1
|
Zöllner J, Williamson C, Dixon PH. Genetic issues in ICP. Obstet Med 2024; 17:157-161. [PMID: 39262913 PMCID: PMC11384815 DOI: 10.1177/1753495x241263441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/05/2024] [Indexed: 09/13/2024] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the commonest gestational liver disorder with variable global incidence. Genetic susceptibility, combined with hormonal and environmental influences, contributes to ICP aetiology. Adverse pregnancy outcomes linked to elevated serum bile acids highlight the importance of comprehensive risk assessment. ABCB4 and ABCB11 gene variants play a significant role in about 20% of severe ICP cases. Several other genes including ATP8B1, NR1H4, ABCC2, TJP2, SERPINA1, GCKR and HNF4A have also been implicated with ICP. Additionally, ABCB4 variants elevate the risk of drug-induced intrahepatic cholestasis, gallstone disease, gallbladder and bile duct carcinoma, liver cirrhosis and abnormal liver function tests. Genetic variations, both rare and common, intricately contribute to ICP susceptibility. Leveraging genetic insights holds promise for personalised management and intervention strategies. Further research is needed to elucidate variant-specific phenotypic expressions and therapeutic implications, advancing precision medicine in ICP management.
Collapse
|
2
|
Trinh A, Tjandra D, Park YA, Sood S, Thomson B, Speer T, Buchanan D, Boussioutas A, Metz AJ. Searching for low phospholipid associated cholelithiasis among patients with post-cholecystectomy biliary pain. ANZ J Surg 2024; 94:1102-1107. [PMID: 38361311 DOI: 10.1111/ans.18904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/28/2024] [Indexed: 02/17/2024]
Abstract
INTRODUCTION Low phospholipid associated cholelithiasis (LPAC) is associated with variants of the adenosine triphosphate-binding cassette subfamily B, member 4 (ABCB4) gene and is characterized by reduced phosphatidylcholine secretion into bile, impairing the formation of micelles and thus exposing bile ducts to toxic bile acids and increasing cholesterol saturation. LPAC is present in 1% of patients with gallstones and post-cholecystectomy pain is common in this group. LPAC is an under-appreciated cause of post-cholecystectomy pain. The aim of this study is to assess a cohort of patients with post-cholecystectomy pain to identify those with clinical features suggesting that further investigations for LPAC would be beneficial. METHODS A retrospective chart review was performed of the first 2 years of post-operative follow-up for all patients under 40 years of age undergoing cholecystectomy for symptomatic gallstones at a tertiary centre between January 2016 and December 2017. RESULTS 258 patients under the age of 40 underwent a cholecystectomy. 50 patients (19.4%) reported abdominal pain post-cholecystectomy. Five patients (1.9%) fulfilled the criteria for suspected LPAC. Family history of gallstones was documented in 33 of 258 (12.8%) of cases. Obstetric history was obtained in 69 of 197 (35%) female patients. None of the five patients identified above who satisfied the criteria of LPAC had the diagnosis of LPAC considered by their treating clinicians. CONCLUSION LPAC is an under-recognized cause of post-cholecystectomy pain. Treatment can avoid long-term symptoms and complications. Clinicians should take a family history and obstetric history to alert them to the diagnosis of LPAC.
Collapse
Affiliation(s)
- Andrew Trinh
- Department of Medicine, Royal Melbourne Hospital and The University of Melbourne, Parkville, Victoria, Australia
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Doug Tjandra
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Yeung-Ae Park
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Siddharth Sood
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Benjamin Thomson
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Tony Speer
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Daniel Buchanan
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Alex Boussioutas
- Department of Medicine, Royal Melbourne Hospital and The University of Melbourne, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Gastroenterology, The Alfred and Monash University, Melbourne, Victoria, Australia
| | - Andrew J Metz
- Department of Medicine, Royal Melbourne Hospital and The University of Melbourne, Parkville, Victoria, Australia
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Hegarty R, Gurra O, Tarawally J, Allouni S, Rahman O, Strautnieks S, Kyrana E, Hadzic N, Thompson RJ, Grammatikopoulos T. Clinical outcomes of ABCB4 heterozygosity in infants and children with cholestatic liver disease. J Pediatr Gastroenterol Nutr 2024; 78:339-349. [PMID: 38374565 DOI: 10.1002/jpn3.12080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Biallelic variants in the adenosine triphosphate binding cassette subfamily B member 4 (ABCB4) gene which encodes the multidrug resistance 3 protein (MDR3) leads to progressive familiar intrahepatic cholestasis type 3. However, monoallelic variants are increasingly recognized as contributing to liver disease in adults. Our aim was to describe the clinical characteristics of MDR3 heterozygous variants in a large cohort of infants and children with cholestatic liver disease. METHODS The clinical and genotypic data on pediatric patients seen at King's College Hospital, London, between 2004 and 2022 and found to harbour heterozygous variants in ABCB4 were reviewed. RESULTS Ninety-two patients amongst 1568 tested were identified with a monoallelic variant (5.9%). The most common presenting problem was conjugated hyperbilirubinemia (n = 46; 50%) followed by cholelithiasis (n = 12; 13%) and cholestatic hepatitis (n = 10; 11%). The median values of liver biochemistry at presentation were: GGT 105 IU/L and total bilirubin 86 µmol/L. Thirty-two genetic variants were identified including 22 missense (69%), 4 deletions (13%), 5 splice site (16%) and 1 termination (3%). At a median follow up of 1 year there was resolution of liver disease. CONCLUSIONS Rare variants in ABCB4 were found amongst infants and children with cholestatic liver disease. The presenting problems were variable and abnormalities tended to normalize over time. Those with severe mutations could develop liver disease later in life when exposed to further insult and should be counseled appropriately.
Collapse
Affiliation(s)
- Robert Hegarty
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK
| | | | | | - Sammi Allouni
- Liver Molecular Genetics Lab, Institute of Liver Studies, King's College Hospital, London, UK
| | - Obydur Rahman
- Liver Molecular Genetics Lab, Institute of Liver Studies, King's College Hospital, London, UK
| | - Sandra Strautnieks
- Liver Molecular Genetics Lab, Institute of Liver Studies, King's College Hospital, London, UK
| | - Eirini Kyrana
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK
| | - Nedim Hadzic
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK
| | - Richard J Thompson
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK
- Liver Molecular Genetics Lab, Institute of Liver Studies, King's College Hospital, London, UK
| | - Tassos Grammatikopoulos
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK
- King's College London, London, UK
| |
Collapse
|
4
|
Cheng K, Rosenthal P. Diagnosis and management of Alagille and progressive familial intrahepatic cholestasis. Hepatol Commun 2023; 7:e0314. [PMID: 38055640 PMCID: PMC10984671 DOI: 10.1097/hc9.0000000000000314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/12/2023] [Indexed: 12/08/2023] Open
Abstract
Alagille syndrome and progressive familial intrahepatic cholestasis are conditions that can affect multiple organs. Advancements in molecular testing have aided in the diagnosis of both. The impairment of normal bile flow and secretion leads to the various hepatic manifestations of these diseases. Medical management of Alagille syndrome and progressive familial intrahepatic cholestasis remains mostly targeted on supportive care focusing on quality of life, cholestasis, and fat-soluble vitamin deficiency. The most difficult therapeutic issue is typically related to pruritus, which can be managed by various medications such as ursodeoxycholic acid, rifampin, cholestyramine, and antihistamines. Surgical operations were previously used to disrupt enterohepatic recirculation, but recent medical advancements in the use of ileal bile acid transport inhibitors have shown great efficacy for the treatment of pruritus in both Alagille syndrome and progressive familial intrahepatic cholestasis.
Collapse
Affiliation(s)
- Katherine Cheng
- Department of Pediatrics Gastroenterology, Hepatology and Nutrition, University of California San Francisco, San Francisco, California, USA
| | - Philip Rosenthal
- Department of Pediatrics Gastroenterology, Hepatology and Nutrition, University of California San Francisco, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Zöllner J, Finer S, Linton KJ, van Heel DA, Williamson C, Dixon PH. Rare variant contribution to cholestatic liver disease in a South Asian population in the United Kingdom. Sci Rep 2023; 13:8120. [PMID: 37208429 PMCID: PMC10199085 DOI: 10.1038/s41598-023-33391-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
This study assessed the contribution of five genes previously known to be involved in cholestatic liver disease in British Bangladeshi and Pakistani people. Five genes (ABCB4, ABCB11, ATP8B1, NR1H4, TJP2) were interrogated by exome sequencing data of 5236 volunteers. Included were non-synonymous or loss of function (LoF) variants with a minor allele frequency < 5%. Variants were filtered, and annotated to perform rare variant burden analysis, protein structure, and modelling analysis in-silico. Out of 314 non-synonymous variants, 180 fulfilled the inclusion criteria and were mostly heterozygous unless specified. 90 were novel and of those variants, 22 were considered likely pathogenic and 9 pathogenic. We identified variants in volunteers with gallstone disease (n = 31), intrahepatic cholestasis of pregnancy (ICP, n = 16), cholangiocarcinoma and cirrhosis (n = 2). Fourteen novel LoF variants were identified: 7 frameshift, 5 introduction of premature stop codon and 2 splice acceptor variants. The rare variant burden was significantly increased in ABCB11. Protein modelling demonstrated variants that appeared to likely cause significant structural alterations. This study highlights the significant genetic burden contributing to cholestatic liver disease. Novel likely pathogenic and pathogenic variants were identified addressing the underrepresentation of diverse ancestry groups in genomic research.
Collapse
Affiliation(s)
| | - Sarah Finer
- Institute for Population Health Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kenneth J Linton
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Catherine Williamson
- Department of Women and Children's Health, School of Life Course Sciences, FOLSM, King's College London, 2.30W Hodgkin Building, Guy's Campus, London, SE1 1UL, UK.
| | - Peter H Dixon
- Department of Women and Children's Health, School of Life Course Sciences, FOLSM, King's College London, 2.30W Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
6
|
Wang HH, Portincasa P, Liu M, Wang DQH. Genetic Analysis of ABCB4 Mutations and Variants Related to the Pathogenesis and Pathophysiology of Low Phospholipid-Associated Cholelithiasis. Genes (Basel) 2022; 13:1047. [PMID: 35741809 PMCID: PMC9222727 DOI: 10.3390/genes13061047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
Clinical studies have revealed that the ABCB4 gene encodes the phospholipid transporter on the canalicular membrane of hepatocytes, and its mutations and variants are the genetic basis of low phospholipid-associated cholelithiasis (LPAC), a rare type of gallstone disease caused by a single-gene mutation or variation. The main features of LPAC include a reduction or deficiency of phospholipids in bile, symptomatic cholelithiasis at <40 years of age, intrahepatic sludge and microlithiasis, mild chronic cholestasis, a high cholesterol/phospholipid ratio in bile, and recurrence of biliary symptoms after cholecystectomy. Needle-like cholesterol crystals, putatively “anhydrous” cholesterol crystallization at low phospholipid concentrations in model and native bile, are characterized in ABCB4 knockout mice, a unique animal model for LPAC. Gallbladder bile with only trace amounts of phospholipids in these mice is supersaturated with cholesterol, with lipid composition plotting in the left two-phase zone of the ternary phase diagram, consistent with “anhydrous” cholesterol crystallization. In this review, we summarize the molecular biology and physiological functions of ABCB4 and comprehensively discuss the latest advances in the genetic analysis of ABCB4 mutations and variations and their roles in the pathogenesis and pathophysiology of LPAC in humans, based on the results from clinical studies and mouse experiments. To date, approximately 158 distinct LPAC-causing ABCB4 mutations and variants in humans have been reported in the literature, indicating that it is a monogenic risk factor for LPAC. The elucidation of the ABCB4 function in the liver, the identification of ABCB4 mutations and variants in LPAC patients, and the exploration of gene therapy for ABCB4 deficiency in animal models can help us to better understand the cellular, molecular, and genetic mechanisms underlying the onset of the disease, and will pave the way for early diagnosis and prevention of susceptible subjects and effective intervention for LPAC in patients.
