1
|
Wu Y, Wang Q, Jia S, Lu Q, Zhao M. Gut-tropic T cells and extra-intestinal autoimmune diseases. Autoimmun Rev 2024; 23:103544. [PMID: 38604462 DOI: 10.1016/j.autrev.2024.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Gut-tropic T cells primarily originate from gut-associated lymphoid tissue (GALT), and gut-tropic integrins mediate the trafficking of the T cells to the gastrointestinal tract, where their interplay with local hormones dictates the residence of the immune cells in both normal and compromised gastrointestinal tissues. Targeting gut-tropic integrins is an effective therapy for inflammatory bowel disease (IBD). Gut-tropic T cells are further capable of entering the peripheral circulatory system and relocating to multiple organs. There is mounting evidence indicating a correlation between gut-tropic T cells and extra-intestinal autoimmune disorders. This review aims to systematically discuss the origin, migration, and residence of gut-tropic T cells and their association with extra-intestinal autoimmune-related diseases. These discoveries are expected to offer new understandings into the development of a range of autoimmune disorders, as well as innovative approaches for preventing and treating the diseases.
Collapse
Affiliation(s)
- Yutong Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Qiaolin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| |
Collapse
|
2
|
Bernier-Latmani J, González-Loyola A, Petrova TV. Mechanisms and functions of intestinal vascular specialization. J Exp Med 2024; 221:e20222008. [PMID: 38051275 PMCID: PMC10697212 DOI: 10.1084/jem.20222008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The intestinal vasculature has been studied for the last 100 years, and its essential role in absorbing and distributing ingested nutrients is well known. Recently, fascinating new insights into the organization, molecular mechanisms, and functions of intestinal vessels have emerged. These include maintenance of intestinal epithelial cell function, coping with microbiota-induced inflammatory pressure, recruiting gut-specific immune cells, and crosstalk with other organs. Intestinal function is also regulated at the systemic and cellular levels, such that the postprandial hyperemic response can direct up to 30% of systemic blood to gut vessels, while micron-sized endothelial cell fenestrations are necessary for nutrient uptake. In this review, we will highlight past discoveries made about intestinal vasculature in the context of new findings of molecular mechanisms underpinning gut function. Such comprehensive understanding of the system will pave the way to breakthroughs in nutrient uptake optimization, drug delivery efficiency, and treatment of human diseases.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | | | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Bautista D, Romero-Sánchez C, Franco M, Angel J. Expression of Homing Receptors in IgM +IgD +CD27 + B Cells and Their Frequencies in Appendectomized and/or Tonsillectomized Individuals. Immunol Invest 2023:1-15. [PMID: 36943113 DOI: 10.1080/08820139.2023.2187303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND In humans, blood circulating IgM+IgD+CD27+ B cells are considered analogous to those described in the marginal zone of the spleen and are involved in important immunological processes. The homing receptors they express, and the organs involved in their development (for example, intestinal organs in rabbits) are only partially known. We recently reported that this population is heterogeneous and composed of at least two subsets: one expressing high levels of IgM - IgMhi B cells - and another low levels - IgMlo B cells. OBJECTIVES To evaluate the expression of homing receptors on IgD+CD27+ IgMhi and IgMlo B cells and quantify their frequencies in blood of control and appendectomized and/or tonsillectomized volunteers. MATERIALS AND METHODS Using spectral flow cytometry, the simultaneous expression of 12 previously reported markers that differentiate IgMhi B cells and IgMlo B cells and of α4β7, CCR9, CD22 and CCR10 were evaluated in blood circulating B cells of control and appendectomized and/or tonsillectomized volunteers. RESULTS The existence of phenotypically defined IgMlo and IgMhi B cell subsets was confirmed. They differentially expressed intestinal homing receptors, and the expression of α4β7 and CCR9 seems to determine new IgM subpopulations. IgMlo and IgMhi B cells were detected at lower frequencies in the appendectomized and/or tonsillectomized volunteers relative to controls. CONCLUSIONS Human blood circulating IgD+CD27+ IgMlo and IgMhi B cell subsets differentially express homing receptors, and it is necessary to investigate if mucosal organs are important in their development.
Collapse
Affiliation(s)
- Diana Bautista
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- GIBAT, Facultad de Medicina, Universidad El Bosque, Bogotá, Colombia
| | - Consuelo Romero-Sánchez
- Cellular and Molecular Immunology Group/INMUBO, Universidad El Bosque, Bogotá, Colombia
- Clinical Immunology Group, Hospital Militar Central/Universidad Militar Nueva Granada, Bogotá, Colombia
| | - Manuel Franco
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juana Angel
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
4
|
Huijbers EJM, Khan KA, Kerbel RS, Griffioen AW. Tumors resurrect an embryonic vascular program to escape immunity. Sci Immunol 2022; 7:eabm6388. [PMID: 35030032 DOI: 10.1126/sciimmunol.abm6388] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Atreya R, Siegmund B. Location is important: differentiation between ileal and colonic Crohn's disease. Nat Rev Gastroenterol Hepatol 2021; 18:544-558. [PMID: 33712743 DOI: 10.1038/s41575-021-00424-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Crohn's disease can affect any part of the gastrointestinal tract; however, current European and national guidelines worldwide do not differentiate between small-intestinal and colonic Crohn's disease for medical treatment. Data from the past decade provide evidence that ileal Crohn's disease is distinct from colonic Crohn's disease in several intestinal layers. Remarkably, colonic Crohn's disease shows an overlap with regard to disease behaviour with ulcerative colitis, underlining the fact that there is more to inflammatory bowel disease than just Crohn's disease and ulcerative colitis, and that subtypes, possibly defined by location and shared pathophysiology, are also important. This Review provides a structured overview of the differentiation between ileal and colonic Crohn's disease using data in the context of epidemiology, genetics, macroscopic differences such as creeping fat and histological findings, as well as differences in regard to the intestinal barrier including gut microbiota, mucus layer, epithelial cells and infiltrating immune cell populations. We also discuss the translation of these basic findings to the clinic, emphasizing the important role of treatment decisions. Thus, this Review provides a conceptual outlook on a new mechanism-driven classification of Crohn's disease.
Collapse
Affiliation(s)
- Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Topham DJ, DeDiego ML, Nogales A, Sangster MY, Sant A. Immunity to Influenza Infection in Humans. Cold Spring Harb Perspect Med 2021; 11:a038729. [PMID: 31871226 PMCID: PMC7919402 DOI: 10.1101/cshperspect.a038729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review discusses the human immune responses to influenza infection with some insights from studies using animal models, such as experimental infection of mice. Recent technological advances in the study of human immune responses have greatly added to our knowledge of the infection and immune responses, and therefore much of the focus is on recent studies that have moved the field forward. We consider the complexity of the adaptive response generated by many sequential encounters through infection and vaccination.
