1
|
Wan S, Wang S, He X, Song C, Wang J. Noninvasive diagnosis of interstitial fibrosis in chronic kidney disease: a systematic review and meta-analysis. Ren Fail 2024; 46:2367021. [PMID: 38938187 PMCID: PMC11216256 DOI: 10.1080/0886022x.2024.2367021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
RATIONALE AND OBJECTIVES Researchers have delved into noninvasive diagnostic methods of renal fibrosis (RF) in chronic kidney disease, including ultrasound (US), magnetic resonance imaging (MRI), and radiomics. However, the value of these diagnostic methods in the noninvasive diagnosis of RF remains contentious. Consequently, the present study aimed to systematically delineate the accuracy of the noninvasive diagnosis of RF. MATERIALS AND METHODS A systematic search covering PubMed, Embase, Cochrane Library, and Web of Science databases for all data available up to 28 July 2023 was conducted for eligible studies. RESULTS We included 21 studies covering 4885 participants. Among them, nine studies utilized US as a noninvasive diagnostic method, eight studies used MRI, and four articles employed radiomics. The sensitivity and specificity of US for detecting RF were 0.81 (95% CI: 0.76-0.86) and 0.79 (95% CI: 0.72-0.84). The sensitivity and specificity of MRI were 0.77 (95% CI: 0.70-0.83) and 0.92 (95% CI: 0.85-0.96). The sensitivity and specificity of radiomics were 0.69 (95% CI: 0.59-0.77) and 0.78 (95% CI: 0.68-0.85). CONCLUSIONS The current early noninvasive diagnostic methods for RF include US, MRI, and radiomics. However, this study demonstrates that US has a higher sensitivity for the detection of RF compared to MRI. Compared to US, radiomics studies based on US did not show superior advantages. Therefore, challenges still exist in the current radiomics approaches for diagnosing RF, and further exploration of optimized artificial intelligence (AI) algorithms and technologies is needed.
Collapse
Affiliation(s)
- Shanshan Wan
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shiping Wang
- Department of Radiology, The Affiliated Anning First People’s Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xinyu He
- Department of Radiology, The Affiliated Anning First People’s Hospital of Kunming University of Science and Technology, Kunming, China
| | - Chao Song
- Department of Radiology, The Affiliated Anning First People’s Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jiaping Wang
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Guo Y, Gao W, Ding X, Cai Q, Bai Y. Assessment of the renal function and fibrosis indexes of conventional western medicine with Chinese medicine for dredging collaterals on treating renal fibrosis: A systematic review and meta-analysis. Open Med (Wars) 2024; 19:20230815. [PMID: 39027883 PMCID: PMC11255556 DOI: 10.1515/med-2023-0815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 07/20/2024] Open
Abstract
To investigate the renal function and fibrosis indexes of conventional western medicine with Chinese medicine for dredging collaterals in the treatment of renal fibrosis (RF). We searched articles from databases (PubMed, Embase, The Cochrane Library, CNKI, and Wanfang data) and references of included studies. The quality of literature was evaluated and data were extracted in regard to the inclusion and exclusion criteria. RevMan5.3 software was applied for all statistical analyses. Eleven eligible RCTs with a total of 898 patients were included in this meta-analysis. Compared with conventional western medicine alone, conventional western medicine with Chinese medicine for dredging collaterals in the treatment of RF has lower BUN levels and SCr levels (P < 0.05). As for fibrosis indexes, conventional western medicine with Chinese medicine for dredging collaterals has lower HA, laminin (LN), IV-Col, and PC-III levels (P < 0.05). Conventional western medicine with Chinese medicine for dredging collaterals with lower BUN, Scr, HA, LN, PC-III, and IV-Col levels, has an advantage in the treatment of RF. These lower serum levels may not be associated with the presence of RF. Ideally, kidney biopsies should be performed to confirm that these markers reduce RF. This is a major limitation of this study.