Collapse
Affiliation(s)
- Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy;
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA;
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
7
|
Liu TF, He JJ, Wang L, Zhang LY. Novel ABCB4 mutations in an infertile female with progressive familial intrahepatic cholestasis type 3: A case report. World J Clin Cases 2022; 10:1998-2006. [PMID: 35317165 PMCID: PMC8891790 DOI: 10.12998/wjcc.v10.i6.1998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mutations that occur in the ABCB4 gene, which encodes multidrug-resistant protein 3, underlie the occurrence of progressive familial intrahepatic cholestasis type 3 (PFIC3). Clinical signs of intrahepatic cholestasis due to gene mutations typically first appear during infancy or childhood. Reports of PFIC3 occurring in adults are rare.
CASE SUMMARY This is a case study of a 32-year-old infertile female Chinese patient with a 15-year history of recurrent abnormal liver function. Her primary clinical signs were elevated levels of alkaline phosphatase and γ-glutamyl transpeptidase. Other possible reasons for liver dysfunction were eliminated in this patient, resulting in a diagnosis of PFIC3. The diagnosis was confirmed using gene detection and histological analyses. Assessments using genetic sequencing analysis indicated the presence of two novel heterozygous mutations in the ABCB4 gene, namely, a 2950C>T; p.A984V mutation (exon 24) and a 667A>G; p.I223V mutation (exon 7). After receiving ursodeoxycholic acid (UDCA) treatment, the patient's liver function indices improved, and she successfully became pregnant by in vitro fertilization. However, the patient developed intrahepatic cholestasis of pregnancy in the first trimester. Fortunately, treatment with UDCA was safe and effective.
CONCLUSION These novel ABCB4 heterozygous mutations have a variety of clinical phenotypes. Continued follow-up is essential for a comprehensive understanding of PFIC3.
Collapse
Affiliation(s)
- Tian-Fu Liu
- Department of Hepatology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Jing-Jing He
- Department of Hepatology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Liang Wang
- Department of Hepatology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Ling-Yi Zhang
- Department of Hepatology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
8
|
Rodríguez BM, Busoms CM, Sampol LM, Romero RG, Rivero GC, Martín de Carpi J. Heterozygous mutations of ATP8B1, ABCB11 and ABCB4 cause mild forms of Progressive Familial Intrahepatic Cholestasis in a pediatric cohort. GASTROENTEROLOGIA Y HEPATOLOGIA 2021; 45:585-592. [PMID: 34942279 DOI: 10.1016/j.gastrohep.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Heterozygous defects in genes implicated in Progressive Familial Intrahepatic Cholestasis have been described in milder forms of cholestatic diseases. Our aim is to describe clinical, laboratory and imaging characteristics as well as treatment and outcome of a cohort of pediatric patients with heterozygous mutations in ATP8B1, ABCB11 or ABCB4. PATIENTS AND METHODS We present a retrospective descriptive study including pediatric patients with at least one heterozygosis defect in ATP8B1, ABCB11 or ABCB4 diagnosed after a cholestatic episode. Clinical, diagnostic and outcome data were collected including gene analysis (panel of PFIC NextGeneDx®). RESULTS 7 patients showed a heterozygous mutation: 3 patients in ABCB4, 1 in ABCB11, 2 in ABCB4 and ABCB11 and 1 in ATP8B1. The median onset age was 5.5 years with a median time of follow-up of 6 years. The initial presentation was pruritus followed by asymptomatic hypertransaminasemia and persistent cholestasis. Two patients had family history of gallbladder stones and mild hepatitis. All showed elevated transaminases and bile acids, high gamma glutamyl-transferase (GGT) in 3 and conjugated bilirubin in 2 patients. Liver biopsy showed inflammatory infiltrate or mild fibrosis with normal immunohistochemistry. All patients were treated with ursodeoxycholic acid, two patients requiring the addition of resincholestyramine. During follow-up, 3 patients suffered limited relapses of pruritus. No disease progression was observed. CONCLUSION Heterozygous mutations in genes coding proteins of the hepatocellular transport system can cause cholestatic diseases with great phenotypic variability. The presence of repeated episodes of hypertransaminasemia or cholestasis after a trigger should force us to rule out the presence of these heterozygous mutations in genes involved in CIFP.
Collapse
Affiliation(s)
- Beatriz Mínguez Rodríguez
- Department of Gastroenterology, Hepatology and Nutrition. Sant Joan de Déu Hospital, Barcelona, Spain.
| | - Cristina Molera Busoms
- Department of Gastroenterology, Hepatology and Nutrition. Sant Joan de Déu Hospital, Barcelona, Spain.
| | | | - Ruth García Romero
- Unit of Paediatric Gastroenterology, Hepatology and Nutrition. Miguel Servet Hospital, Zaragoza, Spain.
| | - Gemma Colomé Rivero
- Department of Paediatric Gastroenterology. Nens Hospital of Barcelona, Barcelona, Spain.
| | - Javier Martín de Carpi
- Department of Gastroenterology, Hepatology and Nutrition. Sant Joan de Déu Hospital, Barcelona, Spain.
| |
Collapse
|
9
|
Structures of ABCB4 provide insight into phosphatidylcholine translocation. Proc Natl Acad Sci U S A 2021; 118:2106702118. [PMID: 34385322 DOI: 10.1073/pnas.2106702118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ABCB4 is expressed in hepatocytes and translocates phosphatidylcholine into bile canaliculi. The mechanism of specific lipid recruitment from the canalicular membrane, which is essential to mitigate the cytotoxicity of bile salts, is poorly understood. We present cryogenic electron microscopy structures of human ABCB4 in three distinct functional conformations. An apo-inward structure reveals how phospholipid can be recruited from the inner leaflet of the membrane without flipping its orientation. An occluded structure reveals a single phospholipid molecule in a central cavity. Its choline moiety is stabilized by cation-π interactions with an essential tryptophan residue, rationalizing the specificity of ABCB4 for phosphatidylcholine. In an inhibitor-bound structure, a posaconazole molecule blocks phospholipids from reaching the central cavity. Using a proteoliposome-based translocation assay with fluorescently labeled phosphatidylcholine analogs, we recapitulated the substrate specificity of ABCB4 in vitro and confirmed the role of the key tryptophan residue. Our results provide a structural basis for understanding an essential translocation step in the generation of bile and its sensitivity to azole drugs.
Collapse
|
10
|
Hagenbeck C, Pecks U, Lammert F, Hütten MC, Borgmeier F, Fehm T, Schleußner E, Maul H, Kehl S, Hamza A, Keitel V. [Intrahepatic cholestasis of pregnancy]. DER GYNAKOLOGE 2021; 54:341-356. [PMID: 33896963 PMCID: PMC8056200 DOI: 10.1007/s00129-021-04787-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the most frequent pregnancy-specific liver disease. It is characterized by pruritus and an accompanying elevation of serum bile acid concentrations and/or alanine aminotransferase (ALT), which are the key parameters in the diagnosis. Despite good maternal prognosis, elevated bile acid concentration in maternal blood is an influencing factor to advers fetal outcome. The ICP is associated with increased rates of preterm birth, neonatal unit admission and stillbirth. This is the result of acute fetal asphyxia as opposed to a chronic uteroplacental insufficiency. Reliable monitoring or predictive tools (e.g. cardiotocography (CTG) or ultrasound) that help to prevent advers events are yet to be explored. Medicinal treatment with ursodeoxycholic acid (UDCA) does not demonstrably reduce adverse perinatal outcomes but does improve pruritus and liver function test results. Bile acid concentrations and gestational age should be used as indications to determine delivery. There is a high risk of recurrence in subsequent pregnancies.
Collapse
Affiliation(s)
- Carsten Hagenbeck
- Klinik für Frauenheilkunde und Geburtshilfe, Universität Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Deutschland
| | - Ulrich Pecks
- Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland
| | - Frank Lammert
- Klinik für Innere Medizin II, Universitätsklinikum des Saarlandes, Universität des Saarlandes, Homburg, Deutschland
| | - Matthias C. Hütten
- Neonatologie, Maastricht Universitair Medisch Centrum+, Maastricht, Niederlande
| | - Felix Borgmeier
- Klinik für Frauenheilkunde und Geburtshilfe, Universität Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Deutschland
| | - Tanja Fehm
- Klinik für Frauenheilkunde und Geburtshilfe, Universität Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Deutschland
| | | | - Holger Maul
- Frauenklinik, Asklepios Kliniken Barmbek, Wandsbek und Nord-Heidberg, Hamburg, Deutschland
| | - Sven Kehl
- Frauenklinik, Universitätsklinikum Erlangen, Erlangen, Deutschland
| | - Amr Hamza
- Kantonsspital Baden, Baden, Schweiz
- Klinikum für Frauenheilkunde, Geburtshilfe und Reproduktionsmedizin, Universität des Saarlandes, Homburg, Deutschland
| | - Verena Keitel
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universität Düsseldorf, Düsseldorf, Deutschland
| |
Collapse
|
11
|
ABCB4 variants in adult patients with cholestatic disease are frequent and underdiagnosed. Dig Liver Dis 2021; 53:329-344. [PMID: 33390354 DOI: 10.1016/j.dld.2020.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heterozygous ABCB4 variants are not routinely tested in adults with cholestasis because of their supposed rarity and high costs. METHODS Nineteen adult patients presenting with unexplained cholestasis, and/or recurrent gallstones were included; genotyping was not done in five due to lack of health insurance approval. RESULTS heterozygous ABCB4 variants were identified in seven patients, followed by cascade testing of 12 family members: one patient underwent liver transplantation at age 40 for end-stage liver disease; one had compensated cirrhosis; all symptomatic adults had gallstones, including four with low phospholipid-associated cholelithiasis; four had intrahepatic cholestasis of pregnancy; all children and one 54-year old female were asymptomatic. Genotype: Families A and C: c.2211G>A (p.Ala737=) combined with c.959C>T (p.Ser320Phe) in one subject; Family B: c.1130T>C (p.Ile377Thr); Family D: large deletion removing ABCB4 exons 1-4 plus ABCB1, RUNDC3B, SLC25A40, DBF4, ADAM22 exons 1-3; Family E: c.1565T>C (p.Phe522Ser) ; Family F: c.1356+2T>C combined with c.217C>G (p.Leu73Val). All patients responded to ursodeoxycholic acid. CONCLUSIONS We found ABCB4 variants in half of the adults with unexplained cholestasis and/or recurrent gallstones presenting at our center, suggesting that this condition is underdiagnosed and undertreated, with serious consequences not only for the patients and their families, but also in terms of healthcare costs.