Collapse
Affiliation(s)
- David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Marta L DeDiego
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | - Aitor Nogales
- Instituto Nacional de Investigación y Tecnologia Agraria y Ailmentaria, 28040 Madrid, Spain
| | - Mark Y Sangster
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Andrea Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
7
|
Barman M, Rabe H, Hesselmar B, Johansen S, Sandberg AS, Wold AE. Cord Blood Levels of EPA, a Marker of Fish Intake, Correlate with Infants' T- and B-Lymphocyte Phenotypes and Risk for Allergic Disease. Nutrients 2020; 12:nu12103000. [PMID: 33007868 PMCID: PMC7601506 DOI: 10.3390/nu12103000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 01/06/2023] Open
Abstract
Maternal fish intake during pregnancy has been associated with reduced allergy development in the offspring and here, we hypothesized that components of fish stimulate fetal immune maturation. The aim of this study was to investigate how maternal fish intake during pregnancy and levels of n-3 long-chain polyunsaturated fatty acids (LCPUFAs) in the infant’s cord serum correlated with different subsets of B- and T-cells in cord blood and B-cell activating factor (BAFF) in cord plasma, and with doctor-diagnosed allergy at 3 and 8 years of age in the FARMFLORA birth-cohort consisting of 65 families. Principal component analysis showed that infant allergies at 3 or 8 years of age were negatively associated with the proportions of n-3 LCPUFAs (eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid) in infant cord serum, which, in turn correlated positively with maternal fish intake during pregnancy. Both maternal fish intake and cord serum n-3 LCPUFAs correlated negatively to CD5+ B cells and the FOXP3+CD25high of the CD4+ T cell subsets in cord blood, but not to BAFF in cord plasma. Our observational study suggests that fish might contain components that promote maturation of the infant’s immune system in a manner that protects against allergy development.
Collapse
Affiliation(s)
- Malin Barman
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers, University of Technology, 41296 Göteborg, Sweden;
| | - Hardis Rabe
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, 40530 Göteborg, Sweden; (H.R.); (A.E.W.)
| | - Bill Hesselmar
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, 40530 Göteborg, Sweden;
| | | | - Ann-Sofie Sandberg
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers, University of Technology, 41296 Göteborg, Sweden;
- Correspondence:
| | - Agnes E. Wold
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, 40530 Göteborg, Sweden; (H.R.); (A.E.W.)
| |
Collapse
|
8
|
Controlling leukocyte trafficking in IBD. Pharmacol Res 2020; 159:105050. [PMID: 32598943 DOI: 10.1016/j.phrs.2020.105050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by the accumulation of immune cells, myeloid cells and lymphocytes in the inflamed intestine. The presence and persistence of these cells, together with the production of pro-inflammatory mediators, perpetuate intestinal inflammation in both ulcerative colitis and Crohn's disease. Thus, blockade of leukocyte migration to the intestine is a main strategy used to control the disease and alleviate symptoms. Vedolizumab is the only anti-integrin drug approved for the treatment of IBD but several other drugs also targeting integrins, chemokines or receptors involved in leukocyte intestinal trafficking are under development and investigated for their efficacy and safety in IBD. The challenge now is to better understand the specific mechanism of action underlying each drug and to identify biomarkers that would guide drug selection in the individual patient.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Trafficking of lymphocytes into and between gut inductive and effector sites of the gut tissues is regulated by integrin α4β7. Recent findings that describe the central role of α4β7 CD4 T cells in HIV pathogenesis, and the possibility of targeting these cells to prevent or treat HIV infection will be reviewed. RECENT FINDINGS Recent reports indicate that the frequency of α4β7 CD4 T cells is directly correlated with the risk of HIV acquisition and CD4 T-cell decline post infection. MAdCAM -mediated signaling through α4β7, in the presence of retinoic acid, supports viral replication in recently activated naïve CD4 T cells. Treatment of HIV-infected patients with vedolizumab, an α4β7 antagonist, is well tolerated, and reduces the size and number of lymphoid aggregates in gut associated lymphoid tissues. SUMMARY Integrin α4β7 underlies one of the principal mechanisms that CD4 T cells employ to traffic to the gut. It also defines a subset of cells that play a significant role in HIV transmission and pathogenesis. Understanding how α4β7 facilitates gut homing may provide insight into key aspects of HIV transmission, pathogenesis, and the formation of viral reservoirs. Targeting α4β7 may have utility in the prevention and treatment of HIV infection.
Collapse
|
10
|
D'Amico F, Danese S, Peyrin-Biroulet L. Vedolizumab and etrolizumab for ulcerative colitis: twins or simple cousins? Expert Opin Biol Ther 2020; 20:353-361. [PMID: 31951748 DOI: 10.1080/14712598.2020.1717465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: Vedolizumab is a monoclonal antibody that selectively blocks α4β7 integrin and has already been approved for use in patients with moderate-to-severe ulcerative colitis both as first and second line. Etrolizumab is a monoclonal antibody still being tested, which acts with a dual mechanism by selectively inhibiting both α4β7 and αEβ7 integrins.Areas covered: This review provides an overview of the literature data of vedolizumab and etrolizumab, in order to define their role in the treatment of patients with moderate-to-severe ulcerative colitis.Expert opinion: Etrolizumab and vedolizumab block the α4β7 integrin with a similar action mechanism. However, the inhibition of αEβ7 integrin by etrolizumab distinguishes the two anti-integrins making them 'cousin' drugs. Phase 3 clinical trials are needed to confirm the promising etrolizumab's efficacy data and to resolve any doubts about its safety, allowing a clearer comparison with vedolizumab.
Collapse
Affiliation(s)
- Ferdinando D'Amico
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Gastroenterology and Inserm NGERE U1256, Nancy University Hospital, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Gastroenterology, Humanitas Clinical and Research Center, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology and Inserm NGERE U1256, Nancy University Hospital, University of Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
11
|
Zundler S, Becker E, Schulze LL, Neurath MF. Immune cell trafficking and retention in inflammatory bowel disease: mechanistic insights and therapeutic advances. Gut 2019; 68:1688-1700. [PMID: 31127023 DOI: 10.1136/gutjnl-2018-317977] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
Intestinal immune cell trafficking has been identified as a central event in the pathogenesis of inflammatory bowel diseases (IBD). Intensive research on different aspects of the immune mechanisms controlling and controlled by T cell trafficking and retention has led to the approval of the anti-α4β7 antibody vedolizumab, the ongoing development of a number of further anti-trafficking agents (ATAs) such as the anti-β7 antibody etrolizumab or the anti-MAdCAM-1 antibody ontamalimab and the identification of potential future targets like G-protein coupled receptor 15. However, several aspects of the biology of immune cell trafficking and regarding the mechanism of action of ATAs are still unclear, for example, which impact these compounds have on the trafficking of non-lymphocyte populations like monocytes and how precisely these therapies differ with regard to their effect on immune cell subpopulations. This review will summarise recent advances of basic science in the field of intestinal immune cell trafficking and discuss these findings with regard to different pharmacological approaches from a translational perspective.