Collapse
Affiliation(s)
- Yingbo Guo
- Department of Nephropathy, Dongfang Hospital of Beijing University of Chinese Medicine, Fengtai District, 100078, Beijing, China
| | - Wenfeng Gao
- Department of Urology, Dongzhimen Hospital of Beijing University of Chinese Medicine, 100700, Beijing, China
| | - Xinyu Ding
- Department of Nephropathy, Dongfang Hospital of Beijing University of Chinese Medicine, Fengtai District, 100078, Beijing, China
| | - Qian Cai
- Department of Nephropathy, Dongfang Hospital of Beijing University of Chinese Medicine, Fengtai District, 100078, Beijing, China
| | - Yu Bai
- Department of Nephropathy, Dongfang Hospital of Beijing University of Chinese Medicine, Fengtai District, 100078, Beijing, China
| |
Collapse
|
3
|
Tarchi SM, Salvatore M, Lichtenstein P, Sekar T, Capaccione K, Luk L, Shaish H, Makkar J, Desperito E, Leb J, Navot B, Goldstein J, Laifer S, Beylergil V, Ma H, Jambawalikar S, Aberle D, D'Souza B, Bentley-Hibbert S, Marin MP. Radiology of fibrosis part III: genitourinary system. J Transl Med 2024; 22:616. [PMID: 38961396 PMCID: PMC11223291 DOI: 10.1186/s12967-024-05333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Fibrosis is a pathological process involving the abnormal deposition of connective tissue, resulting from improper tissue repair in response to sustained injury caused by hypoxia, infection, or physical damage. It can impact any organ, leading to their dysfunction and eventual failure. Additionally, tissue fibrosis plays an important role in carcinogenesis and the progression of cancer.Early and accurate diagnosis of organ fibrosis, coupled with regular surveillance, is essential for timely disease-modifying interventions, ultimately reducing mortality and enhancing quality of life. While extensive research has already been carried out on the topics of aberrant wound healing and fibrogenesis, we lack a thorough understanding of how their relationship reveals itself through modern imaging techniques.This paper focuses on fibrosis of the genito-urinary system, detailing relevant imaging technologies used for its detection and exploring future directions.
Collapse
Affiliation(s)
- Sofia Maria Tarchi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA.
| | - Mary Salvatore
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Philip Lichtenstein
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Thillai Sekar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Kathleen Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Hiram Shaish
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jasnit Makkar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Elise Desperito
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jay Leb
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Benjamin Navot
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jonathan Goldstein
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Sherelle Laifer
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Volkan Beylergil
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Dwight Aberle
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Belinda D'Souza
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Stuart Bentley-Hibbert
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Monica Pernia Marin
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| |
Collapse
|
4
|
Reiss AB, Jacob B, Zubair A, Srivastava A, Johnson M, De Leon J. Fibrosis in Chronic Kidney Disease: Pathophysiology and Therapeutic Targets. J Clin Med 2024; 13:1881. [PMID: 38610646 PMCID: PMC11012936 DOI: 10.3390/jcm13071881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic kidney disease (CKD) is a slowly progressive condition characterized by decreased kidney function, tubular injury, oxidative stress, and inflammation. CKD is a leading global health burden that is asymptomatic in early stages but can ultimately cause kidney failure. Its etiology is complex and involves dysregulated signaling pathways that lead to fibrosis. Transforming growth factor (TGF)-β is a central mediator in promoting transdifferentiation of polarized renal tubular epithelial cells into mesenchymal cells, resulting in irreversible kidney injury. While current therapies are limited, the search for more effective diagnostic and treatment modalities is intensive. Although biopsy with histology is the most accurate method of diagnosis and staging, imaging techniques such as diffusion-weighted magnetic resonance imaging and shear wave elastography ultrasound are less invasive ways to stage fibrosis. Current therapies such as renin-angiotensin blockers, mineralocorticoid receptor antagonists, and sodium/glucose cotransporter 2 inhibitors aim to delay progression. Newer antifibrotic agents that suppress the downstream inflammatory mediators involved in the fibrotic process are in clinical trials, and potential therapeutic targets that interfere with TGF-β signaling are being explored. Small interfering RNAs and stem cell-based therapeutics are also being evaluated. Further research and clinical studies are necessary in order to avoid dialysis and kidney transplantation.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (B.J.); (A.Z.); (A.S.); (M.J.); (J.D.L.)