Collapse
|
12
|
Carbone M, Cardinale V. ABCB4-alteration screening in adult-onset cholestasis. Dig Liver Dis 2021; 53:261-262. [PMID: 33461893 DOI: 10.1016/j.dld.2020.12.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Marco Carbone
- Division of Gastroenterology, Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy; Division of Gastroenterology, Policlinico Umberto I, Rome, Italy
| |
Collapse
|
13
|
Sticova E, Jirsa M. ABCB4 disease: Many faces of one gene deficiency. Ann Hepatol 2021; 19:126-133. [PMID: 31759867 DOI: 10.1016/j.aohep.2019.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
ATP-binding cassette (ABC) subfamily B member 4 (ABCB4), also known as multidrug resistance protein 3 (MDR3), encoded by ABCB4, is involved in biliary phospholipid secretion, protecting hepatobiliary system from deleterious detergent and lithogenic properties of the bile. ABCB4 mutations altering canalicular ABCB4 protein function and expression may have variable clinical presentation and predispose to several human liver diseases. Well-established phenotypes of ABCB4 deficit are: progressive familial intrahepatic cholestasis type 3, gallbladder disease 1 (syn. low phospholipid associated cholelithiasis syndrome), high ɣ-glutamyl transferase intrahepatic cholestasis of pregnancy, chronic cholangiopathy, and adult biliary fibrosis/cirrhosis. Moreover, ABCB4 aberrations may be involved in some cases of drug induced cholestasis, transient neonatal cholestasis, and parenteral nutrition-associated liver disease. Recently, genome-wide association studies have documented occurrence of malignant tumours, predominantly hepatobiliary malignancies, in patients with ABCB4/MDR3 deficit. The patient's age at the time of the first presentation of cholestatic disease, as well as the severity of liver disorder and response to treatment are related to the ABCB4 allelic status. Mutational analysis of ABCB4 in patients and their families should be considered in all individuals with cholestasis of unknown aetiology, regardless of age and/or time of onset of the first symptoms.
Collapse
Affiliation(s)
- Eva Sticova
- Institute for Clinical and Experimental Medicine, Videnska, Prague, Czech Republic; Pathology Department, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Srobarova, Prague, Czech Republic.
| | - Milan Jirsa
- Institute for Clinical and Experimental Medicine, Videnska, Prague, Czech Republic; Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and Faculty General Hospital, U Nemocnice, Prague, Czech Republic
| |
Collapse
|
14
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Mirza N, Malhotra S, Sibal A. A Novel Compound Heterozygous Mutation in ABCB4 Gene Leading to Cholelithiasis, Progressive Familial Intrahepatic Cholestasis (Type 3), and Cirrhosis in a Child. JOURNAL OF CHILD SCIENCE 2020. [DOI: 10.1055/s-0040-1717106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractProgressive familial intrahepatic cholestasis (PFIC) is a heterogeneous group of autosomal recessive disorders of childhood which presents with intermittent or progressive episodes of cholestasis, with jaundice and pruritus as most common presenting symptoms. PFIC type 3 occurs due to mutations in the ABCB4 gene, mutation in this gene has wide spectrum of features which include intrahepatic stones, cholelithiasis, PFIC type 3, and intrahepatic cholestasis of pregnancy. Here, we are reporting a peculiar case of young male adolescent with novel variant compound heterozygote missense mutation in ABCB4 gene who had gall stone as initial symptom, followed by symptoms of PFIC and eventually decompensated chronic liver disease.
Collapse
Affiliation(s)
- Nida Mirza
- Indraprastha Apollo Hospital, New Delhi, India
| | | | | |
Collapse
|
16
|
Evaluation of a Novel Missense Mutation in ABCB4 Gene Causing Progressive Familial Intrahepatic Cholestasis Type 3. DISEASE MARKERS 2020; 2020:6292818. [PMID: 32626542 PMCID: PMC7315263 DOI: 10.1155/2020/6292818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a hepatic disorder occurring predominantly in childhood and is difficult to diagnose. PFIC3, being a rare autosomal recessive disease, is caused by genetic mutations in both alleles of ABCB4, resulting in the disruption of the bile secretory pathway. The identification of pathogenic effects resulting from different mutations in ABCB4 is the key to revealing the internal cause of disease. These mutations cause truncation, instability, misfolding, and impaired trafficking of the MDR3 protein. Here, we reported a girl, with a history of intrahepatic cholestasis and progressive liver cirrhosis, with an elevated gamma-glutamyltransferase level. Genetic screening via whole exome sequencing found a novel homozygous missense mutation ABCB4:c.1195G>C:p.V399L, and the patient was diagnosed with PFIC3. Various computational tools predicted the variant to be deleterious and evolutionary conserved. For functional characterization studies, plasmids, encoding ABCB4 wild-type and selected established mutant constructs, were expressed in human embryonic kidney (HEK-293T) and hepatocellular carcinoma (HepG2) cells. In vitro expression analysis observed a reduced expression of mutant protein compared to wild-type protein. We found that ABCB4 wild type was localized at the apical canalicular membrane, while mutant p.V399L showed intracellular retention. Intracellular mistrafficking proteins usually undergo proteasomal or lysosomal degradation. We found that after treatment with proteasomal inhibitor MG132 and lysosomal inhibitor bafilomycin A1, MDR3 expression of V399L was significantly increased. A decrease in MDR3 expression of mutant V399L protein may be a result of proteasomal or lysosomal degradation. Pharmacological modulator cyclosporin A and intracellular low temperature (30°C) treatment significantly rescued both the folding defect and the active maturation of the mutant protein. Our study identified a novel pathogenic mutation which expanded the mutational spectrum of the ABCB4 gene and may contribute to understanding the molecular basis of PFIC3. Therefore, genetic screening plays a conclusive role in the diagnosis of rare heterogenic disorders like PFIC3.
Collapse
|
17
|
The interpretation of liver function tests in pregnancy. Best Pract Res Clin Gastroenterol 2020; 44-45:101667. [PMID: 32359686 DOI: 10.1016/j.bpg.2020.101667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/19/2020] [Accepted: 02/17/2020] [Indexed: 01/31/2023]
Abstract
Abnormal liver tests occur in 3-5% of pregnancies and show many different causes. Although alterations of liver enzymes could be a physiological phenomenon, it may also reflect potential severe liver injury, necessitating further assessment and accurate management. The work-up has to consider liver diseases specific of pregnancy and non pregnancy-related liver damage (coincidental and pre-existing to pregnancy). Pre-existing liver diseases during pregnancy are relatively uncommon, as pregnant women are generally young and healthy. Liver diseases unique to pregnancy are intrahepatic cholestasis of pregnancy, the HELLP syndrome (haemolysis, elevated liver enzymes, low platelets) and acute fatty liver of pregnancy. These disorders may result in foetal distress, severe liver damage and sometime hepatic failure; for these reasons the diagnostic work-up and treatment must be very fast. This review focuses on the management of pregnant women with altered liver function tests. Furthermore, the main liver diseases specific of pregnancy are described.
Collapse
|
18
|
Structure of the human lipid exporter ABCB4 in a lipid environment. Nat Struct Mol Biol 2019; 27:62-70. [PMID: 31873305 DOI: 10.1038/s41594-019-0354-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/22/2019] [Indexed: 02/08/2023]
Abstract
ABCB4 is an ATP-binding cassette transporter that extrudes phosphatidylcholine into the bile canaliculi of the liver. Its dysfunction or inhibition by drugs can cause severe, chronic liver disease or drug-induced liver injury. We determined the cryo-EM structure of nanodisc-reconstituted human ABCB4 trapped in an ATP-bound state at a resolution of 3.2 Å. The nucleotide binding domains form a closed conformation containing two bound ATP molecules, but only one of the ATPase sites contains bound Mg2+. The transmembrane domains adopt a collapsed conformation at the level of the lipid bilayer, but we observed a large, hydrophilic and fully occluded cavity at the level of the cytoplasmic membrane boundary, with no ligand bound. This indicates a state following substrate release but prior to ATP hydrolysis. Our results rationalize disease-causing mutations in human ABCB4 and suggest an 'alternating access' mechanism of lipid extrusion, distinct from the 'credit card swipe' model of other lipid transporters.
Collapse
|
19
|
Khabou B, Trigui A, Boudawara TS, Keskes L, Kamoun H, Barbu V, Fakhfakh F. A homozygous ABCB4 mutation causing an LPAC syndrome evolves into cholangiocarcinoma. Clin Chim Acta 2019; 495:598-605. [PMID: 31181191 DOI: 10.1016/j.cca.2019.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/16/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023]
Abstract
Low phospholipid-associated cholelithiasis (LPAC) is characterized by the association of ABCB4 mutations and low biliary phospholipid concentration with symptomatic and recurring cholelithiasis. In the present study, we reported a case of a 63-year-old woman, who presented a biliary pain beginning at the age of 30, recurrent after cholecystectomy, along with "comet-tail shadows" revealed by ultrasonography thus, fulfilling the diagnosis of LPAC. This disease evolved into a cholangiocarcinoma. To understand the molecular basis of this phenotype, we performed the ABCB4 gene sequencing, followed by in silico analysis and Q-RT-PCR assay. The results displayed a homozygous missense sequence variation (c.140G > A, p.Arg47Gln), predicted as pathogenic according to MutPred. Accordingly, this gave rise to a decreased hepatic ABCB4 mRNA level and structural alterations of the mutated protein. Eventually, we reported, here, the first description of an ABCB4 missense mutation (p.Arg47Gln) at homozygous state in a Tunisian LPAC syndrome. An elucidation of its functional consequences was performed. Besides, this case suggests that the delayed diagnosis of LPAC syndrome and the lack of UDCA treatment may contribute in the development of complications, such as cholangiocarcinoma.
Collapse
Affiliation(s)
- Boudour Khabou
- Laboratory of Molecular and Functional Genetics, Faculty of Science, University of Sfax, Tunisia.
| | - Ayman Trigui
- Department of General Surgery, Habib Bourguiba Hospital, 3027 Sfax, Tunisia
| | | | - Leila Keskes
- Laboratory of Molecular and Human Genetics, Faculty of Medecine, University of Sfax, Tunisia
| | - Hassen Kamoun
- Laboratory of Molecular and Human Genetics, Faculty of Medecine, University of Sfax, Tunisia
| | - Véronique Barbu
- Sorbonne University Medical School, APHP, St Antoine Hospital, Medical Biology and Pathology Department, LCBGM, 75012 Paris, France
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science, University of Sfax, Tunisia
| |
Collapse
|
20
|
Wang R, Sheps JA, Liu L, Han J, Chen PSK, Lamontagne J, Wilson PD, Welch I, Borchers CH, Ling V. Hydrophilic bile acids prevent liver damage caused by lack of biliary phospholipid in Mdr2-/- mice. J Lipid Res 2019; 60:85-97. [PMID: 30416103 PMCID: PMC6314265 DOI: 10.1194/jlr.m088070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/04/2018] [Indexed: 12/15/2022] Open
Abstract
Bile acid imbalance causes progressive familial intrahepatic cholestasis type 2 (PFIC2) or type 3 (PFIC3), severe liver diseases associated with genetic defects in the biliary bile acid transporter bile salt export pump (BSEP; ABCB11) or phosphatidylcholine transporter multidrug resistance protein 3 (MDR3; ABCB4), respectively. Mdr2-/- mice (a PFIC3 model) develop progressive cholangitis, ductular proliferation, periportal fibrosis, and hepatocellular carcinoma (HCC) because the nonmicelle-bound bile acids in the bile of these mice are toxic. We asked whether the highly hydrophilic bile acids generated by Bsep-/- mice could protect Mdr2-/- mice from progressive liver damage. We generated double-KO (DKO: Bsep-/- and Mdr2-/- ) mice. Their bile acid composition resembles that of Bsep-/- mice, with increased hydrophilic muricholic acids, tetrahydroxylated bile acids (THBAs), and reduced hydrophobic cholic acid. These mice lack the liver pathology of their Mdr2-/- littermates. The livers of DKO mice have gene expression profiles very similar to Bsep-/- mice, with 4,410 of 6,134 gene expression changes associated with the Mdr2-/- mutation being suppressed. Feeding with THBAs partially alleviates liver damage in the Mdr2-/- mice. Hydrophilic changes to biliary bile acid composition, including introduction of THBA, can prevent the progressive liver pathology associated with the Mdr2-/- (PFIC3) mutation.