Collapse
Affiliation(s)
- Sebastian Zundler
- Department of Medicine 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany
| | - Emily Becker
- Department of Medicine 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany
| | - Lisa Lou Schulze
- Department of Medicine 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany
| |
Collapse
|
12
|
de Krijger M, Wildenberg ME, de Jonge WJ, Ponsioen CY. Return to sender: Lymphocyte trafficking mechanisms as contributors to primary sclerosing cholangitis. J Hepatol 2019; 71:603-615. [PMID: 31108158 DOI: 10.1016/j.jhep.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
Primary sclerosing cholangitis (PSC) is an inflammatory disease of the biliary tree, characterised by stricturing bile duct disease and progression to liver fibrosis. The pathophysiology of PSC is still unknown. The concurrence with inflammatory bowel disease (IBD) in about 70% of cases has led to the hypothesis that gut-homing lymphocytes aberrantly traffic to the liver, contributing to disease pathogenesis in patients with both PSC and IBD (PSC-IBD). The discovery of mutual trafficking pathways of lymphocytes to target tissues, and expression of gut-specific adhesion molecules and chemokines in the liver has pointed in this direction. There is now increasing interest in using drugs that intervene with these trafficking pathways (e.g. vedolizumab, etrolizumab) for the treatment of PSC-IBD. In this review we discuss what is currently known about the immunological interactions between the gut and the liver in concomitant PSC and IBD, as well as potential therapeutic options for intervening in these mechanisms.
Collapse
Affiliation(s)
- Manon de Krijger
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Surgery, University of Bonn, Bonn, Germany
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Nawaz F, Goes LR, Ray JC, Olowojesiku R, Sajani A, Ansari AA, Perrone I, Hiatt J, Van Ryk D, Wei D, Waliszewski M, Soares MA, Jelicic K, Connors M, Migueles SA, Martinelli E, Villinger F, Cicala C, Fauci AS, Arthos J. MAdCAM costimulation through Integrin-α 4β 7 promotes HIV replication. Mucosal Immunol 2018; 11:1342-1351. [PMID: 29875402 PMCID: PMC6160318 DOI: 10.1038/s41385-018-0044-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 02/04/2023]
Abstract
Human gut-associated lymphoid tissues (GALT) play a key role in the acute phase of HIV infection. The propensity of HIV to replicate in these tissues, however, is not fully understood. Access and migration of naive and memory CD4+ T cells to these sites is mediated by interactions between integrin α4β7, expressed on CD4+ T cells, and MAdCAM, expressed on high endothelial venules. We report here that MAdCAM delivers a potent costimulatory signal to naive and memory CD4+ T cells following ligation with α4β7. Such costimulation promotes high levels of HIV replication. An anti-α4β7 mAb that prevents mucosal transmission of SIV blocks MAdCAM signaling through α4β7 and MAdCAM-dependent viral replication. MAdCAM costimulation of memory CD4+ T cells is sufficient to drive cellular proliferation and the upregulation of CCR5, while naive CD4+ T cells require both MAdCAM and retinoic acid to achieve the same response. The pairing of MAdCAM and retinoic acid is unique to the GALT, leading us to propose that HIV replication in these sites is facilitated by MAdCAM-α4β7 interactions. Moreover, complete inhibition of MAdCAM signaling by an anti-α4β7 mAb, an analog of the clinically approved therapeutic vedolizumab, highlights the potential of such agents to control acute HIV infection.
Collapse
Affiliation(s)
- Fatima Nawaz
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Livia R Goes
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Jocelyn C Ray
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Ronke Olowojesiku
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Alia Sajani
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Aftab A Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ian Perrone
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Joseph Hiatt
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Mia Waliszewski
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Marcelo A Soares
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katija Jelicic
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Stephen A Migueles
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Elena Martinelli
- Center of Biomedical Research, Population Council, New York, NY, 10017, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, 70560, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA.
| |
Collapse
|
14
|
Panés J, Salas A. Past, Present and Future of Therapeutic Interventions Targeting Leukocyte Trafficking in Inflammatory Bowel Disease. J Crohns Colitis 2018; 12:S633-S640. [PMID: 30137311 DOI: 10.1093/ecco-jcc/jjy011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studies in the 1990s using animal models of intestinal inflammation delineated the crucial molecules involved in leukocyte attraction and retention to the inflamed gut and associated lymphoid tissues. The first drug targeting leukocyte trafficking tested in inflammatory bowel diseases was the anti-ICAM-1 antisense oligonucleotide alicaforsen, showing only modest efficacy. Subsequently, the anti-α4 monoclonal antibody natalizumab proved efficacious for induction and maintenance of remission in Crohn's disease, but was associated with progressive multifocal leukoencephalopathy due to its ability to interfere with both α4β1 and α4β7 function. Later developments in this area took advantage of the fairly selective expression of MAdCAM-1 in the digestive organs, showing that vedolizumab, a more specific monoclonal antibody selectively blocking MAdCAM-1 binding to integrin α4β7, was efficacious for induction and maintenance of remission in ulcerative colitis and Crohn's disease, and it was not associated with neurological complications. Currently, other drugs targeting the β7 subunit, immunoglobulin superfamily molecules expressed on the endothelium, as well as blockade of lymphocyte recirculation in lymph nodes through modulation of sphingosine 1-phosphate receptors are under development. The potential use and risks of combined anti-trafficking therapy will be examined in this review.
Collapse
Affiliation(s)
- Julián Panés
- Department of Gastroenterology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'investigacions Biomèdiques August Pi i Sunyer, CIBERehd, Barcelona, Spain
| | - Azucena Salas
- Institut d'investigacions Biomèdiques August Pi i Sunyer, CIBERehd, Barcelona, Spain
| |
Collapse
|
15
|
Santangelo PJ, Cicala C, Byrareddy SN, Ortiz K, Little D, Lindsay KE, Gumber S, Hong JJ, Jelicic K, Rogers KA, Zurla C, Villinger F, Ansari AA, Fauci AS, Arthos J. Early treatment of SIV+ macaques with an α 4β 7 mAb alters virus distribution and preserves CD4 + T cells in later stages of infection. Mucosal Immunol 2018; 11:932-946. [PMID: 29346349 PMCID: PMC5976508 DOI: 10.1038/mi.2017.112] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/29/2017] [Indexed: 02/07/2023]
Abstract
Integrin α4β7 mediates the trafficking of leukocytes, including CD4+ T cells, to lymphoid tissues in the gut. Virus mediated damage to the gut is implicated in HIV and SIV mediated chronic immune activation and leads to irreversible damage to the immune system. We employed an immuno-PET/CT imaging technique to evaluate the impact of an anti-integrin α4β7 mAb alone or in combination with ART, on the distribution of both SIV infected cells and CD4+ cells in rhesus macaques infected with SIV. We determined that α4β7 mAb reduced viral antigen in an array of tissues of the lung, spleen, axillary, and inguinal lymph nodes. These sites are not directly linked to α4β7 mediated homing; however, the most pronounced reduction in viral load was observed in the colon. Despite this reduction, α4β7 mAb treatment did not prevent an apparent depletion of CD4+ T cells in gut in the acute phase of infection that is characteristic of HIV/SIV infection. However, α4β7 mAb appeared to facilitate the preservation or restoration of CD4+ T cells in gut tissues at later stages of infection. Since damage to the gut is believed to play a central role in HIV pathogenesis, these results support further evaluation of α4β7 antagonists in the study and treatment of HIV disease.