| | | | | | | | | | | |
Collapse
|
5
|
Wei CG, Zeng Y, Zhang R, Zhu Y, Tu J, Pan P, Ma Q, Wei LY, Zhao WL, Shen JK. Native T 1 mapping for non-invasive quantitative evaluation of renal function and renal fibrosis in patients with chronic kidney disease. Quant Imaging Med Surg 2023; 13:5058-5071. [PMID: 37581045 PMCID: PMC10423339 DOI: 10.21037/qims-22-1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/12/2023] [Indexed: 08/16/2023]
Abstract
Background To investigate the role of native T1 mapping in the non-invasive quantitative assessment of renal function and renal fibrosis (RF) in chronic kidney disease (CKD) patients. Methods A prospective analysis of 71 consecutive patients [no RF (0%): 9 cases; mild RF (<25%): 36 cases; moderate RF (25-50%): 17 cases; severe RF (>50%): 9 cases] who were clinically diagnosed with CKD that was pathologically confirmed and who underwent magnetic resonance imaging (MRI) examination between October 2021 and September 2022 was performed. T1-C (mean cortical T1 value), T1-M (mean medullary T1 value), ΔT1 (mean corticomedullary difference) and T1% (mean corticomedullary ratio) values were compared. Correlations between T1 parameters and clinical and histopathological values were analyzed. Regression analysis was performed to determine independent predictors of RF. The areas under the receiver operating characteristic curve (AUC) were calculated to assess the diagnostic value of RF. Results The T1-C, ΔT1 and T1% values (P<0.05) were significantly different in the CKD group, but T1-M was not (P>0.05). The ΔT1 and T1% values showed significant differences in pairwise comparisons among CKD subgroups (P<0.05) except for CKD 2 and 3. ΔT1 and T1% were moderately correlated with the estimated glomerular filtration rate (ΔT1: rs=-0.561; T1%: r=-0.602), serum creatinine (ΔT1: rs=0.591; T1%: rs=0.563), blood urea nitrogen (ΔT1: rs=0.433; T1%: rs=0.435) and histopathological score (ΔT1: rs=0.630; T1%: rs=0.658). ΔT1 and T1%, but not T1-C, were independent predictors of RF (P<0.05). ΔT1 and T1% were set as -410.07 ms and 0.8222 with great specificity [ΔT1: 91.7% (77.5-98.2%); T1%: 97.2% (85.5-99.9%)] to identify mild RF and moderate-severe RF. The optimal cutoff values for differentiating severe RF from mild-moderate RF were -343.81 ms (ΔT1) and 0.8359 (T1%) with high sensitivity [both 100% (66.4-100%)] and specificity [ΔT1: 90.6% (79.3-96.9%); T1%: 94.3% (84.3-98.8%)]. Conclusions ΔT1 and T1% overwhelm T1-C for assessment of renal function and RF in CKD patients. ΔT1 and T1% identify patients with <25% and >50% fibrosis, which can guide clinical decision-making and help to avoid biopsy-related bleeding.