Collapse
Affiliation(s)
- Renxue Wang
- BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | | | - Lin Liu
- BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jun Han
- University of Victoria-Genome BC Proteomics Centre University of Victoria, Victoria, British Columbia, Canada
| | - Patrick S K Chen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jason Lamontagne
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter D Wilson
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ian Welch
- Department of Pathology University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Comparative Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christoph H Borchers
- University of Victoria-Genome BC Proteomics Centre University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Victor Ling
- BC Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Wang HH, Portincasa P, Liu M, Tso P, Wang DQH. Similarities and differences between biliary sludge and microlithiasis: Their clinical and pathophysiological significances. LIVER RESEARCH 2018; 2:186-199. [PMID: 34367716 PMCID: PMC8341470 DOI: 10.1016/j.livres.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The terms biliary sludge and cholesterol microlithiasis (hereafter referred to as microlithiasis) were originated from different diagnostic techniques and may represent different stages of cholesterol gallstone disease. Although the pathogenesis of biliary sludge and microlithiasis may be similar, microlithiasis could be preceded by biliary sludge, followed by persistent precipitation and aggregation of solid cholesterol crystals, and eventually, gallstone formation. Many clinical conditions are clearly associated with the formation of biliary sludge and microlithiasis, including total parenteral nutrition, rapid weight loss, pregnancy, organ transplantation, administration of certain medications, and a variety of acute and chronic illnesses. Numerous studies have demonstrated complete resolution of biliary sludge in approximately 40% of patients, a cyclic pattern of disappearing and reappearing in about 40%, and progression to gallstones in nearly 20%. Although only a minority of patients with ultrasonographic demonstration of biliary sludge develop gallstones, it is still a matter of controversy whether microlithiasis could eventually evolve to cholesterol gallstones. Biliary sludge and microlithiasis are asymptomatic in the vast majority of patients; however, they can cause biliary colic, acute cholecystitis, and acute pancreatitis. Biliary sludge and microlithiasis are most often diagnosed ultrasonographically and bile microscopy is considered the gold standard for their diagnosis. Specific measures to prevent the development of biliary sludge are not practical or cost-effective in the general population. Laparoscopic cholecystectomy offers the most definitive therapy on biliary sludge. Endoscopic sphincterotomy or surgical intervention is effective for microlithiasis-induced pancreatitis. Ursodeoxycholic acid can effectively prevent the recurrence of solid cholesterol crystals and significantly reduce the risk of recurrent pancreatitis.
Collapse
Affiliation(s)
- Helen H. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica “A. Murri”, University of Bari “Aldo Moro” Medical School, Bari, Italy
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David Q.-H. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA,Corresponding author. Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA., (D.Q.-H. Wang)
| |
Collapse
|
22
|
Karatayli E, Hall RA, Weber SN, Dooley S, Lammert F. Effect of alcohol on the interleukin 6-mediated inflammatory response in a new mouse model of acute-on-chronic liver injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:298-307. [PMID: 30447270 DOI: 10.1016/j.bbadis.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS ACLF is usually associated with a precipitant in the setting of a chronically damaged liver. We aim to combine a mouse model with a pre-injured liver (Abcb4/Mdr2-/-) with a recently standardized ethanol feeding model to dissect alcohol-related inflammatory responses in this model. METHOD Ten (n = 64) and 15 (n = 64) week old wild-type (WT) C57BL/6 J and Abcb4-/- knock-out (KO) mice were either fed control (WT/Cont and KO/Cont groups) or liquid ethanol diet (5% v/v) followed by an ethanol binge (4 mg/kg) (WT/EtOH and KO/EtOH groups). Hepatic mRNA levels of IL6, IFN-G, IL-1B, TGFB1, TNF-A, CCL2, HGF, CRP, RANTES, PNPLA3 and COL3A1 were evaluated using the 2-ΔΔCt method. IL6 and HGF plasma levels were quantified by ELISA. RESULTS Older mice in KO/EtOH group displayed higher IL6 expressions compared to KO/Cont, WT/EtOH and WT/Cont groups of the same age, whereas HGF did not differ. Significant over-expression of CCL2 also corresponded to the same group. Males in KO/EtOH group exhibited higher IL6 expression than females. Lipid droplets were observed in about 80% of mice challenged with ethanol. There was a profound downregulation in PNPLA3 and RANTES levels after ethanol exposure. Mean size of the LDs was inversely correlated with hepatic PNPLA3 levels. CONCLUSION We propose a novel promising approach to model alcohol-related ACLI. Acute inflammatory IL6-driven response might help transition from a stable chronic state to a progressive liver damage in Abcb4-/- mice. Repression of PNPLA3 resulted in a notable expansion in size of lipid droplets, indicating lipid remodeling in this model.
Collapse
Affiliation(s)
- Ersin Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| | - Rabea A Hall
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Susanne N Weber
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
23
|
Cariello M, Piccinin E, Garcia-Irigoyen O, Sabbà C, Moschetta A. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1308-1318. [PMID: 28965883 DOI: 10.1016/j.bbadis.2017.09.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023]
Abstract
The nuclear receptor farnesoid X receptor (FXR) is the master regulator of bile acids (BAs) homeostasis since it transcriptionally drives modulation of BA synthesis, influx, efflux, and detoxification along the enterohepatic axis. Due to its crucial role, FXR alterations are involved in the progression of a plethora of BAs associated inflammatory disorders in the liver and in the gut. The involvement of the FXR pathway in cholestasis development and management has been elucidated so far with a direct role of FXR activating therapy in this condition. However, the recent identification of a new type of genetic progressive familial intrahepatic cholestasis (PFIC) linked to FXR mutations has strengthen also the bona fide beneficial effects of target therapies that by-pass FXR activation, directly promoting the action of its target, namely the enterokine FGF19, in the repression of hepatic BAs synthesis with reduction of total BA levels in the liver and serum, accomplishing one of the major goals in cholestasis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni and Peter Jansen.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Elena Piccinin
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
| | - Oihane Garcia-Irigoyen
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy; National Cancer Center, IRCCS Istituto Oncologico "Giovanni Paolo II", 70124 Bari, Italy.
| |
Collapse
|
24
|
Andress EJ, Nicolaou M, McGeoghan F, Linton KJ. ABCB4 missense mutations D243A, K435T, G535D, I490T, R545C, and S978P significantly impair the lipid floppase and likely predispose to secondary pathologies in the human population. Cell Mol Life Sci 2017; 74:2513-2524. [PMID: 28220208 PMCID: PMC5487885 DOI: 10.1007/s00018-017-2472-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/30/2016] [Accepted: 01/19/2017] [Indexed: 12/15/2022]
Abstract
Bile salts are natural detergents required to solubilise dietary fat and lipid soluble vitamins. They are synthesised in hepatocytes and secreted into the luminal space of the biliary tree by the bile salt export pump (BSEP), an ATP-binding cassette (ABC) transporter in the canalicular membrane. BSEP deficiency causes cytotoxic accumulation of bile salts in the hepatocyte that results in mild-to-severe forms of cholestasis. The resulting inflammation can also progress to hepatocellular cancer via a novel mechanism involving upregulation of proliferative signalling pathways. A second ABC transporter of the canalicular membrane is also critical for bile formation. ABCB4 flops phosphatidylcholine into the outer leaflet of the membrane to be extracted by bile salts in the canalicular space. These mixed micelles reduce the detergent action of the bile salts and protect the biliary tree from their cytotoxic activity. ABCB4 deficiency also causes cholestasis, and might be expected to cause cholangitis and predispose to liver cancer. Non-synonymous SNPs in ABCB4 have now been described in patients with liver cancer or with inflammatory liver diseases that are known to predispose to cancer, but data showing that the SNPs are sufficiently deleterious to be an etiological factor are lacking. Here, we report the first characterisation at the protein level of six ABCB4 variants (D243A, K435T, G535D, I490T, R545C, and S978P) previously found in patients with inflammatory liver diseases or liver cancer. All significantly impair the transporter with a range of phenotypes exhibited, including low abundance, intracellular retention, and reduced floppase activity, suggesting that ABCB4 deficiency is the root cause of the pathology in these cases.
Collapse
Affiliation(s)
- Edward J Andress
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, E1 2AT, London, UK
| | - Michael Nicolaou
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, E1 2AT, London, UK
| | - Farrell McGeoghan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, E1 2AT, London, UK
| | - Kenneth J Linton
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, E1 2AT, London, UK.
| |
Collapse
|
25
|
Delaunay JL, Bruneau A, Hoffmann B, Durand-Schneider AM, Barbu V, Jacquemin E, Maurice M, Housset C, Callebaut I, Aït-Slimane T. Functional defect of variants in the adenosine triphosphate-binding sites of ABCB4 and their rescue by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor (VX-770). Hepatology 2017; 65:560-570. [PMID: 28012258 DOI: 10.1002/hep.28929] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/22/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED ABCB4 (MDR3) is an adenosine triphosphate (ATP)-binding cassette (ABC) transporter expressed at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine (PC) secretion. Variations in the ABCB4 gene are responsible for several biliary diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare disease that can be lethal in the absence of liver transplantation. In this study, we investigated the effect and potential rescue of ABCB4 missense variations that reside in the highly conserved motifs of ABC transporters, involved in ATP binding. Five disease-causing variations in these motifs have been identified in ABCB4 (G535D, G536R, S1076C, S1176L, and G1178S), three of which are homologous to the gating mutations of cystic fibrosis transmembrane conductance regulator (CFTR or ABCC7; i.e., G551D, S1251N, and G1349D), that were previously shown to be function defective and corrected by ivacaftor (VX-770; Kalydeco), a clinically approved CFTR potentiator. Three-dimensional structural modeling predicted that all five ABCB4 variants would disrupt critical interactions in the binding of ATP and thereby impair ATP-induced nucleotide-binding domain dimerization and ABCB4 function. This prediction was confirmed by expression in cell models, which showed that the ABCB4 mutants were normally processed and targeted to the plasma membrane, whereas their PC secretion activity was dramatically decreased. As also hypothesized on the basis of molecular modeling, PC secretion activity of the mutants was rescued by the CFTR potentiator, ivacaftor (VX-770). CONCLUSION Disease-causing variations in the ATP-binding sites of ABCB4 cause defects in PC secretion, which can be rescued by ivacaftor. These results provide the first experimental evidence that ivacaftor is a potential therapy for selected patients who harbor mutations in the ATP-binding sites of ABCB4. (Hepatology 2017;65:560-570).