Collapse
Affiliation(s)
- Philip J. Santangelo
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313, Ferst Drive Atlanta, GA 30680
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| | - Kristina Ortiz
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Dawn Little
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Kevin E. Lindsay
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313, Ferst Drive Atlanta, GA 30680
| | - Sanjeev Gumber
- Division of Microbiology & Immunology, The Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322
| | - J. J. Hong
- Division of Microbiology & Immunology, The Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322
| | - Katija Jelicic
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Kenneth A. Rogers
- New Iberia Research Center, University of Louisiana Lafayette, Lafayette, LA, 70560
| | - Chiara Zurla
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313, Ferst Drive Atlanta, GA 30680
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana Lafayette, Lafayette, LA, 70560
| | - Aftab A. Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - James Arthos
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| |
Collapse
|
16
|
Ager A. High Endothelial Venules and Other Blood Vessels: Critical Regulators of Lymphoid Organ Development and Function. Front Immunol 2017; 8:45. [PMID: 28217126 PMCID: PMC5289948 DOI: 10.3389/fimmu.2017.00045] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/11/2017] [Indexed: 12/30/2022] Open
Abstract
The blood vasculature regulates both the development and function of secondary lymphoid organs by providing a portal for entry of hemopoietic cells. During the development of lymphoid organs in the embryo, blood vessels deliver lymphoid tissue inducer cells that initiate and sustain the development of lymphoid tissues. In adults, the blood vessels are structurally distinct from those in other organs due to the requirement for high levels of lymphocyte recruitment under non-inflammatory conditions. In lymph nodes (LNs) and Peyer's patches, high endothelial venules (HEVs) especially adapted for lymphocyte trafficking form a spatially organized network of blood vessels, which controls both the type of lymphocyte and the site of entry into lymphoid tissues. Uniquely, HEVs express vascular addressins that regulate lymphocyte entry into lymphoid organs and are, therefore, critical to the function of lymphoid organs. Recent studies have demonstrated important roles for CD11c+ dendritic cells in the induction, as well as the maintenance, of vascular addressin expression and, therefore, the function of HEVs. Tertiary lymphoid organs (TLOs) are HEV containing LN-like structures that develop inside organized tissues undergoing chronic immune-mediated inflammation. In autoimmune lesions, the development of TLOs is thought to exacerbate disease. In cancerous tissues, the development of HEVs and TLOs is associated with improved patient outcomes in several cancers. Therefore, it is important to understand what drives the development of HEVs and TLOs and how these structures contribute to pathology. In several human diseases and experimental animal models of chronic inflammation, there are some similarities between the development and function of HEVs within LN and TLOs. This review will summarize current knowledge of how hemopoietic cells with lymphoid tissue-inducing, HEV-inducing, and HEV-maintaining properties are recruited from the bloodstream to induce the development and control the function of lymphoid organs.
Collapse
Affiliation(s)
- Ann Ager
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Torow N, Yu K, Hassani K, Freitag J, Schulz O, Basic M, Brennecke A, Sparwasser T, Wagner N, Bleich A, Lochner M, Weiss S, Förster R, Pabst O, Hornef MW. Active suppression of intestinal CD4(+)TCRαβ(+) T-lymphocyte maturation during the postnatal period. Nat Commun 2015. [PMID: 26195040 PMCID: PMC4518322 DOI: 10.1038/ncomms8725] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Priming of the mucosal immune system during the postnatal period substantially influences host–microbial interaction and susceptibility to immune-mediated diseases in adult life. The underlying mechanisms are ill defined. Here we show that shortly after birth, CD4 T cells populate preformed lymphoid structures in the small intestine and quickly acquire a distinct transcriptional profile. T-cell recruitment is independent of microbial colonization and innate or adaptive immune stimulation but requires β7 integrin expression. Surprisingly, neonatal CD4 T cells remain immature throughout the postnatal period under homeostatic conditions but undergo maturation and gain effector function on barrier disruption. Maternal SIgA and regulatory T cells act in concert to prevent immune stimulation and maintain the immature phenotype of CD4 T cells in the postnatal intestine during homeostasis. Active suppression of CD4 T-cell maturation during the postnatal period might contribute to prevent auto-reactivity, sustain a broad TCR repertoire and establish life-long immune homeostasis. The mechanisms governing the ontogeny and maturation of the mucosal immune system during the postnatal period are not well understood. Here the authors characterize the homing kinetic, anatomical distribution and maturation of early intestinal CD4 T cells and provide insights into active T-cell suppression during the postnatal period.
Collapse
Affiliation(s)
- Natalia Torow
- 1] Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany [2] Institute of Medical Microbiology, RWTH University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Kai Yu
- Institute of Immunology, Hannover Medical School, Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Kasra Hassani
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Jenny Freitag
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School, Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Straße 7, 30625 Hannover, Germany
| | - Olga Schulz
- Institute of Immunology, Hannover Medical School, Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Anne Brennecke
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School, Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Straße 7, 30625 Hannover, Germany
| | - Norbert Wagner
- Department of Pediatrics, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School, Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Straße 7, 30625 Hannover, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Oliver Pabst
- 1] Institute of Immunology, Hannover Medical School, Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany [2] Institute of Molecular Medicine RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Mathias W Hornef
- 1] Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany [2] Institute of Medical Microbiology, RWTH University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
18
|
Ager A, May MJ. Understanding high endothelial venules: Lessons for cancer immunology. Oncoimmunology 2015; 4:e1008791. [PMID: 26155419 PMCID: PMC4485764 DOI: 10.1080/2162402x.2015.1008791] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 01/06/2023] Open
Abstract
High endothelial venules (HEVs) are blood vessels especially adapted for lymphocyte trafficking which are normally found in secondary lymphoid organs such as lymph nodes (LN) and Peyer's patches. It has long been known that HEVs develop in non-lymphoid organs during chronic inflammation driven by autoimmunity, infection or allografts. More recently, HEVs have been observed in solid, vascularized tumors and their presence correlated with reduced tumor size and improved patient outcome. It is proposed that newly formed HEV promote antitumor immunity by recruiting naive lymphocytes into the tumor, thus allowing the local generation of cancerous tissue-destroying lymphocytes. Understanding how HEVs develop and function are therefore important to unravel their role in human cancers. In LN, HEVs develop during embryonic and early post-natal life and are actively maintained by the LN microenvironment. Systemic blockade of lymphotoxin-β receptor leads to HEV de-differentiation, but the LN components that induce HEV differentiation have remained elusive. Recent elegant studies using gene-targeted mice have demonstrated clearly that triggering the lymphotoxin-β receptor in endothelial cells (EC) induces the differentiation of HEV and that CD11c+ dendritic cells play a crucial role in this process. It will be important to determine whether lymphotoxin-β receptor-dependent signaling in EC drives the development of HEV during tumorigenesis and which cells have HEV-inducer properties. This may reveal therapeutic approaches to promote HEV neogenesis and determine the impact of newly formed HEV on tumor immunity.