Collapse
Affiliation(s)
- Chao-Gang Wei
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Zeng
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ye Zhu
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Tu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Pan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing Ma
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lan-Yi Wei
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-Lu Zhao
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun-Kang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Zhang Z, Chen Y, Zhou X, Liu S, Yu J. The value of functional magnetic resonance imaging in the evaluation of diabetic kidney disease: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1226830. [PMID: 37484949 PMCID: PMC10360195 DOI: 10.3389/fendo.2023.1226830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Background The diversity of clinical trajectories in diabetic kidney disease (DKD) has made blood and biochemical urine markers less precise, while renal puncture, the gold standard, is almost impossible in the assessment of diabetic kidney disease, and the value of functional magnetic resonance imaging in the evaluation of diabetic pathological alterations is increasingly recognized. Methods The literature on functional magnetic resonance imaging (fMRI) for the assessment of renal alterations in diabetic kidney disease was searched in PubMed, Web of Science, Cochrane Library, and Embase databases. The search time limit is from database creation to March 10, 2023. RevMan was used to perform a meta-analysis of the main parameters of fMRIs extracted from DKD patients and healthy volunteers (HV). Results 24 publications (1550 subjects) were included in this study, using five functional MRIs with seven different parameters. The renal blood flow (RBF) values on Arterial spin labeling magnetic resonance imaging (ASL-MRI) was significantly lower in the DKD group than in the HV group. The [WMD=-99.03, 95% CI (-135.8,-62.27), P<0.00001]; Diffusion tensor imaging magnetic resonance imaging (DTI-MRI) showed that the fractional anisotropy (FA) values in the DKD group were significantly lower than that in HV group [WMD=-0.02, 95%CI (-0.03,-0.01), P<0.0001]. And there were no statistically significant differences in the relevant parameters in Blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) or Intro-voxel incoherent movement magnetic resonance imaging (IVIM-DWI). Discussion ASL and DWI can identify the differences between DKD and HV. DTI has a significant advantage in assessing renal cortical changes; IVIM has some value in determining early diabetic kidney disease from the cortex or medulla. We recommend combining multiple fMRI parameters to assess structural or functional changes in the kidney to make the assessment more comprehensive. We did not observe a significant risk of bias in the present study. Systematic review registration https://www.crd.york.ac.uk, identifier CRD42023409249.
Collapse
Affiliation(s)
- Ziqi Zhang
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Chen
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Su Liu
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Kim SY, Kim H, Lee J, Jung SI, Moon MH, Joo KW, Cho JY. Quantitative magnetic resonance imaging of chronic kidney disease: an experimental in vivo study using rat chronic kidney disease models. Acta Radiol 2021; 64:404-414. [PMID: 34928730 DOI: 10.1177/02841851211065143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent advances in magnetic resonance imaging (MRI) may allow it to be an alternative emerging tool for the non-invasive evaluation of renal parenchymal disease. PURPOSE To validate the usefulness of quantitative multiparametric MRI protocols and suggest the suitable quantitative MR sequence protocol to evaluate parenchymal fibrosis using an animal model of chronic kidney disease (CKD) by long-term adenine intake. MATERIAL AND METHODS In this prospective animal study, 16 male Wistar rats were analyzed and categorized into three groups. Rats in the CKD groups underwent 0.25% adenine administration for three or six weeks. Quantitative MRI protocols, including diffusion-weighted imaging (DWI), T1ρ (T1 rho), and T2* mapping were performed using a 9.4-T animal MR scanner. A semi-quantitative histopathologic analysis for renal fibrosis was conducted. Quantitative MR values measured from anatomic regions of kidneys underwent intergroup comparative analyses. RESULTS The apparent diffusion coefficient (ADC) and T1 (T1 rho) values were significantly increased in all CKD groups. Values measured from the cortex and outer medulla showed significant intergroup differences. Total ADC values tended to increase according to periods, and T1ρ values increased in three weeks and decreased in six weeks. CONCLUSION Quantitative MRI protocols could be a non-invasive assessment modality in the diagnosis and evaluation of CKD. Particularly, T1ρ may be a suitable MR sequence to quantitatively assess renal parenchymal fibrosis.
Collapse
Affiliation(s)
- Sang Youn Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine and Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyeonjin Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine and Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Joongyub Lee
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Il Jung
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Min Hoan Moon
- Department of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Yeon Cho
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine and Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Gunduz N, Buz A, Kabaalioglu A. Does Early Diabetic Kidney Damage Alter Renal Elasticity? An Ultrasound-Based, Two-Dimensional Shear Wave Elastography Study. Medeni Med J 2021; 36:209-216. [PMID: 34915678 PMCID: PMC8565583 DOI: 10.5222/mmj.2021.65021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/30/2021] [Indexed: 11/05/2022] Open
Abstract
Objective Kidney damage caused by type 2 diabetes mellitus (T2DM) can reduce renal elasticity. Limited number of data exist indicating whether early kidney damage causes stiffening of renal tissue. This comparative study aims to assess kidney elasticity in T2DM patients with or without moderate albuminuria, using ultrasound-based two-dimensional shear wave velocity (2D-SWV) measurements. Methods Fifty-seven cases (40 T2D patients with stage 1 or 2 chronic kidney disease and 17 age- and sex-matched healthy controls) were included in this single-center prospective study. The T2DM patients were divided into those with moderate albuminuria (n=22) and those without albuminuria (n=18). Bilateral renal parenchymal 2D-SWV values were measured (separately) in the upper, middle, and lower kidney regions. Group data were compared using the t-test or Mann-Whitney-U test (whichever appropriate). Inter-observer agreement was assessed by deriving the intra-class correlation coefficient. Results There was no difference between the T2DM and control groups in terms of the median age [55.5 (50-62) vs. 55 (48.5-59.5) years, p=0.48] and sex ratio [18 (45%) males vs. 10 (58.8%) females, p=0.34]. The average regional 2D-SWV values were all similar between the groups (all p>0.05). The average 2D-SWV values were similar between the subgroups with and without albuminuria. The inter-observer agreement was good (intra-class correlation coefficient=0.66, 95% CI 0.19-0.88, p=0.006). Conclusion Kidney elasticity does not seem to be compromised in patients with diabetes and preserved estimated glomerular filtration rate with or without moderate albuminuria.