Collapse
Affiliation(s)
- Jean-Louis Delaunay
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| | - Alix Bruneau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| | - Brice Hoffmann
- IMPMC, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Anne-Marie Durand-Schneider
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| | - Véronique Barbu
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France.,Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, Reference Center for Rare Disease, Inflammatory Biliary Diseases & Hepatology Department, F-75012, Paris, France
| | - Emmanuel Jacquemin
- Assistance Publique-Hôpitaux de Paris, Faculty of Medicine Paris Sud, CHU Bicêtre, Pediatric Hepatology & Pediatric Hepatic Transplant Department, Reference Center for Rare Pediatric Liver Diseases, F-94275, Le Kremlin Bicêtre, France.,Université Paris Sud, INSERM, UMR_S 1174, Hepatinov, Orsay, France
| | - Michèle Maurice
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| | - Chantal Housset
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France.,Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, Reference Center for Rare Disease, Inflammatory Biliary Diseases & Hepatology Department, F-75012, Paris, France
| | - Isabelle Callebaut
- IMPMC, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Tounsia Aït-Slimane
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| |
Collapse
|
26
|
Tang X, Yang Q, Yang F, Gong J, Han H, Yang L, Wang Z. Target profiling analyses of bile acids in the evaluation of hepatoprotective effect of gentiopicroside on ANIT-induced cholestatic liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:63-71. [PMID: 27582267 DOI: 10.1016/j.jep.2016.08.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 07/05/2016] [Accepted: 08/27/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gentiopicroside (GPS), one of iridoid glucoside representatives, is the most potential active component in Gentiana rigescens Franch. ex Hemsl and Gentiana macrophylla Pall. These two herbs have been used to treat jaundice and other hepatic and billiary diseases in traditional Chinese medicine for thousands of years. AIM OF THE STUDY This study aimed to investigate the protective effects and mechanisms of GPS on α-naphthylisothiocyanate (ANIT) induced cholestatic liver injury in mice. MATERIALS AND METHODS Mice were treated with GPS (130mg/kg, ig) for 5 consecutive days. On the third day, mice were given a single dose of Alpha-naphthylisothiocyanate (75mg/kg, ig). Serum biochemical markers and individual bile acids in serum, liver, urine and feces were measured at different time points after ANIT administration. The expression of hepatic bile acid synthesis, uptake and transporter genes as well as ileum bile acid transporter genes were assayed. RESULTS In this study, ANIT exposure resulted in serious cholestasis with liver injury, which was demonstrated by dramatically increased serum levels of ALT, ALP, TBA and TBIL along with TCA CA, MCAs and TMCAs accumulation in both liver and serum. Furthermore, ANIT significantly decreased bile acid synthesis related gene expressions, and increased expression of bile acid transporters in liver. Continuous treatment with GPS attenuated ANIT-induced acute cholestasis as well as liver injury and correct the dyshomeostasis of bile acids induced by ANIT. Our data showed that GPS significantly upregulated the hepatic mRNA levels of synthesis enzymes (Cyp8b1 and Cyp27a1) and transporters (Mrp4 Mdr1 and Ost-β) as well as ileal bile acid circulation mediators (Asbt and Fgf15), accompanied by serum and hepatic bile acid levels decrease and further urinary and fecal bile acid levels increase. CONCLUSION GPS can change bile acids metabolism which highlights its importance in mitigating cholestasis, resulting in the marked decrease of intracellular bile acid pool back toward basal levels. And the protective mechanism was associated with regulation of bile acids-related transporters, but the potential mechanism warrants further investigation.
Collapse
Affiliation(s)
- Xiaowen Tang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qiaoling Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Fan Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Junting Gong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Han Han
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
27
|
Fathy M, Kamal M, Al-Sharkawy M, Al-Karaksy H, Hassan N. Molecular characterization of exons 6, 8 and 9 of ABCB4 gene in children with Progressive Familial Intrahepatic Cholestasis type 3. Biomarkers 2016; 21:573-7. [PMID: 27075526 DOI: 10.3109/1354750x.2016.1166264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM OF WORK To estimate the frequency of mutations involving exons 6, 8 and 9 of Adenosine triphosphate-binding cassette, subfamily B, member 4 (ABCB4) gene among children with progressive intrahepatic cholestasis with high γ-GT activity (PFIC3). SUBJECTS AND METHODS Cross sectional study was conducted on 30 children with PFIC3. Genotyping was performed by sequencing analysis of exons 6, 8 and exon 9 of ABCB4 gene. RESULTS Heterozygous synonymous polymorphic variant was detected in exon 6 (rs 1202283) and in exon 8 (rs 2109505). No mutations in studied exons were detected. CONCLUSION Exons 6, 8 and 9 mutations of ABCB4 gene are not common among Egyptian children with PFIC3.
Collapse
Affiliation(s)
- Mona Fathy
- a Clinical and Chemical Pathology Department, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Manal Kamal
- a Clinical and Chemical Pathology Department, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Marwa Al-Sharkawy
- a Clinical and Chemical Pathology Department, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Hanaa Al-Karaksy
- b Pediatrics Department, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Nora Hassan
- a Clinical and Chemical Pathology Department, Faculty of Medicine , Cairo University , Cairo , Egypt
| |
Collapse
|
28
|
Dixon PH, Williamson C. The pathophysiology of intrahepatic cholestasis of pregnancy. Clin Res Hepatol Gastroenterol 2016; 40:141-53. [PMID: 26823041 DOI: 10.1016/j.clinre.2015.12.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023]
Abstract
A number of liver disorders are specific to pregnancy. Amongst these, intrahepatic cholestasis of pregnancy (ICP), also known as obstetric cholestasis (OC), is the commonest, affecting approximately 1 in 140 UK pregnancies. Patients commonly present in the third trimester with severe pruritus and deranged serum liver tests; bile acids are elevated, in severe cases >40 μmol/L. Although the disease is considered relatively benign for the mother, increased rates of adverse fetal outcomes, including stillbirth, are associated with ICP. As our knowledge of the mechanisms underlying bile acid homeostasis has advanced in the last 15 years our understanding of ICP has grown, in particular with respect to genetic influences on susceptibility to the disease, the role of reproductive hormones and their metabolites and the possible identity of the pruritic agents. In this review, we will describe recent advances in the understanding of this condition with a particular emphasis on how aspects of genetic and reproductive hormone involvement in pathophysiology have been elucidated. We also review recent developments regarding our knowledge of placental and fetal pathophysiology and the long-term health consequences for the mother and child.
Collapse
Affiliation(s)
- Peter H Dixon
- Division of Women's Health, 2.30W Hodgkin Building, King's College London, Guy's Campus, SE1 1UL London, United Kingdom
| | - Catherine Williamson
- Division of Women's Health, 2.30W Hodgkin Building, King's College London, Guy's Campus, SE1 1UL London, United Kingdom.
| |
Collapse
|
29
|
Degiorgio D, Crosignani A, Colombo C, Bordo D, Zuin M, Vassallo E, Syrén ML, Coviello DA, Battezzati PM. ABCB4 mutations in adult patients with cholestatic liver disease: impact and phenotypic expression. J Gastroenterol 2016; 51:271-80. [PMID: 26324191 DOI: 10.1007/s00535-015-1110-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/26/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND The ABCB4 gene encodes the MDR3 protein. Mutations of this gene cause progressive familial intrahepatic cholestasis type 3 (PFIC3) in children, but their clinical relevance in adults remains ill defined. The study of a well-characterized adult patient series may contribute to refining the genetic data regarding cholangiopathies of unknown origin. Our aim was to evaluate the impact of ABCB4 mutations on clinical expression of cholestasis in adult patients. METHODS We consecutively evaluated 2602 subjects with hepatobiliary disease. Biochemical evidence of a chronic cholestatic profile (CCP) with elevated serum gamma-glutamyltransferase activity or diagnosis of intrahepatic cholestasis of pregnancy (ICP) and juvenile cholelithiasis (JC) were inclusion criteria. The personal/family history of additional cholestatic liver disease (PFH-CLD), which includes ICP, JC, or hormone-induced cholestasis, was investigated. Mutation screening of ABCB4 was carried out in 90 patients with idiopathic chronic cholestasis (ICC), primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), ICP, and JC. RESULTS Eighty patients had CCP. PSC and ICC patients with PFH-CLD had earlier onset of disease than those without it (p = 0.003 and p = 0.023, respectively). The mutation frequency ranged from 50% (ICP, JC) to 17.6% (PBC). Among CCP patients, presence or absence of PFH-CLD was associated with ABCB4 mutations in 26.8 vs 5.1% (p = 0.013), respectively; in the subset of ICC and PSC patients, the corresponding figures were 44.4 vs 0% (p = 0.012) and 28.6 vs 8.7% (p = 0.173). CONCLUSIONS Cholangiopathies attributable to highly penetrant ABCB4 mutant alleles are identifiable in a substantial proportion of adults that generally have PFH-CLD. In PSC and ICC phenotypes, patients with MDR3 deficiency have early onset of disease.
Collapse
Affiliation(s)
- Dario Degiorgio
- E.O. Ospedali Galliera, Laboratory of Human Genetics and Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Crosignani
- Division of Internal Medicine and Liver Unit, School of Medicine Ospedale San Paolo, Department of Health Sciences, Università degli Studi di Milano, 20143, Milan, Italy
| | - Carla Colombo
- Department of Pathophysiology and Transplantation, Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Domenico Bordo
- IRCCS Azienda Ospedaliera-Universitaria San Martino-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Massimo Zuin
- Division of Internal Medicine and Liver Unit, School of Medicine Ospedale San Paolo, Department of Health Sciences, Università degli Studi di Milano, 20143, Milan, Italy
| | - Emanuela Vassallo
- Division of Internal Medicine, Ospedale Civile di Castel San Giovanni, Piacenza, Italy
| | - Marie-Louise Syrén
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical and Community Sciences, Division of Pediatrics, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Domenico A Coviello
- E.O. Ospedali Galliera, Laboratory of Human Genetics and Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Pier Maria Battezzati
- Division of Internal Medicine and Liver Unit, School of Medicine Ospedale San Paolo, Department of Health Sciences, Università degli Studi di Milano, 20143, Milan, Italy.
| |
Collapse
|
30
|
Zhou M, Learned RM, Rossi SJ, DePaoli AM, Tian H, Ling L. Engineered fibroblast growth factor 19 reduces liver injury and resolves sclerosing cholangitis in Mdr2-deficient mice. Hepatology 2016; 63:914-29. [PMID: 26418580 PMCID: PMC5063176 DOI: 10.1002/hep.28257] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Defects in multidrug resistance 3 gene (MDR3), which encodes the canalicular phospholipid flippase, cause a wide spectrum of cholangiopathy phenotypes in humans. Mice deficient in Mdr2 (murine ortholog of MDR3) develop liver diseases that closely reproduce the biochemical, histological, and clinical features of human cholangiopathies such as progressive familial intrahepatic cholestasis and primary sclerosing cholangitis. We hypothesized that modulating bile acid metabolism by the gut hormone fibroblast growth factor 19 (FGF19) may represent a novel approach for treating cholangiopathy and comorbidities. We introduced adeno-associated virus carrying the gene for either the endocrine hormone FGF19 or engineered FGF19 variant M70 to 12-week old Mdr2-deficient mice with fully established disease. Effects on serum levels of liver enzymes, liver histology, and bile acid homeostasis were evaluated. FGF19 and M70 rapidly and effectively reversed liver injury, decreased hepatic inflammation, attenuated biliary fibrosis, and reduced cholecystolithiasis in Mdr2-deficient mice. Mechanistically, FGF19 and M70 significantly inhibited hepatic expression of Cyp7a1 and Cyp27a1, which encode enzymes responsible for the rate-limiting steps in the classic and alternate bile acid synthetic pathways, thereby reducing the hepatic bile acid pool and blood levels of bile acids. Importantly, prolonged exposure to FGF19, but not M70, led to the formation of hepatocellular carcinomas in the Mdr2-deficient mice. Furthermore, M70 ameliorated the hepatosplenomegaly and ductular proliferation that are associated with cholangiopathy. CONCLUSION These results demonstrate the potential for treating cholangiopathy by safely harnessing FGF19 biology to suppress bile acid synthesis.
