having thinned. Cleaved caspase-3-positive cells increased in number in the labyrinth zone, while in the basal zone, glycogen cells reduced with cytolysis. The number of spongiotrophoblasts and trophoblastic giant cells also increased by 6-MP treatment. The 6-MP-treatment resulted in the increased xanthine oxidase (Xdh) expression in the placenta, which gene is related to the ischemic condition of tissues. These data suggest that apoptosis of the labyrinth zone cells may lead to decreased materno-fetal exchange. Moreover, subsequent ischemia in the placental tissue may occur and induce Xdh expression.
Collapse
Affiliation(s)
- Kenji Taki
- Department of Biochemical Toxicology, School of Pharmacy, Showa University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
23
|
Doi K. Mechanisms of neurotoxicity induced in the developing brain of mice and rats by DNA-damaging chemicals. J Toxicol Sci 2012; 36:695-712. [PMID: 22129734 DOI: 10.2131/jts.36.695] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is not widely known how the developing brain responds to extrinsic damage, although the developing brain is considered to be sensitive to diverse environmental factors including DNA-damaging agents. This paper reviews the mechanisms of neurotoxicity induced in the developing brain of mice and rats by six chemicals (ethylnitrosourea, hydroxyurea, 5-azacytidine, cytosine arabinoside, 6-mercaptopurine and etoposide), which cause DNA damage in different ways, especially from the viewpoints of apoptosis and cell cycle arrest in neural progenitor cells. In addition, this paper also reviews the repair process following damage in the developing brain.
Collapse
Affiliation(s)
- Kunio Doi
- Nippon Institute for Biological Science, Ome, Tokyo, Japan.
| |
Collapse
|
24
|
Moura JA, Valduga CJ, Tavares ER, Kretzer IF, Maria DA, Maranhão RC. Novel formulation of a methotrexate derivative with a lipid nanoemulsion. Int J Nanomedicine 2011; 6:2285-95. [PMID: 22072866 PMCID: PMC3205125 DOI: 10.2147/ijn.s18039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Lipid nanoemulsions that bind to low-density lipoprotein receptors can concentrate chemotherapeutic agents in tissues with low-density lipoprotein receptor overexpression and decrease the toxicity of the treatment. The aim of this study was to develop a new formulation using a lipophilic derivative of methotrexate, ie, didodecyl methotrexate (ddMTX), associated with a lipid nanoemulsion (ddMTX-LDE). Methods ddMTX was synthesized by an esterification reaction between methotrexate and dodecyl bromide. The lipid nanoemulsion was prepared by four hours of ultrasonication of a mixture of phosphatidylcholine, triolein, and cholesteryloleate. Association of ddMTX with the lipid nanoemulsion was performed by additional cosonication of ddMTX with the previously prepared lipid nanoemulsion. Formulation stability was evaluated, and cell uptake, cytotoxicity, and acute animal toxicity studies were performed. Results The yield of ddMTX incorporation was 98% and the particle size of LDE-ddMTX was 60 nm. After 48 hours of incubation with plasma, approximately 28% ddMTX was released from the lipid nanoemulsion. The formulation remained stable for at least 45 days at 4°C. Cytotoxicity of LDE-ddMTX against K562 and HL60 neoplastic cells was higher than for methotrexate (50% inhibitory concentration [IC50] 1.6 versus 18.2 mM and 0.2 versus 26 mM, respectively), and cellular uptake of LDE-ddMTX was 90-fold higher than that of methotrexate in K562 cells and 75-fold in HL60 cells. Toxicity of LDE-ddMTX, administered at escalating doses, was higher than for methotrexate (LD50 115 mg/kg versus 470 mg/kg; maximum tolerated dose 47 mg/kg versus 94 mg/kg) in mice. However, the hematological toxicity of LDE-ddMTX was lower than for methotrexate. Conclusion LDE-ddMTX was stable, and uptake of the formulation by neoplastic cells was remarkably greater than of methotrexate, which resulted in markedly greater cytotoxicity. LDE-ddMTX is thus a promising formulation to be tested in future animal models of cancer or rheumatic disease, wherein methotrexate is widely used.