Collapse
Affiliation(s)
- Nesrin Gunduz
- Istanbul Medeniyet University, School of Medicine, Department of Radiology, Istanbul, Turkey
| | - Aysenur Buz
- Istanbul Medeniyet University, School of Medicine, Department of Radiology, Istanbul, Turkey
| | - Adnan Kabaalioglu
- Istanbul Medeniyet University, School of Medicine, Department of Radiology, Istanbul, Turkey
| |
Collapse
|
9
|
Yu YM, Wang W, Wen J, Zhang Y, Lu GM, Zhang LJ. Detection of renal allograft fibrosis with MRI: arterial spin labeling outperforms reduced field-of-view IVIM. Eur Radiol 2021; 31:6696-6707. [PMID: 33738596 DOI: 10.1007/s00330-021-07818-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To compare the value of reduced field-of-view (FOV) intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) and arterial spin labeling (ASL) for assessing renal allograft fibrosis and predicting long-term dysfunction. METHODS This prospective study included 175 renal transplant recipients undergoing reduced FOV IVIM DWI, ASL, and biopsies. Renal allograft fibrosis was categorized into ci0, ci1, ci2, and ci3 fibrosis according to biopsy results. A total of 83 participants followed for a median of 39 (IQR, 21-42) months were dichotomized into stable and impaired allograft function groups based on follow-up estimated glomerular filtration rate. Total apparent diffusion coefficient (ADCT), pure diffusion ADC, pseudo-perfusion ADC, perfusion fraction f from IVIM DWI, and renal blood flow (RBF) from ASL were calculated and compared. The area under the receiver operating characteristic curve (AUC) was calculated to assess the diagnostic and predictive performances. RESULTS RBF was different in ci0 vs ci1 (147.9 ± 46.3 vs 126.0 ± 49.4 ml/min/100 g, p = .02) and ci2 vs ci3 (92.9 ± 46.9 vs 70.8 ± 37.8 ml/min/100 g, p = .03). RBF in the stable group was higher than that in the impaired group (144.73 ± 49.33 vs 102.19 ± 47.58 ml/min/100 g, p < .001). AUCs in distinguishing renal allograft fibrosis and predicting long-term allograft dysfunction for RBF were higher than cortical ADCT (ci0 vs ci1-3, 0.76 vs 0.59, p < .001; ci0-1 vs ci2-3, 0.79 vs 0.68, p = .01; ci0-2 vs ci3, 0.79 vs 0.68, p = .01; 0.76 vs 0.60, p = .04, respectively). CONCLUSION Compared to reduced FOV IVIM DWI, ASL was a more promising technique for noninvasively distinguishing renal allograft fibrosis degree and predicting long-term allograft dysfunction. KEY POINTS • Compared to total ADC from rFOV IVIM DWI, RBF from ASL can distinguish no fibrosis (ci0) vs mild fibrosis (ci1) (p = .02) and moderate fibrosis (ci2) vs severe fibrosis (ci3) (p = .04). • RBF had superior performance than diffusion parameters in discriminating fibrosis (no fibrosis [ci0] vs fibrosis [ci1-3], mild fibrosis [ci0-1] vs moderate to severe fibrosis [ci2-3], non-severe [ci0-2] vs severe [ci3] fibrosis; AUC = 0.76 vs 0.59, p < .001; 0.79 vs 0.68, p = .01; 0.79 vs 0.68, p = .01). • Compared to reduced FOV IVIM DWI, ASL was a more promising technique for noninvasively predicting long-term allograft dysfunction (AUC = 0.76 vs 0.60, p = .04).