Collapse
Affiliation(s)
- Mei Zhou
- NGM Biopharmaceuticals, Inc.South San FranciscoCA
| | | | | | | | - Hui Tian
- NGM Biopharmaceuticals, Inc.South San FranciscoCA
| | - Lei Ling
- NGM Biopharmaceuticals, Inc.South San FranciscoCA
| |
Collapse
|
31
|
Gordo-Gilart R, Hierro L, Andueza S, Muñoz-Bartolo G, López C, Díaz C, Jara P, Álvarez L. Heterozygous ABCB4 mutations in children with cholestatic liver disease. Liver Int 2016; 36:258-67. [PMID: 26153658 DOI: 10.1111/liv.12910] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/01/2015] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Monoallelic defects in ABCB4, which encodes the canalicular floppase for phosphatidylcholine MDR3, have been encountered in association with a variety of hepatobiliary disorders, particularly in adult subjects. In this study, we examined the presence of heterozygous ABCB4 variants in a cohort of children with chronic cholestasis and assessed the pathogenicity of the missense changes identified. METHODS Sixty-seven children with chronic liver dysfunction were studied by the sequencing of ABCB4 and multiplex ligation-dependent probe amplification analysis. The molecular defects arising from missense variants were analysed in MDCK-II and AD-293 cells. RESULTS Defects in a single allele of ABCB4 were identified in nine subjects. They included one small insertion (p.I1242Nfs), one nonsense mutation (p.R144X) and six missense changes (p.T175A, p.G228R, p.A250T, p.S320F, p.P352L and p.A934T). In four children, these defects in ABCB4 co-existed with various medical conditions. In vitro phenotyping of the six missense variants revealed that four (T175A, G228R, S320F and A934T) led to reduced MDR3 protein levels. Two mutations (G228R and A934T) resulted in trapping of the protein in the endoplasmic reticulum. Phosphatidylcholine efflux activity was decreased to 56-18% of reference levels for MDR3 mutants T175A, A250T and S320F. The G228R, P352L and A934T mutants were found to be non-functional. CONCLUSIONS These results illustrate the varying effects of ABCB4 missense mutations and suggest that even a modest reduction in MDR3 activity may contribute or predispose to the onset of cholestatic liver disease in the paediatric age.
Collapse
Affiliation(s)
| | - Loreto Hierro
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain.,Pediatric Liver Service, La Paz Children's University Hospital, Madrid, Spain
| | - Sara Andueza
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain
| | - Gema Muñoz-Bartolo
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain.,Pediatric Liver Service, La Paz Children's University Hospital, Madrid, Spain
| | - Carola López
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Pereira Rossell Hospital, Montevideo, Uruguay
| | - Carmen Díaz
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain.,Pediatric Liver Service, La Paz Children's University Hospital, Madrid, Spain
| | - Paloma Jara
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain.,Pediatric Liver Service, La Paz Children's University Hospital, Madrid, Spain
| | - Luis Álvarez
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain
| |
Collapse
|
32
|
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is characterized by maternal pruritus, and elevated serum transaminases and bile acids. Genetic defects in at least 6 canalicular transporters have been found. Association studies stress the variability of genotypes, different penetrance, and influence of environmental factors. Serum autotaxin is a sensitive, specific, and robust diagnostic marker. Elevated maternal bile acids correlate with fetal complications. Long-term sequelae for mothers include the gallstone risk and chronic liver disease. There is an association between ICP and hepatitis C. Current treatment is ursodeoxycholic acid, owing to benefits on pruritus, liver function, safety, and decreased rates of adverse effects.
Collapse
Affiliation(s)
- Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani, 2, Padova 35128, Italy.
| | - Maria Teresa Gervasi
- Department of Obstetrics and Gynecology, Azienda Ospedaliera, Via Giustiniani, 2, Padova 35128, Italy
| |
Collapse
|
33
|
Zhao Y, Ishigami M, Nagao K, Hanada K, Kono N, Arai H, Matsuo M, Kioka N, Ueda K. ABCB4 exports phosphatidylcholine in a sphingomyelin-dependent manner. J Lipid Res 2015; 56:644-652. [PMID: 25601960 DOI: 10.1194/jlr.m056622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABCB4, which is specifically expressed on the canalicular membrane of hepatocytes, exports phosphatidylcholine (PC) into bile. Because SM depletion increases cellular PC content and stimulates PC and cholesterol efflux by ABCA1, a key transporter involved in generation of HDL, we predicted that SM depletion also stimulates PC efflux through ABCB4. To test this prediction, we compared the lipid efflux activity of ABCB4 and ABCA1 under SM depletion induced by two different types of inhibitors for SM synthesis, myriocin and (1R,3S)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide, in human embryonic kidney 293 and baby hamster kidney cells. Unexpectedly, SM depletion exerted opposite effects on ABCB4 and ABCA1, suppressing PC efflux through ABCB4 while stimulating efflux through ABCA1. Both ABCB4 and ABCA1 were recovered from Triton-X-100-soluble membranes, but ABCB4 was mainly recovered from CHAPS-insoluble SM-rich membranes, whereas ABCA1 was recovered from CHAPS-soluble membranes. These results suggest that a SM-rich membrane environment is required for ABCB4 to function. ABCB4 must have evolved to exert its maximum activity in the SM-rich membrane environment of the canalicular membrane, where it transports PC as the physiological substrate.
Collapse
Affiliation(s)
- Yu Zhao
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8502, Japan
| | - Masato Ishigami
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Kohjiro Nagao
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Hanada
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Michinori Matsuo
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Noriyuki Kioka
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Kazumitsu Ueda
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8502, Japan; Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan.
| |
Collapse
|
34
|
Gordo-Gilart R, Andueza S, Hierro L, Martínez-Fernández P, D'Agostino D, Jara P, Alvarez L. Functional analysis of ABCB4 mutations relates clinical outcomes of progressive familial intrahepatic cholestasis type 3 to the degree of MDR3 floppase activity. Gut 2015; 64:147-55. [PMID: 24594635 DOI: 10.1136/gutjnl-2014-306896] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a potentially lethal autosomal recessive liver disease associated with mutations in ABCB4, the gene encoding the canalicular translocator of phosphatidylcholine MDR3. While some affected children benefit from ursodeoxycholic acid (UDCA) therapy, others evolve to end-stage liver disease. We aimed to evaluate whether these different outcomes are related to the impact of ABCB4 mutations. DESIGN Six children with PFIC3 were investigated by sequencing of ABCB4 exons and flanking intron-exon boundaries and by immunohistochemistry. ABCB4 missense mutations were phenotyped in vitro by assessing their effects on MDR3 expression, subcellular localisation, and phosphatidylcholine-translocating activity. The resulting data were contrasted with the clinical outcomes. RESULTS Eight distinct ABCB4 mutations were identified: one nonsense, one splicing and six missense mutations, four of which (G68R, T201M, P479L, D459H) affected MDR3 expression level. G68R and D459H also led to retention of the protein in endoplasmic reticulum. Phosphatidylcholine efflux assays indicated that T201M, P479L, S978P and E1118K mutations impaired MDR3 activity to variable degrees. Three children with mutations that caused a total loss of MDR3 expression/function manifested progressive liver disease refractory to UDCA treatment. This was also the case in a patient carrying two different mutations that, in combination, resulted in a 90% reduction in total MDR3 activity. A favourable response to UDCA was achieved in two patients with estimated MDR3 activities of 50% and 33%, respectively. CONCLUSIONS These data provide experimental evidence of the correlation between the degree of MDR3 floppase activity and the clinical outcomes of PFIC3.
Collapse
Affiliation(s)
| | - Sara Andueza
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain
| | - Loreto Hierro
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain Pediatric Liver Service, La Paz Children's University Hospital, Madrid, Spain
| | - Pilar Martínez-Fernández
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Daniel D'Agostino
- Paediatric Gastroenterology-Hepatology Division, Liver-Intestinal Transplantation Center, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Paloma Jara
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain Pediatric Liver Service, La Paz Children's University Hospital, Madrid, Spain
| | - Luis Alvarez
- La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain
| |
Collapse
|
35
|
Pan S, Li X, Jiang P, Jiang Y, Shuai L, He Y, Li Z. Variations of ABCB4 and ABCB11 genes are associated with primary intrahepatic stones. Mol Med Rep 2014; 11:434-46. [PMID: 25323205 DOI: 10.3892/mmr.2014.2645] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 08/11/2014] [Indexed: 01/21/2023] Open
Abstract
Variations of the ABCB4 and ABCB11 genes affect the composition of bile and are associated with cholestasis and cholelithiasis. However, their roles in the formation of primary intrahepatic stones (PIS) remains to be elucidated. The aim of the present study was to determine whether there is an association between PIS and variations in these genes. Exon sequencing was performed in order to analyze the ABCB4 and ABCB11 genes of 176 patients with PIS and 178 healthy subjects. One mutation in ABCB4 (no. 69233, G>A) and two other mutations in ABCB11, reference single nucleotide polymorphism (rs)118109635 and rs497692, were identified in association with PIS (P<0.001, P=0.04 and P=0.02, respectively). A synonymous mutation at no. 69233 G>A was detected in exon 26 of ABCB4 in 23 heterozygous patients with PIS. This mutation was not detected in healthy individuals or in the Single Nucleotide Polymorphism Database. No. 69233 G>A in ABCB4 was not associated with altered protein expression but with a reduced rate of PIS recurrence (P=0.01). The missense mutation rs118109635 was located on exon 21 of ABCB11 and was associated with the increased expression of ABCB11 protein (P=0.032) as well as altered bile salt export pump function. Another synonymous mutation, rs497692 in exon 24 was reported to decrease ABCB11 protein expression (P=0.001). In addition, the mutations of ABCB11 were associated with preoperative jaundice (P<0.001 and P=0.03, respectively). Consistently decreased levels of ABCB11 protein were associated with recurrent episodes of cholangitis (P=0.006) and preoperative jaundice (P=0.015). By contrast, ABCB4 expression was not found to be associated with clinical manifestations of PIS.
Collapse
Affiliation(s)
- Shuguang Pan
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Shapingba, Chongqing 400038, P.R. China
| | - Xiaowu Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Shapingba, Chongqing 400038, P.R. China
| | - Peng Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Shapingba, Chongqing 400038, P.R. China
| | - Yan Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Shapingba, Chongqing 400038, P.R. China
| | - Ling Shuai
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Shapingba, Chongqing 400038, P.R. China
| | - Yu He
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Shapingba, Chongqing 400038, P.R. China
| | - Zhihua Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Shapingba, Chongqing 400038, P.R. China
| |
Collapse
|
36
|
Nguyen KD, Sundaram V, Ayoub WS. Atypical causes of cholestasis. World J Gastroenterol 2014; 20:9418-9426. [PMID: 25071336 PMCID: PMC4110573 DOI: 10.3748/wjg.v20.i28.9418] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 01/07/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Cholestatic liver disease consists of a variety of disorders. Primary sclerosing cholangitis and primary biliary cirrhosis are the most commonly recognized cholestatic liver disease in the adult population, while biliary atresia and Alagille syndrome are commonly recognized in the pediatric population. In infants, the causes are usually congenital or inherited. Even though jaundice is a hallmark of cholestasis, it is not always seen in adult patients with chronic liver disease. Patients can have “silent” progressive cholestatic liver disease for years prior to development of symptoms such as jaundice and pruritus. In this review, we will discuss some of the atypical causes of cholestatic liver disease such as benign recurrent intrahepatic cholestasis, progressive familial intrahepatic cholestasis, Alagille Syndrome, biliary atresia, total parenteral nutrition induced cholestasis and cholestasis secondary to drug induced liver injury.