Collapse
Affiliation(s)
- Juliana A Moura
- Heart Institute of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Aliabadi HM, Romanick M, Somayaji V, Mahdipoor P, Lavasanifar A. Stability of compounded thioguanine oral suspensions. Am J Health Syst Pharm 2011; 68:900-8. [PMID: 21546641 DOI: 10.2146/ajhp100163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - Marcel Romanick
- Pharmacy Services, Alberta Health Services, UA/Stollery Childrens Hospital, Edmonton
| | - Vishwa Somayaji
- Parvin Mahdipoor is student in Biological Sciences (summer student); and Afsaneh Lavasanifar, Ph.D., is Associate Professor, Faculty of Pharmacy and Pharmaceutical Sciences, UA
| | - Parvin Mahdipoor
- Parvin Mahdipoor is student in Biological Sciences (summer student); and Afsaneh Lavasanifar, Ph.D., is Associate Professor, Faculty of Pharmacy and Pharmaceutical Sciences, UA
| | - Afsaneh Lavasanifar
- Parvin Mahdipoor is student in Biological Sciences (summer student); and Afsaneh Lavasanifar, Ph.D., is Associate Professor, Faculty of Pharmacy and Pharmaceutical Sciences, UA
| |
Collapse
|
26
|
The association of reduced folate carrier 80G>A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number. Blood 2010; 115:4671-7. [PMID: 20335220 DOI: 10.1182/blood-2010-01-256958] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The reduced folate carrier (RFC) is involved in the transport of methotrexate (MTX) across the cell membrane. The RFC gene (SLC19A1) is located on chromosome 21, and we hypothesized that the RFC80 G>A polymorphism would affect outcome and toxicity in childhood leukemia and that this could interact with chromosome 21 copy number in the leukemic clone. A total of 500 children with acute lymphoblastic leukemia treated according to the common Nordic treatment protocols were included, and we found that the RFC AA variant was associated with a 50% better chance of staying in remission compared with GG or GA variants (P = .046). Increased copy numbers of chromosome 21 appear to improve outcome also in children with GA or GG variant. In a subset of 182 children receiving 608 high-dose MTX courses, we observed higher degree of bone marrow toxicity in patients with the RFC AA variant compared with GA/GG variants (platelet 73 vs 99/105 x 10(9)/L, P = .004, hemoglobin 5.6 vs 5.9/6.0 mmol/L, P = .004) and a higher degree of liver toxicity in patients with RFC GG variant (alanine aminotransferase 167 vs 127/124 U/L, P = .05). In conclusion, the RFC 80G>A polymorphism interacts with chromosome 21 copy numbers and affects both efficacy and toxicity of MTX.
Collapse
|
27
|
Mer receptor tyrosine kinase is a novel therapeutic target in pediatric B-cell acute lymphoblastic leukemia. Blood 2009; 114:2678-87. [PMID: 19643988 DOI: 10.1182/blood-2009-03-209247] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is currently treated with an intense regimen of chemotherapy yielding cure rates near 80%. However, additional changes using available drugs are unlikely to provide significant improvement in survival. New therapies are warranted given the risk of severe therapy-associated toxicities including infertility, organ damage, and secondary malignancy. Here, we report ectopic expression of the receptor tyrosine kinase Mer in pediatric B-cell ALL. Inhibition of Mer prevented Erk 1/2 activation, increased the sensitivity of B-ALL cells to cytotoxic agents in vitro by promoting apoptosis, and delayed disease onset in a mouse model of leukemia. In addition, we discovered cross-talk between the Mer and mammalian target of rapamycin (mTOR) signaling pathways. Our results identify Mer as a novel therapeutic target in ALL and suggest that inhibitors of Mer will interact synergistically with currently used therapies. This strategy may allow for dose reduction resulting in decreased toxicity and increased survival rates. Mer is aberrantly expressed in numerous other malignancies suggesting that this approach may have broad applications.