Collapse
Key Words
- EC, endothelial cells
- FRC, fibroblast reticular cells
- HEC, high endothelial cells
- HEV, high endothelial venules
- LN, lymph nodes
- LPA, lysophosphatidic acid
- LT, lymphotoxin
- LT-βR, lymphotoxin-β receptor
- MAdCAM, mucosal cell adhesion molecule
- PNAd, peripheral node addressin
- SIP, sphingosine-1-phosphate
- T cell homing
- TLO, tertiary lymphoid organ
- VE-cadherin, vascular endothelial cadherin
- VEGF, vascular endothelial growth factor
- dendritic cells
- high endothelial venules
- lymphotoxin-β receptor
- tumor immunotherapy
Collapse
Affiliation(s)
- Ann Ager
- Infection and Immunity; School of Medicine; Cardiff University ; Cardiff, UK
| | - Michael J May
- School of Veterinary Medicine; University of Pennsylvania ; Philadelphia, PA, USA
| |
Collapse
|
19
|
|
20
|
Systemic Manifestations of Mucosal Diseases. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Auvinen K, Jalkanen S, Salmi M. Expression and function of endothelial selectins during human development. Immunology 2014; 143:406-15. [PMID: 24831412 DOI: 10.1111/imm.12318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/22/2022] Open
Abstract
Leucocyte trafficking is vital for the immune defence. In adults, early tethering and rolling interactions between leucocytes and endothelial cells are mediated by P-, E- and L-selectins and their ligands. In contrast, the role of selectins in migration of mononuclear cells during fetal development in humans remains unknown. We studied the functions of endothelial E- and P-selectins and their counter-receptors during human ontogeny. Immunohistochemical stainings showed that P-selectin is expressed in megakaryocytes and endothelial cells starting from gestational weeks 7 and 11, respectively. Endothelial E-selectin appeared latest, at week 32. Real-time imaging using in vitro flow chamber assays showed that cord blood mononuclear leucocytes used E-, P- and L-selectin and PSGL-1 to roll on and adhere to endothelium under physiological shear stress. These data show that selectins are synthesized and functional before birth in humans and have the potential to mediate the emigration of mononuclear cells and inflammatory responses.
Collapse
Affiliation(s)
- Kaisa Auvinen
- MediCity Research Laboratory, University of Turku, Turku, Finland; National Institute for Health and Welfare Turku, Turku, Finland
| | | | | |
Collapse
|
22
|
Rabe H, Lundell AC, Andersson K, Adlerberth I, Wold AE, Rudin A. Higher proportions of circulating FOXP3+ and CTLA-4+ regulatory T cells are associated with lower fractions of memory CD4+ T cells in infants. J Leukoc Biol 2011; 90:1133-40. [PMID: 21934066 PMCID: PMC3236549 DOI: 10.1189/jlb.0511244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In adults, a majority of FOXP3(+) T(regs) expresses CTLA-4, and this costimulatory molecule is essential to control the expansion of other T cells. However, it remains to be investigated whether FOXP3(+) and/or CTLA-4(+) T(regs) are associated with the expression of memory markers and homing receptors on CD4(+) T cells. Thus, in a prospective newborn-infant cohort study, we examined the proportions of FOXP3(+) and CTLA-4(+) T(regs) within the CD4(+)CD25(+) T cell population and the fractions of CD4(+) T cells that expressed CD45RA, CD45RO, HLA-DR, α(4)β(7), CD62L, and CCR4 at several time-points during the first 3 years of life using flow cytometry. With the use of multivariate factor analysis, we found that a high proportion of FOXP3(+) or CTLA-4(+) T(regs) during the first 18 months of life was associated positively with the fraction of T cells that expressed a naïve phenotype (CD45RA and α(4)β(7)) and inversely related to the fraction of T cells that expressed a memory phenotype (CD45RO and CCR4) later in childhood. In conclusion, FOXP3(+) or CTLA-4(+) T(regs) may modulate CD4(+) T cell activation and homing receptor expression in children.
Collapse
Affiliation(s)
- Hardis Rabe
- Departments of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Palani S, Maksimow M, Miiluniemi M, Auvinen K, Jalkanen S, Salmi M. Stabilin-1/CLEVER-1, a type 2 macrophage marker, is an adhesion and scavenging molecule on human placental macrophages. Eur J Immunol 2011; 41:2052-63. [PMID: 21480214 DOI: 10.1002/eji.201041376] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 01/06/2023]
Abstract
Stabilin-1/common lymphatic endothelial and vascular endothelial receptor-1 (CLEVER-1) is a multidomain protein present in lymphatic and vascular endothelial cells and type 2 immunosuppressive macrophages. In adults, stabilin-1/CLEVER-1 is a scavenging receptor and an adhesion molecule, but much less is known about its role during development. Here, we studied the expression and functions of macrophage stabilin-1/CLEVER-1 in human placenta and during human ontogeny. Using newly generated mAbs, we found that stabilin-1/CLEVER-1 is expressed on virtually all macrophages in term placenta, both in the decidua and in the placental villi. Placental stabilin-1/CLEVER-1 was involved in the scavenging of Ac-LDL (acetylated low density lipoprotein) and in the uptake of fluorescently labeled model antigen OVA. siRNA-mediated suppression of stabilin-1/CLEVER-1 altered the cytokine profile produced by placental macrophages. Stabilin-1/CLEVER-1 on placental macrophages mediated their adhesion to placental vessels and supported their transmigration through vascular endothelium. Finally, we found that stabilin-1/CLEVER-1 is induced very early in fetal macrophages, high endothelial venules, and lymphatic vessels in multiple lymphatic organs. Together, these data suggest that macrophage stabilin-1/CLEVER-1 can potentially regulate leukocyte migration and scavenging during the development of the placenta and fetus.
Collapse
Affiliation(s)
- Senthil Palani
- MediCity Research Laboratory, Department of Medical Biochemistry and Genetics, University of Turku, and National Institute of Health and Welfare, Turku, Finland
| | | | | | | | | | | |
Collapse
|
24
|
Gorfu G, Rivera-Nieves J, Ley K. Role of β7 Integrins in Intestinal Lymphocyte Homing and Retention. Curr Mol Med 2009; 9:836-50. [DOI: 10.2174/156652409789105525] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Abstract
In contrast to our understanding of murine lymphoid organogenesis, detailed knowledge on the mechanisms of human lymph node development is virtually lacking. This is mainly due to the obvious difficulties that accompany research using human fetal organs. In this review we will highlight current knowledge on human lymph node and Peyer's patch development and will temporally align observations made in humans with data available from murine studies. In the final paragraphs we will put this knowledge in the context of human malignancies in which interactions between lymphocytes and stroma, resembling those seen in lymphoid organs, are recapitulated.