Collapse
|
37
|
Morita SY, Terada T. Molecular mechanisms for biliary phospholipid and drug efflux mediated by ABCB4 and bile salts. BIOMED RESEARCH INTERNATIONAL 2014; 2014:954781. [PMID: 25133187 PMCID: PMC4123595 DOI: 10.1155/2014/954781] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/14/2014] [Indexed: 01/14/2023]
Abstract
On the canalicular membranes of hepatocytes, several ABC transporters are responsible for the secretion of bile lipids. Among them, ABCB4, also called MDR3, is essential for the secretion of phospholipids from hepatocytes into bile. The biliary phospholipids are associated with bile salts and cholesterol in mixed micelles, thereby reducing the detergent activity and cytotoxicity of bile salts and preventing cholesterol crystallization. Mutations in the ABCB4 gene result in progressive familial intrahepatic cholestasis type 3, intrahepatic cholestasis of pregnancy, low-phospholipid-associated cholelithiasis, primary biliary cirrhosis, and cholangiocarcinoma. In vivo and cell culture studies have demonstrated that the secretion of biliary phospholipids depends on both ABCB4 expression and bile salts. In the presence of bile salts, ABCB4 located in nonraft membranes mediates the efflux of phospholipids, preferentially phosphatidylcholine. Despite high homology with ABCB1, ABCB4 expression cannot confer multidrug resistance. This review summarizes our current understanding of ABCB4 functions and physiological relevance, and discusses the molecular mechanism for the ABCB4-mediated efflux of phospholipids.
Collapse
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192, Japan
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
38
|
Jirsa M, Bronský J, Dvořáková L, Šperl J, Šmajstrla V, Horák J, Nevoral J, Hřebíček M. ABCB4 mutations underlie hormonal cholestasis but not pediatric idiopathic gallstones. World J Gastroenterol 2014; 20:5867-5874. [PMID: 24914347 PMCID: PMC4024796 DOI: 10.3748/wjg.v20.i19.5867] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/25/2013] [Accepted: 08/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the contribution of ABCB4 mutations to pediatric idiopathic gallstone disease and the potential of hormonal contraceptives to prompt clinical manifestations of multidrug resistance protein 3 deficiency.
METHODS: Mutational analysis of ABCB4, screening for copy number variations by multiplex ligation-dependent probe amplification, genotyping for low expression allele c.1331T>C of ABCB11 and genotyping for variation c.55G>C in ABCG8 previously associated with cholesterol gallstones in adults was performed in 35 pediatric subjects with idiopathic gallstones who fulfilled the clinical criteria for low phospholipid-associated cholelithiasis syndrome (LPAC, OMIM #600803) and in 5 young females with suspected LPAC and their families (5 probands, 15 additional family members). The probands came to medical attention for contraceptive-associated intrahepatic cholestasis.
RESULTS: A possibly pathogenic variant of ABCB4 was found only in one of the 35 pediatric subjects with idiopathic cholesterol gallstones whereas 15 members of the studied 5 LPAC kindreds were confirmed and another one was highly suspected to carry predictably pathogenic mutations in ABCB4. Among these 16, however, none developed gallstones in childhood. In 5 index patients, all young females carrying at least one pathogenic mutation in one allele of ABCB4, manifestation of LPAC as intrahepatic cholestasis with elevated serum activity of gamma-glutamyltransferase was induced by hormonal contraceptives. Variants ABCB11 c.1331T>C and ABCG8 c.55G>C were not significantly overrepresented in the 35 examined patients with suspect LPAC.
CONCLUSION: Clinical criteria for LPAC syndrome caused by mutations in ABCB4 cannot be applied to pediatric patients with idiopathic gallstones. Sexual immaturity even prevents manifestation of LPAC.
Collapse
|
39
|
Amer S, Hajira A. A Comprehensive Review of Progressive Familial Intrahepatic Cholestasis (PFIC): Genetic Disorders of Hepatocanalicular Transporters. Gastroenterology Res 2014; 7:39-43. [PMID: 27785268 PMCID: PMC5051073 DOI: 10.14740/gr609e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2014] [Indexed: 01/24/2023] Open
Abstract
Progressive familial intrahepatic cholestasis or PFIC is a general term used to describe a group of genetic disorders involving the hepatocanalicular transporters. These diseases are characterized by persistent cholestasis, pruritus and jaundice. Type I PFIC is characterized by defect in the gene that codes for aminophospholipid translocase protein and maintains canalicular membrane stability. Types 2 and 3 are caused by defect in genes that code for bile acid transporter and a phospholipid translocase, respectively. This review summarizes the genetics, clinical features, diagnosis and treatment of the three types of PFIC.
Collapse
Affiliation(s)
- Syed Amer
- Department of Internal Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Amtul Hajira
- Department of Family Medicine, Carle Foundation Hospital, Urbana, IL 61801, USA
| |
Collapse
|
40
|
Wu J, Li Y, Jiang R. Integrating multiple genomic data to predict disease-causing nonsynonymous single nucleotide variants in exome sequencing studies. PLoS Genet 2014; 10:e1004237. [PMID: 24651380 PMCID: PMC3961190 DOI: 10.1371/journal.pgen.1004237] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/27/2014] [Indexed: 01/06/2023] Open
Abstract
Exome sequencing has been widely used in detecting pathogenic nonsynonymous single nucleotide variants (SNVs) for human inherited diseases. However, traditional statistical genetics methods are ineffective in analyzing exome sequencing data, due to such facts as the large number of sequenced variants, the presence of non-negligible fraction of pathogenic rare variants or de novo mutations, and the limited size of affected and normal populations. Indeed, prevalent applications of exome sequencing have been appealing for an effective computational method for identifying causative nonsynonymous SNVs from a large number of sequenced variants. Here, we propose a bioinformatics approach called SPRING (Snv PRioritization via the INtegration of Genomic data) for identifying pathogenic nonsynonymous SNVs for a given query disease. Based on six functional effect scores calculated by existing methods (SIFT, PolyPhen2, LRT, MutationTaster, GERP and PhyloP) and five association scores derived from a variety of genomic data sources (gene ontology, protein-protein interactions, protein sequences, protein domain annotations and gene pathway annotations), SPRING calculates the statistical significance that an SNV is causative for a query disease and hence provides a means of prioritizing candidate SNVs. With a series of comprehensive validation experiments, we demonstrate that SPRING is valid for diseases whose genetic bases are either partly known or completely unknown and effective for diseases with a variety of inheritance styles. In applications of our method to real exome sequencing data sets, we show the capability of SPRING in detecting causative de novo mutations for autism, epileptic encephalopathies and intellectual disability. We further provide an online service, the standalone software and genome-wide predictions of causative SNVs for 5,080 diseases at http://bioinfo.au.tsinghua.edu.cn/spring. The detection of causative nonsynonymous single nucleotide variants (SNVs) is essential for the understanding of the pathogenesis of human inherited diseases. In this paper, we propose a statistical method called SPRING (Snv PRioritization via the INtegration of Genomic data) to combine six functional effect scores calculated by existing methods and five association scores derived from multiple genomic data sources to estimate the statistical significance that a nonsynonymous SNV is pathogenic for a query disease. We find that SPRING is effective in identifying disease-causing SNVs for diseases whose genetic bases are either partly known or completely unknown across a variety of inheritance styles. With real exome sequencing data, we show the qualified potential of SPRING in not only the detection of causative SNVs in simulation studies but also the identification of pathogenic de novo mutations for autism, epileptic encephalopathies and intellectual disability.
Collapse
Affiliation(s)
- Jiaxin Wu
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST; Department of Automation, Tsinghua University, Beijing, China
| | - Yanda Li
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST; Department of Automation, Tsinghua University, Beijing, China
| | - Rui Jiang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST; Department of Automation, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
41
|
Srivastava A. Progressive familial intrahepatic cholestasis. J Clin Exp Hepatol 2014; 4:25-36. [PMID: 25755532 PMCID: PMC4017198 DOI: 10.1016/j.jceh.2013.10.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/31/2013] [Indexed: 12/12/2022] Open
Abstract
Progressive familial intrahepatic cholestasis (PFIC) is a group of rare disorders which are caused by defect in bile secretion and present with intrahepatic cholestasis, usually in infancy and childhood. These are autosomal recessive in inheritance. The estimated incidence is about 1 per 50,000 to 1 per 100,000 births, although exact prevalence is not known. These diseases affect both the genders equally and have been reported from all geographical areas. Based on clinical presentation, laboratory findings, liver histology and genetic defect, these are broadly divided into three types-PFIC type 1, PFIC type 2 and PFIC type 3. The defect is in ATP8B1 gene encoding the FIC1 protein, ABCB 11 gene encoding BSEP protein and ABCB4 gene encoding MDR3 protein in PFIC1, 2 and 3 respectively. The basic defect is impaired bile salt secretion in PFIC1/2 whereas in PFIC3, it is reduced biliary phospholipid secretion. The main clinical presentation is in the form of cholestatic jaundice and pruritus. Serum gamma glutamyl transpeptidase (GGT) is normal in patients with PFIC1/2 while it is raised in patients with PFIC3. Treatment includes nutritional support (adequate calories, supplementation of fat soluble vitamins and medium chain triglycerides) and use of medications to relieve pruritus as initial therapy followed by biliary diversion procedures in selected patients. Ultimately liver transplantation is needed in most patients as they develop progressive liver fibrosis, cirrhosis and end stage liver disease. Due to the high risk of developing liver tumors in PFIC2 patients, monitoring is recommended from infancy. Mutation targeted pharmacotherapy, gene therapy and hepatocyte transplantation are being explored as future therapeutic options.