Collapse
|
28
|
Kanemitsu H, Yamauchi H, Komatsu M, Yamamoto S, Okazaki S, Uchida K, Nakayama H. 6-mercaptopurine (6-MP) induces p53-mediated apoptosis of neural progenitor cells in the developing fetal rodent brain. Neurotoxicol Teratol 2009; 31:198-202. [PMID: 19281843 DOI: 10.1016/j.ntt.2009.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/28/2009] [Accepted: 02/28/2009] [Indexed: 11/19/2022]
Abstract
6-mercaptopurine (6-MP), a DNA-damaging agent, induces apoptosis of neural progenitor cells, and causes malformation in the fetal brain. The aim of the present study is to clarify the molecular pathway of 6-MP-induced apoptosis of neural progenitor cells in the fetal telencephalon of rats and mice. p53 protein is activated by DNA damage and induces apoptosis through either the intrinsic pathway involving the mitochondria or the extrinsic pathway triggered by death receptors. In this study, the expression of puma and cleaved caspase-9 proteins, which are specific intrinsic pathway factors, increased in the rat telencephalon after 6-MP treatment. 6-MP-induced apoptosis of neural progenitor cells was completely absent in p53-deficient mice. On the other hand, the expression of Fas protein, an extrinsic pathway factor, did not change throughout the experimental period in the rat telencephalon treated with 6-MP. The number of apoptotic neural progenitor cells was similar among Fas-mutated lpr/lpr and wild-type mice, suggesting that the Fas pathway does not play a significant role in 6-MP-induced apoptosis of neural progenitor cells. These results may suggest that the p53-mediated intrinsic pathway is essential for 6-MP-induced apoptosis of neural progenitor cells in the developing telencephalon of rats and mice.
Collapse
Affiliation(s)
- H Kanemitsu
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kanemitsu H, Yamauchi H, Komatsu M, Yamamoto S, Okazaki S, Uchida K, Nakayama H. 6-Mercaptopurine (6-MP) induces cell cycle arrest and apoptosis of neural progenitor cells in the developing fetal rat brain. Neurotoxicol Teratol 2009; 31:104-9. [DOI: 10.1016/j.ntt.2008.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/05/2008] [Accepted: 10/06/2008] [Indexed: 11/17/2022]
|
30
|
Molecular structure and antitumor activity of platinum(II) complexes containing purine analogs. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.02.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Furukawa S, Usuda K, Abe M, Hayashi S, Ogawa I. Effect of 6-mercaptopurine on rat placenta. J Vet Med Sci 2008; 70:551-6. [PMID: 18628594 DOI: 10.1292/jvms.70.551] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In order to investigate the toxic effects of 6-mercaptopurine (6-MP) on placental development, we examined sequential morphology in the placentas from rats exposed to 6-MP. 6-MP was intraperitoneally administered at 60 mg/kg during gestation days (GDs) 11 to 12, and the placentas were sampled on GD 13, 15 or 21. In the 6-MP-treated group, maternal body weight suppression, increased death embryo/fetus ratio and some malformations were observed. The placenta weights were decreased on GDs 15 and 21. Macroscopically, placentas on GD 21 were small, brittle and thin with a white peripheral rim. Histopathologically, in the labyrinth zone, 6-MP treatment mainly evoked decreased mitosis on GDs 13 and 15, increased apoptotic cell on GDs 13, 15 and 21 and thinning on GDs 15 and 21. In the basal zone, 6-MP evoked decreased mitosis on GDs 13, and PAS-positive material in the spongiotrophoblasts was still detected on GD 15. Thickening of the basal zone was observed with cytolysis of glycogen cells, apoptosis and an increased number of composed cells on GD 21. In conclusion, 6-MP administration in pregnant rats induced growth arrest of the labyrinth zone and developmental delay in the basal zone, leading to small placentas. The fetotoxicity of 6-MP may be responsible for its direct anti-proliferative effects and resulting placental dysfunction.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Biological Research Laboratories, Nissan Chemical Industries, Ltd., Saitama, Japan.