Collapse
|
26
|
Williams AM, Probert CSJ, Stepankova R, Tlaskalova-Hogenova H, Phillips A, Bland PW. Effects of microflora on the neonatal development of gut mucosal T cells and myeloid cells in the mouse. Immunology 2006; 119:470-8. [PMID: 16995882 PMCID: PMC2265821 DOI: 10.1111/j.1365-2567.2006.02458.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Colonization with commensal flora in very early life may profoundly influence intestinal lymphoid development and bias later immune responses. We defined gut-homing T cell phenotypes and the influence of flora on intestinal immune development in mice. Intestinal T cells were phenotyped and quantified in conventional (CV), germfree (GF) and conventionalized germfree (GF/CV) neonatal mice by immunohistochemistry. Mucosal adressin cell adhesion molecule 1 (MAdCAM-1) was expressed by mucosal vessels at birth in CV and GF mice and was more prevalent in CV than GF small intestine, but was distributed similarly and did not change with age. Less MAdCAM-1 was expressed in the colon; its distribution became restricted after weaning, with no difference between CV and GF mice. CD3(+)beta(7) (+) cells were present in similar numbers in CV and GF intestine at birth. They were CD62L(-) in CV mice and were accompanied by further CD3(+)beta(7) (+)CD62L(-) T cells as development progressed, but in GF and GF/CV intestine they expressed CD62L and numbers did not change. IEL numbers increased at weaning in CV mice in both small and large intestine, but showed delayed development in GF intestine. Macrophages were present at high levels from birth in GF intestine, but dendritic cells did not develop until day 16. Thus, fetus-derived T cells seed the intestinal lamina propria before birth via beta-MadCAM interactions. Their activation status depends on the microbiological status of the dam, and without a commensal flora they remain naive. We propose that these cells regulate antigen responsiveness of the developing mucosal T cell pool.
Collapse
Affiliation(s)
- Amanda M Williams
- Department of Clinical Science at South Bristol, University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
27
|
Salmi M, Jalkanen S. Developmental regulation of the adhesive and enzymatic activity of vascular adhesion protein-1 (VAP-1) in humans. Blood 2006; 108:1555-61. [PMID: 16556889 DOI: 10.1182/blood-2005-11-4599] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vascular adhesion protein-1 (VAP-1) is a homodimeric glycoprotein that belongs to a unique subgroup of cell-surface-expressed oxidases. In adults, endothelial VAP-1 supports leukocyte rolling, firm adhesion, and transmigration in both enzyme activity-dependent and enzyme activity-independent manner. Here we studied the induction and function of VAP-1 during human ontogeny. We show that VAP-1 is already found in the smooth muscle at embryonic week 7. There are marked time-dependent switches in VAP-1 expression in the sinusoids of the liver, in the peritubular capillaries of the kidney, in the capillaries of the heart, and in the venules in the lamina propria of the gut. Fetal VAP-1 is dimerized, and it is enzymatically active. VAP-1 in fetal-type venules is able to bind cord blood lymphocytes. Also, adenovirally transfected VAP-1 on human umbilical vein endothelial cells is involved in rolling and firm adhesion of cord blood lymphocytes under conditions of physiologic shear stress. We conclude that VAP-1 is synthesized from early on in human vessels and it is functionally intact already before birth. Thus, VAP-1 may contribute critically to the oxidase activities in utero, and prove important for lymphocyte trafficking during human ontogeny.
Collapse
Affiliation(s)
- Marko Salmi
- National Public Health Institute, Turku, Finland.
| | | |
Collapse
|
28
|
Danese S, Semeraro S, Papa A, Roberto I, Scaldaferri F, Fedeli G, Gasbarrini G, Gasbarrini A. Extraintestinal manifestations in inflammatory bowel disease. World J Gastroenterol 2006; 11:7227-36. [PMID: 16437620 PMCID: PMC4725142 DOI: 10.3748/wjg.v11.i46.7227] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) can be really considered to be systemic diseases since they are often associated with extraintestinal manifestations, complications, and other autoimmune disorders. Indeed, physicians who care for patients with ulcerative colitis and Crohn's disease, the two major forms of IBD, face a new clinical challenge every day, worsened by the very frequent rate of extraintestinal complications. The goal of this review is to provide an overview and an update on the extraintestinal complications occurring in IBD. Indeed, this paper highlights how virtually almost every organ system can be involved, principally eyes, skin, joints, kidneys, liver and biliary tracts, and vasculature (or vascular system) are the most common sites of systemic IBD and their involvement is dependent on different mechanisms.
Collapse
Affiliation(s)
- Silvio Danese
- Department of Internal Medicine, Catholic University School of Medicine, L.go Vito 1, Rome 00168, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sinha RK, Alexander C, Mage RG. Regulated expression of peripheral node addressin-positive high endothelial venules controls seeding of B lymphocytes into developing neonatal rabbit appendix. Vet Immunol Immunopathol 2005; 110:97-108. [PMID: 16249036 DOI: 10.1016/j.vetimm.2005.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 09/10/2005] [Indexed: 01/06/2023]
Abstract
Young rabbit appendix is a homologue of chicken bursa of Fabricius; both are crucial sites for preimmune B-cell repertoire diversification. Here, we report that appendix regulates precursor lymphocyte recruitment for further development by modulating the sites of extravasation. The total area of peripheral node addressin-positive (PNAd(+)) high endothelial venules (HEVs) increased from 1 day to 1 week after birth, remained constant up to 2 weeks and declined to a low and persistent amount by 3 weeks. In normal 1-week and manipulated 5-week appendix where growth of follicles was retarded, PNAd(+) HEVs were present in the basolateral sides of B-cell follicles whereas, in normal 5-wk-appendix these were restricted to T-cell areas. The PNAd was expressed on the lumenal surface of HEVs. The proportions of CD62L(+) B cells in appendix declined from approximately 40% at 3 days to 2-3% at 4 weeks. In lymphocyte transfer experiments, CD62L(+) B cells were preferentially recruited compared with CD62L(-) B cells, anti-PNAd antibody blocked migration of B cells by approximately 50%, and 100 times more B cells were recruited in 1-week compared to 6-week appendix. Thus, a unique spatiotemporal expression pattern of PNAd(+) HEVs is associated with development of B-cell follicles. This regulates migration of blood-borne B-lymphocytes into developing appendix by interacting with CD62L.