Collapse
Key Words
- ABC, ATP binding cassette
- ASBT, apical sodium bile salt transporter
- ATP, adenosine triphosphate
- ATPase, adenosine triphosphatase
- BRIC, benign recurrent intrahepatic cholestasis
- BSEP, bile salt exporter protein
- CFTR, cystic fibrosis transmembrane conductance regulator
- CYP, cytochrome P
- DNA, deoxyribonucleic acid
- ERAD, endoplasmic reticulum associated degradation
- ESLD, end stage liver disease
- FIC1, familial intrahepatic cholestasis protein 1
- FXR, farnesoid X receptor
- HCC, hepatocellular carcinoma
- IB, ileal bypass
- ICP, intrahepatic cholestasis of pregnancy
- LT, liver transplant
- MARS, Molecular Adsorbent Recirculating System
- MDR, multidrug resistance protein
- MRCP, magnetic resonance cholangiopancreaticography
- PBD, partial biliary drainage
- PEBD, partial external biliary drainage
- PFIC, progressive familial intrahepatic cholestasis
- PIBD, partial internal biliary drainage
- PPAR, peroxisome proliferator activator receptor
- UDCA, ursodeoxycholic acid
- bile secretion
- children
- cholestasis
- familial
- mRNA, messenger ribonucleic acid
- pGp, p-glycoprotein
- pruritus
Collapse
Affiliation(s)
- Anshu Srivastava
- Address for correspondence: Anshu Srivastava, Associate Professor, Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India. Tel.: +91 522 2495212, +91 9935219497 (mobile); fax: +91 522 2668017.
| |
Collapse
|
42
|
Bitar A, Grunow J, Steele M, Sferra TJ. Early presentation of low phospholipid-associated cholelithiasis syndrome. Clin Pediatr (Phila) 2014; 53:194-7. [PMID: 23426229 DOI: 10.1177/0009922813478828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Anas Bitar
- 1University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
44
|
Clinical utility gene card for: progressive familial intrahepatic cholestasis type 3. Eur J Hum Genet 2013; 22:ejhg2013188. [PMID: 24002166 DOI: 10.1038/ejhg.2013.188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
45
|
Morita SY, Tsuda T, Horikami M, Teraoka R, Kitagawa S, Terada T. Bile salt-stimulated phospholipid efflux mediated by ABCB4 localized in nonraft membranes. J Lipid Res 2013; 54:1221-30. [PMID: 23468132 DOI: 10.1194/jlr.m032425] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABCB4 is necessary for the secretion of phospholipids from hepatocytes into bile and for the protection of cell membranes against bile salts. Lipid rafts are plasma membrane microdomains containing high contents of cholesterol and sphingolipids, which are separated by Triton X-100 extraction or OptiPrep gradient centrifugation. In this study, we investigated the relationship between the function of ABCB4 and lipid rafts using mouse canalicular membranes and HEK293 cells stably expressing ABCB4. ABCB4 and ABCB1 were mainly distributed in nonraft membranes. The expression of ABCB4, but not ABCB1, led to significant increases in the phosphatidylcholine (PC), phosphatidylethanolamine (PE), and sphingomyelin (SM) contents in nonraft membranes and further enrichment of SM and cholesterol in raft membranes. The ABCB4-mediated efflux of PC, PE, and SM was significantly stimulated by taurocholate, while the efflux of PE and SM was much less than that of PC. This ABCB4-mediated efflux was completely abolished by BODIPY-verapamil, which hardly partitioned into raft membranes. In addition, ABCB1 and ABCB4 mediated the efflux of rhodamine 123 and rhodamine 6G from nonraft membranes, which was not affected by taurocholate. We conclude that ABCB4 located in nonrafts, but not in rafts, is predominantly involved in the efflux of phospholipids and other substrates.
Collapse
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Progressive familial intrahepatic cholestasis (PFIC) refers to a heterogeneous group of autosomal-recessive disorders of childhood that disrupt bile formation and present with cholestasis of hepatocellular origin. The exact prevalence remains unknown, but the estimated incidence varies between 1/50,000 and 1/100,000 births. Three types of PFIC have been identified and associated with mutations in hepatocellular transport-system genes involved in bile formation. PFIC1 and PFIC2 usually appear in the first months of life, whereas onset of PFIC3 may arise later in infancy, in childhood or even during young adulthood. The main clinical manifestations include cholestasis, pruritus and jaundice. PFIC patients usually develop fibrosis and end-stage liver disease before adulthood. Serum gamma-glutamyltransferase (GGT) activity is normal in PFIC1 and PFIC2 patients, but is elevated in PFIC3 patients. Both PFIC1 and PFIC2 are caused by impaired bile salt secretion due to defects in ATP8B1 encoding the FIC1 protein and in ABCB11 encoding bile salt export pump (BSEP) protein, respectively. Defects in ABCB4, encoding multidrug resistance 3 protein (MDR3), impair biliary phospholipid secretion, resulting in PFIC3. Diagnosis is based on clinical manifestations, liver ultrasonography, cholangiography and liver histology, as well as on specific tests to exclude other causes of childhood cholestasis. MDR3 and BSEP liver immunostaining, and analysis of biliary lipid composition should help to select PFIC candidates for whom genotyping could be proposed to confirm the diagnosis. Antenatal diagnosis may be proposed for affected families in which a mutation has been identified. Ursodeoxycholic acid (UDCA) therapy should be initiated in all patients to prevent liver damage. In some PFIC1 and PFIC2 patients, biliary diversion may also relieve pruritus and slow disease progression. However, most PFIC patients are ultimately candidates for liver transplantation. Monitoring of liver tumors, especially in PFIC2 patients, should be offered from the first year of life. Hepatocyte transplantation, gene therapy and specific targeted pharmacotherapy may represent alternative treatments in the future.
Collapse
Affiliation(s)
- Emmanuel Jacquemin
- Pediatric Hepatology and Liver Transplantation Unit, and Reference Centre for Rare Liver Diseases, Bicêtre Hospital, AP-HP, 78 rue du général Leclerc, 94275 Le Kremlin-Bicêtre cedex, France.
| |
Collapse
|
47
|
Sannier A, Ganne N, Tepper M, Ziol M. MDR3 immunostaining on frozen liver biopsy samples is not a sensitive diagnostic tool for the detection of heterozygous MDR3/ABCB4 gene mutations. Virchows Arch 2012; 460:535-7; author reply 539. [PMID: 22527017 DOI: 10.1007/s00428-012-1231-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 03/26/2012] [Indexed: 01/20/2023]
|
48
|
Bernhardt GA, Zollner G, Cerwenka H, Kornprat P, Fickert P, Bacher H, Werkgartner G, Müller G, Zatloukal K, Mischinger HJ, Trauner M. Hepatobiliary transporter expression and post-operative jaundice in patients undergoing partial hepatectomy. Liver Int 2012; 32:119-27. [PMID: 22098322 DOI: 10.1111/j.1478-3231.2011.02625.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 07/17/2011] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS Post-operative hyperbilirubinaemia in patients undergoing liver resections is associated with high morbidity and mortality. Apart from different known factors responsible for the development of post-operative jaundice, little is known about the role of hepatobiliary transport systems in the pathogenesis of post-operative jaundice in humans after liver resection. METHODS Two liver tissue samples were taken from 14 patients undergoing liver resection before and after Pringle manoeuvre. Patients were retrospectively divided into two groups according to post-operative bilirubin serum levels. The two groups were analysed comparing the results of hepatobiliary transporter [Na-taurocholate cotransporter (NTCP); multidrug resistance gene/phospholipid export pump(MDR3); bile salt export pump (BSEP); canalicular bile salt export pump (MRP2)], heat shock protein 70 (HSP70) expression as well as the results of routinely taken post-operative liver chemistry tests. RESULTS Patients with low post-operative bilirubin had lower levels of NTCP, MDR3 and BSEP mRNA compared to those with high bilirubin after Pringle manoeuvre. HSP70 levels were significantly higher after ischaemia-reperfusion (IR) injury in both groups resulting in 4.5-fold median increase. Baseline median mRNA expression of all four transporters prior to Pringle manoeuvre tended to be lower in the low bilirubin group whereas expression of HSP70 was higher in the low bilirubin group compared to the high bilirubin group. DISCUSSION Higher mRNA levels of HSP70 in the low bilirubin group could indicate a possible protective effect of high HSP70 levels against IR injury. Although the exact role of hepatobiliary transport systems in the development of post-operative hyper bilirubinemia is not yet completely understood, this study provides new insights into the molecular aspects of post-operative jaundice after liver surgery.
Collapse
Affiliation(s)
- Gerwin A Bernhardt
- Division of General Surgery, Department of Surgery, Medical University of Graz, Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
First description of ABCB4 gene deletions in familial low phospholipid-associated cholelithiasis and oral contraceptives-induced cholestasis. Eur J Hum Genet 2011; 20:277-82. [PMID: 21989363 DOI: 10.1038/ejhg.2011.186] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The wide clinical spectrum of the ABCB4 gene (ATP-binding cassette subfamily B member 4) deficiency syndromes in humans includes low phospholipid-associated cholelithiasis (LPAC), intrahepatic cholestasis of pregnancy (ICP), oral contraceptives-induced cholestasis (CIC), and progressive familial intrahepatic cholestasis type 3 (PFIC3). No ABCB4 mutations are found in a significant proportion of patients with these syndromes. In the present study, 102 unrelated adult patients with LPAC (43 patients) or CIC/ICP (59 patients) were screened for ABCB4 mutations using DNA sequencing. Heterozygous ABCB4 point or short insertion/deletion mutations were found in 37% (16/43) of the LPAC patients and in 27% (16/59) of the ICP/CIC patients. High-resolution gene dosage methodologies were used in the 70 negative patients. Here, we describe for the first time ABCB4 partial or complete heterozygous deletions in 7% (3/43) of the LPAC patients, and in 2% (1/59) of the ICP/CIC patients. Our observations urge to systematically test patients with LPAC, ICP/CIC, and also children with PFIC3 for the presence of ABCB4 deletions using molecular tools allowing detection of gross rearrangements. In clinical practice, a comprehensive ABCB4 alteration-screening algorithm will permit the use of ABCB4 genotyping to confirm the diagnosis of LPAC or ICP/CIC, and allow familial testing. An early diagnosis of these biliary diseases may be beneficial because of the preventive effect of ursodeoxycholic acid on biliary complications. Further comparative studies of patients with well-characterized genotypes (including deletions) and phenotypes will help determine whether ABCB4 mutation types influence clinical outcomes.
Collapse
|
50
|
Abstract
ABCB4 (MDR3), a lipid translocator, moves phosphatidylcholine from the inner to the outer leaflet of the canalicular membrane. Genetic mutations of ABCB4 lead to three distinct but related hepatobiliary diseases. Progressive familial intrahepatic cholestasis (PFIC) type 3 is a chronic cholestatic syndrome characterized by a markedly elevated gamma-glutamyltranspeptidase. Patients present with jaundice, pruritus, and hepatosplenomegaly. Periportal inflammation progresses to biliary cirrhosis and causes portal hypertension. Ursodeoxycholic acid (UDCA) normalizes liver function tests in approximately one half of treated PFIC type 3 patients. Partial responders or nonresponders eventually will require liver transplantation. Gallstone patients with ABCB4 mutations may have low phospholipid-associated cholelithiasis syndrome, characterized by cholesterol gallstones and intrahepatic microlithiasis, along with recurrent biliary symptoms, despite cholecystectomy. Patients with ABCB4 mutations also may develop intrahepatic brown pigment stones. UDCA may improve biliary symptoms even before the dissolution of stones occurs. Additional therapies such as farnesoid X receptor ligands/agonists and benzfibrates show future therapeutic promise. Intrahepatic cholestasis of pregnancy affects pregnant women with abnormal ABCB4. These women suffer from disabling pruritus and also may experience steatorrhea. Fetuses are at high risk for prematurity and stillbirths. The definitive treatment is delivery of the baby. In the interim, limited fat intake, fat-soluble vitamin supplementation, and UDCA with or without S-adenosylmethionine can provide symptomatic relief. Additional hepatobiliary diseases related to ABCB4 mutations are likely to be identified. This may result in the discovery of additional therapies for PFIC type 3, gallstones, and intrahepatic cholestasis of pregnancy.
Collapse
Affiliation(s)
- Shikha S Sundaram
- Shikha S. Sundaram, MD, MSCI Section of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital, 1056 East 19th Avenue, B290, Denver, CO 80218-1088, USA.
| | | |
Collapse
|