| | | | | | | | | |
Collapse
|
32
|
The effect of thiopurine drugs on DNA methylation in relation to TPMT expression. Biochem Pharmacol 2008; 76:1024-35. [PMID: 18708030 DOI: 10.1016/j.bcp.2008.07.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/21/2008] [Accepted: 07/21/2008] [Indexed: 11/30/2022]
Abstract
The thiopurine drugs 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) are well-established agents for the treatment of leukaemia but their main modes of action are controversial. Thiopurine methyltransferase (TPMT) metabolises thiopurine drugs and influences their cytotoxic activity. TPMT, like DNA methyltransferases (DNMTs), transfers methyl groups from S-adenosylmethionine (SAM) and generates S-adenosylhomocysteine (SAH). Since SAM levels are dependent on de novo purine synthesis (DNPS) and the metabolic products of 6-TG and 6-MP differ in their ability to inhibit DNPS, we postulated that 6-TG compared to 6-MP would have differential effects on changes in SAM and SAH levels and global DNA methylation, depending on TPMT status. To test this hypothesis, we used a human embryonic kidney cell line with inducible TPMT. Although changes in SAM and SAH levels occurred with each drug, decrease in global DNA methylation more closely reflected a decrease in DNMT activity. Inhibition was influenced by TPMT for 6-TG, but not 6-MP. The decrease in global methylation and DNMT activity with 6-MP, or with 6-TG when TPMT expression was low, were comparable to 5-aza-2'-deoxycytidine. However, this was not reflected in changes in methylation at the level of an individual marker gene (MAGE1A). The results suggest that a non-TPMT metabolised metabolite of 6-MP and 6-TG and the TPMT-metabolised 6-MP metabolite 6-methylthioguanosine 5'-monophosphate, contribute to a decrease in DNMT levels and global DNA methylation. As demethylating agents have shown promise in leukaemia treatment, inhibition of DNA methylation by the thiopurine drugs may contribute to their cytotoxic affects.
Collapse
|
33
|
Matalon ST, Drucker L, Fishman A, Ornoy A, Lishner M. The Role of heat shock protein 27 in extravillous trophoblast differentiation. J Cell Biochem 2008; 103:719-29. [PMID: 17661346 DOI: 10.1002/jcb.21476] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Trophoblast cells from placental explants differentiate in culture to extravillous trophoblast cells (EVT cells). During trophoblast differentiation heat-shock-protein-27 (HSP27) mRNA and multidrug-resistance-protein-5 (MRP5, transporter of cyclic nucleotides) expression are increased. HSP27 is a regulator of actin filaments structure and dynamic, has a role in cell differentiation and may affect NF-kB activity. In this study we aimed to assess HSP27 level in trophoblast cells and its correlation with motility and differentiation related processes [MMPs activity, nitric oxide (NO), inducible nitric oxide synthase (iNOS), proliferation and MRP5 levels]. We evaluated HSP27 expression in a first trimester human trophoblast explants model designed to assess EVT cells differentiation/migration with/without 6-mercaptopurine (6MP, an EVT inhibitor of migration). We found that HSP27 level is expressed in the nucleous and cytoplasm of non-proliferting villous-trophoblast cells (negative for Ki67) and in the cell periphery and cytoplasm of motile EVT cells. Moreover, 6MP decreased HSP27 nucleous expression that was associated with inhibited MMP2 activity and NO production. Also decreased iNOS expression and increased MRP5 mRNA levels were observed. In conclusion, HSP27 expression is modulated in concordance with migration dependent parameters in trophoblast cells.