Collapse
Affiliation(s)
- Rajesh K Sinha
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11N311, 10 Center Drive-MSC 1892, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
30
|
Abstract
Lymphocytes continuously migrate from the blood into the intestine. Naive lymphocytes leave the blood through high endothelial venules in Peyer's patches. During the multistep extravasation cascade, they sequentially roll on, firmly adhere to, and transmigrate through the endothelial layer using multiple adhesion molecules and chemotactic signals. In the organized lymphoid tissues of the gut, lymphocytes can become activated, if they meet their cognate antigens transported to Peyer's patches through the gut epithelium. During activation and proliferation, the lymphocytes become imprinted by the local dendritic cells, so that after returning to systemic circulation via the efferent lymphatic vasculature, they preferentially home to lamina propria of the gut to execute their effector functions. In inflammation, the recirculation routes of lymphocytes are altered, and these may explain the pathogenesis of certain extra-intestinal manifestations of gut infections and inflammatory bowel diseases. The increased knowledge on the mechanisms that regulate lymphocyte homing and imprinting has clear applicability in designing more effective vaccination regimens. A detailed understanding of the mucosal homing has recently led to the development of the first successful anti-adhesive therapeutics in human.
Collapse
Affiliation(s)
- Marko Salmi
- National Public Health Institute Turku, MediCity Research Laboratory, Department of Medical Microbiology, Turku University, Turku, Finland
| | | |
Collapse
|
31
|
Leung E, Lehnert KB, Kanwar JR, Yang Y, Mon Y, McNeil HP, Krissansen GW. Bioassay detects soluble MAdCAM-1 in body fluids. Immunol Cell Biol 2005; 82:400-9. [PMID: 15283850 DOI: 10.1111/j.0818-9641.2004.01247.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mucosal addressin cell adhesion molecule (MAdCAM-1) is a key player in mediating the infiltration of leucocytes into chronically inflamed tissues. Five anti-MAdCAM-1 monoclonal antibodies (mAb), designated 17F5, 201F7, 314G8, 377D10 and 355G8, were generated by fusion of P3 x 63Ag8.653 myeloma cells with spleen cells from BALB/c mice immunized with recombinant human MAdCAM-1-Fc. The latter four mAb recognize the ligand-binding first Ig domain, and block T -cell adhesion to MAdCAM-1. The non-blocking mAb 17F5 recognizes the mucin domain. Extensive analysis of a large panel of paraffin-embedded human tissues revealed that the 314G8 mAb detected MAdCAM-1 on venules in the spleen and small intestine. MAdCAM-1 was strongly expressed in the synovium of osteoarthritis patients, predominantly on the endothelial lining of blood vessels, but also within the vessel lumen. An ELISA, based on mAb 377D10 and 355G8, was developed to determine whether soluble MAdCAM-1 was present in body fluids, and to measure the levels present. The assay detected soluble MAdCAM-1 in the serum and urine of healthy donors, at levels similar to those of soluble forms of the related CAM, ICAM-1 and VCAM-1. The anti-MAdCAM-1 antibodies and assay developed here may be useful therapeutically in the treatment of inflammation in humans. Similarly, they may be useful diagnostically to monitor the presence and levels of MAdCAM-1.
Collapse
Affiliation(s)
- Euphemia Leung
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
32
|
Systemic Manifestations of Mucosal Diseases: Trafficking of Gut Immune Cells to Joints and Liver. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Fernekorn U, Butcher EC, Behrends J, Hartz S, Kruse A. Functional involvement of P-selectin and MAdCAM-1 in the recruitment of ?4?7-integrin-expressing monocyte-like cells to the pregnant mouse uterus. Eur J Immunol 2004; 34:3423-33. [PMID: 15484189 DOI: 10.1002/eji.200425223] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Leukocyte recruitment to the pregnant mouse uterus has been suggested to be associated with highly regulated expression of distinct patterns of vascular adhesion receptors. One of the most striking observations is the combined expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) and P-selectin by maternal vessels of the vascular zone during the critical period of initial placenta development. The predominant cell population within these vessels is of the monocyte/macrophage lineage and expresses the mucosal integrin alpha4beta7, which represents the ligand for MAdCAM-1; neutrophils and lymphocytes are rare. To directly assess the importance of identified adhesion receptors, we undertook long-term in vivo inhibition studies using monoclonal antibodies to inhibit the contribution of MAdCAM-1 in leukocyte trafficking to the decidua or to deplete alpha4beta7(+) leukocytes. In addition, implantation sites of mouse strains genetically deficient in specific adhesion receptors were investigated. Our results underline the importance of predicted adhesion pathways in the recruitment of monocyte-like cells, especially those expressing alpha4beta7. Interestingly, maternal/fetal units with inhibited recruitment of alpha4beta7(+) leukocytes or the absence of these cells are characterized by reduced size and frequency of uterine NK cells.
Collapse
Affiliation(s)
- Uta Fernekorn
- Institute of Immunology and Transfusion Medicine, University of Lübeck, Lübeck, Germany
| | | | | | | | | |
Collapse
|
34
|
Kelsen J, Agnholt J, Falborg L, Nielsen JT, Rømer JL, Hoffmann HJ, Dahlerup JF. Indium-labelled human gut-derived T cells from healthy subjects with strong in vitro adhesion to MAdCAM-1 show no detectable homing to the gut in vivo. Clin Exp Immunol 2004; 138:66-74. [PMID: 15373907 PMCID: PMC1809189 DOI: 10.1111/j.1365-2249.2004.02578.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Integrin alpha4beta 7 is the principal gut-homing receptor, and it is assumed that expression of this specific integrin directs lymphocytes to the gut in vivo. Adoptive cellular immunotherapy against inflammatory bowel disease (IBD) may depend on the expression of integrin alpha4beta 7 to accomplish local delivery of intravenously injected regulatory T cells in inflamed gut mucosa. The present study aimed to investigate whether in vitro expanded human T cells from the colonic mucosa maintain integrin expression, show in vitro adhesion and retain in vivo gut-homing properties during cultivation. Whole colonic biopsies from healthy subjects were cultured in the presence of interleukin-2 (IL-2) and IL-4. The integrin expression of the cultured T cells was determined by flow cytometry and in vitro adhesion was assessed in a mucosal addressin cell adhesion molecule 1 (MAdCAM-1) adhesion assay. We studied the homing pattern after autologous infusion of 3 x 10(8 111)Indium ((111)In)-labelled T cells in five healthy subjects using scintigraphic imaging. The cultured CD4(+)CD45RO(+) gut-derived T cells express higher levels of integrin alpha4beta 7 than peripheral blood lymphocytes (PBLs) and show strong adhesion to MAdCAM-1 in vitro, even after (111)In-labelling. Scintigraphic imaging, however, showed no gut-homing in vivo. After prolonged transit through the lungs, the T cells migrated preferentially to the spleen, liver and bone marrow. In conclusion, it is feasible to infuse autologous T cells cultured from the gut mucosa, which may be of interest in adoptive immunotherapy. Despite high expression of the gut-homing integrin alpha4beta 7 and adhesion to MAdCAM-1 in vitro, evaluation by (111)In-scintigraphy demonstrated no gut-homing in healthy individuals.