Collapse
Affiliation(s)
- Yuan Meng Yu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Southern Medical University, Nanjing, 210002, Jiangsu, China.,Department of MRI, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Wei Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing Medical University, 305 East Zhong Shan Road, Nanjing, 210002, China.,Department of Nephrology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jiqiu Wen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing Medical University, 305 East Zhong Shan Road, Nanjing, 210002, China
| | - Yong Zhang
- MR Research, GE Healthcare, Shanghai, 201203, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Southern Medical University, Nanjing, 210002, Jiangsu, China.,Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Clinical School of Southern Medical University, Nanjing, 210002, Jiangsu, China. .,Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
10
|
Zhang XQ, Li X, Zhou WQ, Liu X, Huang JL, Zhang YY, Lindholm B, Yu C. Serum Lysyl Oxidase Is a Potential Diagnostic Biomarker for Kidney Fibrosis. Am J Nephrol 2020; 51:907-918. [PMID: 33152735 DOI: 10.1159/000509381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Kidney fibrosis is the ultimate consequence of advanced stages of chronic kidney disease (CKD); however, there are currently no reliable biomarkers or noninvasive diagnostic tests available for the detection of kidney fibrosis. Lysyl oxidase (LOX) promotes collagen cross-linking, and serum LOX levels have been shown to be elevated in patients with fibrosis of the heart, lungs, and liver. However, serum LOX levels have not been reported in patients with kidney fibrosis. We explored whether serum LOX levels are associated with kidney fibrosis. METHOD Overall, 202 patients with kidney disease underwent renal biopsy, scoring of kidney fibrosis, and determination of the area of kidney fibrosis. LOX levels were measured in serum and in kidney tissues. We analyzed the association of circulating LOX and tissue LOX levels with the scores and areas of kidney fibrosis. LOX expression was also investigated with in vitro and in vivo kidney fibrosis models. RESULTS Serum LOX levels were higher in patients with kidney fibrosis than in those without kidney fibrosis (p < 0.001) and higher in patients with moderate-severe kidney fibrosis than in patients with mild kidney fibrosis (p < 0.001). Both serum LOX and renal tissue LOX levels correlated with the area of kidney fibrosis (r = 0.748, p < 0.001; r = 0.899, p < 0.001, respectively). Receiver operating characteristic curve analysis of serum LOX levels showed an area under the curve of 0.80 (95% CI: 0.74-0.86). The optimal serum LOX level cutoff point was 253.34 pg/mL for the prediction of kidney fibrosis and 306.56 pg/mL for the prediction of moderate-severe kidney fibrosis. LOX expression levels were significantly upregulated (2.3-2.6 and 6-fold, respectively) in in vitro and in vivo interstitial fibrosis models. CONCLUSIONS Both serum LOX and tissue LOX levels correlated with the presence and degree of kidney fibrosis in patients with CKD. These results suggest that serum LOX levels could potentially serve as a noninvasive diagnostic biomarker for kidney fibrosis and may further potentially serve as a stratified biomarker for the identification of mild and moderate-severe kidney fibrosis.