Collapse
|
34
|
Zacchigna M, Cateni F, Di Luca G, Drioli S. A simple method for the preparation of PEG-6-mercaptopurine for oral administration. Bioorg Med Chem Lett 2007; 17:6607-9. [DOI: 10.1016/j.bmcl.2007.09.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/18/2007] [Accepted: 09/18/2007] [Indexed: 11/29/2022]
|
35
|
Pires NMM, Pols TWH, de Vries MR, van Tiel CM, Bonta PI, Vos M, Arkenbout EK, Pannekoek H, Jukema JW, Quax PHA, de Vries CJM. Activation of nuclear receptor Nur77 by 6-mercaptopurine protects against neointima formation. Circulation 2007; 115:493-500. [PMID: 17242285 DOI: 10.1161/circulationaha.106.626838] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Restenosis is a common complication after percutaneous coronary interventions and is characterized by excessive proliferation of vascular smooth muscle cells (SMCs). We have shown that the nuclear receptor Nur77 protects against SMC-rich lesion formation, and it has been demonstrated that 6-mercaptopurine (6-MP) enhances Nur77 activity. We hypothesized that 6-MP inhibits neointima formation through activation of Nur77. METHODS AND RESULTS It is demonstrated that 6-MP increases Nur77 activity in cultured SMCs, which results in reduced [3H]thymidine incorporation, whereas Nur77 small interfering RNA knockdown partially restores DNA synthesis. Furthermore, we studied the effect of 6-MP in a murine model of cuff-induced neointima formation. Nur77 mRNA is upregulated in cuffed arteries, with optimal expression after 6 hours and elevated expression up to 7 days after vascular injury. Local perivascular delivery of 6-MP with a drug-eluting cuff significantly inhibits neointima formation in wild-type mice. Locally applied 6-MP does not affect inflammatory responses or apoptosis but inhibits expression of proliferating cell nuclear antigen and enhances protein levels of the cell-cycle inhibitor p27(Kip1) in the vessel wall. An even stronger inhibition of neointima formation in response to local 6-MP delivery was observed in transgenic mice that overexpressed Nur77. In contrast, 6-MP does not alter lesion formation in transgenic mice that overexpress a dominant-negative variant of Nur77 in arterial SMCs, which provides evidence for the involvement of Nur77-like factors. CONCLUSIONS Enhancement of the activity of Nur77 by 6-MP protects against excessive SMC proliferation and SMC-rich neointima formation. We propose that activation of the nuclear receptor Nur77 is a rational approach to treating in-stent restenosis.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Cell Division/drug effects
- Cells, Cultured
- Coronary Restenosis/drug therapy
- Coronary Restenosis/metabolism
- Coronary Restenosis/pathology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Drug Implants
- Femoral Artery/pathology
- Humans
- Male
- Mercaptopurine/pharmacology
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1
- RNA, Messenger/metabolism
- RNA, Small Interfering
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tunica Intima/drug effects
- Tunica Intima/pathology
- Umbilical Arteries/cytology
Collapse
Affiliation(s)
- Nuno M M Pires
- Gaubius Laboratory, TNO-Quality of Life, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Feng Y, Coward JK. Prodrug forms of N-[(4-deoxy-4-amino-10-methyl)pteroyl]glutamate-gamma-[psiP(O)(OH)]-glutarate, a potent inhibitor of folylpoly-gamma-glutamate synthetase: synthesis and hydrolytic stability. J Med Chem 2006; 49:770-88. [PMID: 16420062 PMCID: PMC1975959 DOI: 10.1021/jm050871p] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ester prodrugs of the phosphinate pseudopeptide N-[(4-deoxy-4-amino-10-methyl)pteroyl]glutamate-gamma-[psiP(O)(OH)]-glutarate (1a) were synthesized. H-phosphinic acids derived from N-Cbz vinyl glycine esters were converted to the desired pseudopeptides by Michael addition to alpha-methyleneglutarate esters. Pivaloyloxymethyl (POM) ester moieties were incorporated in both the N-terminal and C-terminal fragments prior to formation of either C-P bond. N-Alkylation of the corresponding amides derived from p-(N-methyl)aminobenzoic acid with 2,4-diamino-6-(bromomethyl)pteridine gave the target compounds. POM esters of methotrexate and the corresponding gamma-glutamyl conjugate were also synthesized using the same strategy. All prodrugs were evaluated in Chinese hamster ovary cells. Although the pseudopeptide prodrugs were ineffective, prodrugs of methotrexate and the corresponding gamma-glutamyl conjugate were equipotent with the parent compounds. Stability of the prodrugs was investigated in both phosphate buffer and cell line medium to provide a rationale for the observed biological data.