Collapse
Affiliation(s)
- J Kelsen
- Department of Medicine V, Aarhus University Hospital, Denmark.
| | | | | | | | | | | | | |
Collapse
|
35
|
Bickston SJ, Comerford LW, Cominelli F. Future therapies for inflammatory bowel disease. Curr Gastroenterol Rep 2004; 5:518-23. [PMID: 14602063 DOI: 10.1007/s11894-003-0043-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three domains are accepted components of the etiology of inflammatory bowel disease (IBD): genetic predisposition, environmental stimuli, and abnormal immune response. The latter two are reasonable targets for medical therapies in the near future, whereas all three merit consideration for the more distant future as techniques of genetic manipulation evolve. In this review we summarize some of the fundamental concepts and offer comments on treatments for IBD that are likely and desirable in the near and distant future.
Collapse
Affiliation(s)
- Stephen J Bickston
- University of Virginia Digestive Health Center of Excellence (UVA-DHCOE), MSB-2nd floor, Room 2121, Charlottesville, VA 22908-0708, USA.
| | | | | |
Collapse
|
36
|
Rafiee P, Ogawa H, Heidemann J, Li MS, Aslam M, Lamirand TH, Fisher PJ, Graewin SJ, Dwinell MB, Johnson CP, Shaker R, Binion DG. Isolation and characterization of human esophageal microvascular endothelial cells: mechanisms of inflammatory activation. Am J Physiol Gastrointest Liver Physiol 2003; 285:G1277-92. [PMID: 12919942 DOI: 10.1152/ajpgi.00484.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastroesophageal reflux disease is the most common malady of the esophagus, affecting 7% of the United States population. Histological assessment demonstrates classic inflammatory mechanisms including selective leukocyte recruitment and hemorrhage, suggesting a prominent role for the microvasculature. We isolated and characterized human esophageal microvascular endothelial cells (EC) (HEMEC), examined inflammatory activation in response to cytokines, LPS, and acidic pH exposure, and identified signaling pathways that underlie activation. HEMEC displayed characteristic morphological and phenotypic features including acetylated LDL uptake. TNF-alpha/LPS activation of HEMEC resulted in upregulation of the cell adhesion molecules (CAM) ICAM-1, VCAM-1, E-selectin, and mucosal addressin CAM-1 (MAdCAM-1), increased IL-8 production, and enhanced leukocyte binding. Both acid and TNF-alpha/LPS activation lead to activation of SAPK/JNK in HEMEC that was linked to VCAM-1 expression and U-937 leukocyte adhesion. Expression of constitutive inducible nitric oxide synthase in HEMEC was in marked contrast to intestinal microvascular endothelial cells. In this study, we demonstrate that HEMECs are phenotypically and functionally distinct from lower gut-derived endothelial cells and will facilitate understanding of inflammatory mechanisms in esophageal inflammation.
Collapse
Affiliation(s)
- Parvaneh Rafiee
- Department of Surgery, Division of Gastroenterology and Hepatology, Medical College of Wisconsin Dysphagia Institute, Milwaukee 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Leung E, Kanwar RK, Kanwar JR, Krissansen GW. Mucosal vascular addressin cell adhesion molecule-1 is expressed outside the endothelial lineage on fibroblasts and melanoma cells. Immunol Cell Biol 2003; 81:320-7. [PMID: 12848854 DOI: 10.1046/j.1440-1711.2003.t01-1-01175.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) is predominantly expressed on high endothelial venules in inflamed tissues where it assists with leucocyte extravasation. Here we report that MAdCAM-1 has the potential to be more widely expressed outside the endothelial cell lineage than previously appreciated. Thus, MAdCAM-1 RNA transcripts and cell-surface protein were expressed by NIH 3T3 fibroblasts following activation with tumour necrosis factor-alpha (TNF-alpha), and by freshly isolated and cultured primary mouse splenic and tail fibroblasts in the absence of TNF-alpha stimulation. They were constitutively expressed by B16F10 melanoma cells, and expression was enhanced by cell activation with TNF-alpha. Mucosal vascular addressin cell adhesion molecule-1 was expressed on the apical surface of isolated cells, but became predominantly localized to cell junctions in confluent cell monolayers, suggesting it may play a role in the homotypic aggregation of cells. Tumour necrosis factor-alpha enhanced the expression of a firefly luciferase reporter directed by the MAdCAM-1 promoter in NIH 3T3 and B16F10 cells. A DNA fragment extending from nt -1727 to -673 was sufficient to confer cell-type selective expression. Mucosal vascular addressin cell adhesion molecule-1 expressed by NIH 3T3 cells was biologically active, as it supported the adhesion of TK-1 T cells in an alpha4beta7-dependent fashion. The expression of MAdCAM-1 by fibroblasts, and melanomas suggests MAdCAM-1 may play a role in regulating host responses in the periphery, leucocyte transmigration across nonendothelial boundaries, or the homotypic interactions of some malignant melanomas.
Collapse
Affiliation(s)
- Euphemia Leung
- Department of Molecular Medicine and Pathology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
38
|
|
39
|
Ala A, Dhillon AP, Hodgson HJ. Role of cell adhesion molecules in leukocyte recruitment in the liver and gut. Int J Exp Pathol 2003; 84:1-16. [PMID: 12694483 PMCID: PMC2517541 DOI: 10.1046/j.1365-2613.2003.00235.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2002] [Accepted: 09/27/2002] [Indexed: 12/30/2022] Open
Abstract
This article reviews the evidence that adhesion molecules are critical in leukocyte recirculation and pathogenesis of diseases affecting the closely related tissues of the liver and gut, which offer novel opportunities for treatment.
Collapse
Affiliation(s)
- A Ala
- Centre for Hepatology, Department of Medicine, Royal Free & University College School of Medicine, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK.
| | | | | |
Collapse
|
40
|
Schmucker DL, Owen TM, Issekutz TB, Gonzales L, Wang RK. Expression of lymphocyte homing receptors alpha4beta7 and MAdCAM-l in young and old rats. Exp Gerontol 2002; 37:1089-95. [PMID: 12213559 DOI: 10.1016/s0531-5565(02)00065-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The elderly constitute the most rapidly growing subpopulation in the United States. This age group represents a significant burden on the healthcare system due, in part, to increases in morbidity and mortality associated with an increase in the incidence of intestinal infectious diseases. Our previous studies suggest that impaired homing of IgA immunoblasts from the Peyer's patches to the intestinal lamina propria contributes to the diminished intestinal immune response in the elderly. The present study employs flow cytometry and quantitative immunohistochemistry to assess age-related changes in the numbers of peripheral blood mononuclear cells expressing the homing integrin alpha4beta7 and vascular endothelial cells in the intestine expressing its specific receptor, the address in MAdCAM-1, in inbred Fischer 344 rats. The proportion of alpha4beta7-positive mononuclear cells in young rats is significantly greater than that measured in the blood of senescent animals. Although the density of intestinal lamina propria blood vessels with MAdCAM-1-positive endothelium was greater in young adult rats in comparison to old animals, this difference achieved only borderline statistical significance. This is the first study to examine the expression of these two critical lymphocyte homing molecules as a function of age.
Collapse
Affiliation(s)
- Douglas L Schmucker
- Cell Biology and Aging Section (151E), Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| | | | | | | | | |
Collapse
|
41
|
|