Collapse
Affiliation(s)
- Xiao-Qin Zhang
- Department of Nephrology, Tongji Hospital, Tongji University, Shanghai, China
| | - Xin Li
- Department of Nephrology, Tongji Hospital, Tongji University, Shanghai, China
| | - Wen-Qian Zhou
- Department of Nephrology, Tongji Hospital, Tongji University, Shanghai, China
| | - Xi Liu
- Department of Nephrology, Tongji Hospital, Tongji University, Shanghai, China
| | - Jie-Li Huang
- Department of Nephrology, Tongji Hospital, Tongji University, Shanghai, China
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University, Shanghai, China
| | - Bengt Lindholm
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University, Shanghai, China,
| |
Collapse
|
11
|
Brown RS, Sun MRM, Stillman IE, Russell TL, Rosas SE, Wei JL. The utility of magnetic resonance imaging for noninvasive evaluation of diabetic nephropathy. Nephrol Dial Transplant 2020; 35:970-978. [PMID: 31329940 PMCID: PMC7282829 DOI: 10.1093/ndt/gfz066] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Noninvasive quantitative measurement of fibrosis in chronic kidney disease (CKD) would be desirable diagnostically and therapeutically but standard radiologic imaging is too variable for clinical usage. By applying a vibratory force, tissue shear wave stiffness can be measured by magnetic resonance elastography (MRE) that may correlate with progression of kidney fibrosis. Since decreased kidney perfusion decreases tissue turgor and stiffness, we combined newly available three-dimensional MRE shear stiffness measurements with MR arterial spin labeling (ASL) kidney blood flow rates to evaluate fibrosis in diabetic nephropathy. METHODS Thirty individuals with diabetes and Stage 0-5 CKD and 13 control individuals without CKD underwent noncontrast MRE with concurrent ASL blood flow measurements. RESULTS MRE cortical shear stiffness at 90 Hz was decreased significantly below controls in all CKD stages of diabetic nephropathy. Likewise, ASL blood flow decreased progressively from 480 ± 136 mL/min/100 g of cortical tissue in controls to 302 ± 95, 229 ± 7 and 152 ± 32 mL/min/100 g in Stages 3, 4 and 5 CKD, respectively. A magnetic resonance imaging (MRI) surrogate for the measured glomerular filtration fraction [surrogate filtration fraction = estimated glomerular filtration rate (eGFR)/ASL] decreased progressively from 0.21 ± 0.07 in controls to 0.16 ± 0.04 in Stage 3 and 0.10 ± 0.02 in Stage 4-5 CKD. CONCLUSIONS In this pilot study, MRI with ASL blood flow rates can noninvasively measure decreasing kidney cortical tissue perfusion and, with eGFR, a decreasing surrogate filtration fraction in worsening diabetic nephropathy that appears to correlate with increasing fibrosis. Differing from the liver, MRE shear stiffness surprisingly decreases with worsening CKD, likely related to decreased tissue turgor from lower blood flow rates.
Collapse
Affiliation(s)
- Robert S Brown
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Teresa L Russell
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sylvia E Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Boston, MA, USA
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jesse L Wei
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Zhang Y, Zhu X, Huang X, Wei X, Zhao D, Jiang L, Zhao X, Du Y. Advances in Understanding the Effects of Erythropoietin on Renal Fibrosis. Front Med (Lausanne) 2020; 7:47. [PMID: 32154256 PMCID: PMC7046585 DOI: 10.3389/fmed.2020.00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is the common manifestation of the pathogenesis of end-stage renal disease that results from different types of renal insult, and is a hallmark of chronic kidney disease (CKD). The main pathologic characteristics of renal fibrosis are renal interstitial fibroblast hyperplasia and the aberrant and excessive deposition of extracellular matrix, pathologies that lead to the destruction of normal renal tubules and interstitial structures. However, the biological significance of fibrosis during the progression of CKD is not clear, and there are no approved clinical treatments for delaying or reversing renal fibrosis. Studies of the mechanism of renal fibrosis and of potential measures of prevention and treatment have focused on erythropoietin (EPO), a hormone best known as a regulator of red blood cell production. These recent studies have found that EPO may also provide efficient protection against renal fibrosis. Future therapeutic approaches using EPO offer new hope for patients with CKD. The aim of the present review is to briefly discuss the role of EPO in renal fibrosis, to identify its possible mechanisms in preventing renal fibrosis, and to provide novel ideas for the use of EPO in future treatments of renal fibrosis.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xiu Huang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Dan Zhao