Collapse
Affiliation(s)
- Yan Feng
- Departments of Medicinal Chemistry and Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - James K. Coward
- Departments of Medicinal Chemistry and Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| |
Collapse
|
37
|
Matalon ST, Ornoy A, Fishman A, Drucker L, Lishner M. The effect of 6-mercaptopurine on early human placental explants. Hum Reprod 2005; 20:1390-7. [PMID: 15760953 DOI: 10.1093/humrep/deh721] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND 6-mercaptopurine (6-MP) is an antineoplastic and immunosuppressive drug. Recently, more women have received this drug during pregnancy. Animal studies have shown that 6-MP has deleterious effects on the fetus, while human data include prematurity, intrauterine growth restriction, low birth weight and malformations that occur especially when the drug is administered in the first trimester of pregnancy. OBJECTIVES To study the effects of 6-MP on cellular functions of human trophoblast explants. METHODS Human placental explants (5.5-9 weeks gestational age), that were grown on matrigel, were exposed to medium containing 6-MP for 5 days. Medium alone served as control. Extravillous trophoblast (EVT) cell migration assessment was performed by visual observation. Analysis of proliferating events of the trophoblast cells was assessed by immunohistochemical examination. Apoptosis was analyzed by Tunnel procedure and by anti-caspase 3 staining and hormone level by enzyme-linked immunosorbent assay. RESULTS 6-MP inhibited migration of EVT cells from the villi to the matrigel with a lower proliferation rate and increased apoptosis of cytotrophoblast cells compared to controls. However, no significant effect of 6-MP on hormone levels was observed. CONCLUSIONS 6-MP inhibited migration and proliferation of trophoblast cells in first-trimester human placental explant culture.
Collapse
Affiliation(s)
- S Tartakover Matalon
- Oncogenetic laboratory, Department of Medicine A, Sapir Medical Center, Kfar-Saba 44281 Tel-Aviv University, Israel
| | | | | | | | | |
Collapse
|
38
|
Formea CM, Myers-Huentelman H, Wu R, Crabtree J, Fujita S, Hemming A, Reed A, Howard R, Karlix JL. Thiopurine S-methyltransferase genotype predicts azathioprine-induced myelotoxicity in kidney transplant recipients. Am J Transplant 2004; 4:1810-7. [PMID: 15476481 DOI: 10.1111/j.1600-6143.2004.00575.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Azathioprine (AZA) is an immunosuppressive prodrug that undergoes metabolism by thiopurine S-methyltransferase (TPMT). Eighty to ninety-five percent of low or deficient TPMT enzyme activity is genetically determined by the presence of three nonfunctional mutant alleles: TPMT*2, TPMT*3A and TPMT*3C. Using TPMT as a pharmacogenetic paradigm, we explored the association between these genetic mutations and development of adverse drug effects in an ethnically diverse renal transplant population receiving azathioprine. Biochemical and clinical data were retrospectively evaluated during the first four weeks after kidney transplantation. TPMT nonfunctional mutant alleles were identified by polymerase chain reaction-based methods. Of 89 patients initially consented, 36 met inclusion criteria for this retrospective study. Five patients possessing a single TPMT nonfunctional mutant allele were identified: TPMT*3A: n = 2 Caucasians; TPMT*3B: n = 1 Caucasian; TPMT*3C: n = 2 African-Americans. TPMT nonfunctional mutant alleles were associated with significant reductions in hematological indices and a significant increase in cyclosporine plasma concentrations in the first month post-transplant. TPMT genotype was an independent predictor for hemoglobin, hematocrit and red blood cell changes while mean azathioprine dose (mg/kg/day), azathioprine dose (mg/kg/day) at day 30 and cyclosporinemia at day 30 were not. Prospective application of pharmacogenetic principles may assist in optimization of immunosuppressive drug therapy and minimize drug toxicities.
Collapse
Affiliation(s)
- Christine M Formea
- College of Pharmacy, Department of Nephrology, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Matalon ST, Ornoy A, Lishner M. Review of the potential effects of three commonly used antineoplastic and immunosuppressive drugs (cyclophosphamide, azathioprine, doxorubicin on the embryo and placenta). Reprod Toxicol 2004; 18:219-30. [PMID: 15019720 DOI: 10.1016/j.reprotox.2003.10.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 10/08/2003] [Accepted: 10/24/2003] [Indexed: 01/10/2023]
|
40
|
Recent publications in hematology oncology. Hematol Oncol 2002; 20:147-54. [PMID: 12360948 DOI: 10.1002/hon.692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|