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Jiang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxia Zhao
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Gandhi D, Kalra P, Raterman B, Mo X, Dong H, Kolipaka A. Magnetic Resonance Elastography of kidneys: SE-EPI MRE reproducibility and its comparison to GRE MRE. NMR IN BIOMEDICINE 2019; 32:e4141. [PMID: 31329347 PMCID: PMC6817380 DOI: 10.1002/nbm.4141] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 05/10/2023]
Abstract
The purpose of this study is 1) to demonstrate reproducibility of spin echo-echo planar imaging (SE-EPI) magnetic resonance elastography (MRE) to estimate kidney stiffness; and 2) to compare SE-EPI MRE and gradient recalled echo (GRE) MRE-derived stiffness estimations in various anatomical regions of the kidney. Kidney MRE was performed on 33 healthy subjects (8 for SE-EPI MRE reproducibility and 25 for comparison with GRE MRE; age range: 22-66 years) in a 3 T MRI scanner. To demonstrate SE-EPI MRE reproducibility, subjects were scanned for the first scan and then asked to leave the scan room and repositioned again for the second (repeat) scan. Similar set-up was used for GRE MRE as well. The displacement data was then processed to obtain overall stiffness estimates of the kidney. Concordance correlation analyses were performed to determine SE-EPI MRE reproducibility and agreement between GRE MRE and SE-EPI MRE derived stiffness. A high concordance correlation (ρc = 0.95; p-value<0.0001) was obtained for SE-EPI MRE reproducibility. Good concordance correlation was observed (ρc = 0.84; p < 0.0001 for both kidneys, ρc = 0.91; p < 0.0001 for right kidney and ρc = 0.78; p < 0.0001 for left kidney) between GRE MRE and SE-EPI MRE derived stiffness measurements. Paired t-test results showed that stiffness value of medulla was significantly (p < 0.0001) greater than cortex using SE-EPI MRE as well as GRE MRE. SE-EPI MRE was reproducible and good agreement was observed in MRE-derived stiffness measurements obtained using SE-EPI and GRE sequences. Therefore, SE-EPI can be used for kidney MRE applications.
Collapse
Affiliation(s)
- Deep Gandhi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Prateek Kalra
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian Raterman
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Huiming Dong
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Arunark Kolipaka
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
14
|
Schley G, Jordan J, Ellmann S, Rosen S, Eckardt KU, Uder M, Willam C, Bäuerle T. Multiparametric magnetic resonance imaging of experimental chronic kidney disease: A quantitative correlation study with histology. PLoS One 2018; 13:e0200259. [PMID: 30011301 PMCID: PMC6047786 DOI: 10.1371/journal.pone.0200259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 06/24/2018] [Indexed: 12/27/2022] Open
Abstract
Objectives In human chronic kidney disease (CKD) the extent of renal tubulointerstitial fibrosis correlates with progressive loss of renal function. However, fibrosis can so far only be assessed by histology of kidney biopsies. Magnetic resonance imaging (MRI) can provide information about tissue architecture, but its potential to assess fibrosis and inflammation in diseased kidneys remains poorly defined. Materials and methods We evaluated excised kidneys in a murine adenine-induced nephropathy model for CKD by MRI and correlated quantitative MRI parameters (T1, T2, and T2* relaxation times, apparent diffusion coefficient and fractional anisotropy) with histological hallmarks of progressive CKD, including renal fibrosis, inflammation, and microvascular rarefaction. Furthermore, we analyzed the effects of paraformaldehyde fixation on MRI parameters by comparing kidney samples before and after fixation with paraformaldehyde. Results In diseased kidneys T2 and T2* relaxation times, apparent diffusion coefficient and fractional anisotropy in the renal cortex and/or outer medulla were significantly different from those in control kidneys. In particular, T2 relaxation time was the best parameter to distinguish control and CKD groups and correlated very well with the extent of fibrosis, inflammatory infiltrates, tubular dilation, crystal deposition, and loss of peritubular capillaries and normal tubules in the renal cortex and outer medulla. Fixation with paraformaldehyde had no impact on T2 relaxation time and fractional anisotropy, whereas T1 times significantly decreased and T2* times and apparent diffusion coefficients increased in fixed kidney tissue. Conclusions MRI parameters provide a promising approach to quantitatively assess renal fibrosis and inflammation in CKD. Especially T2 relaxation time correlates well with histological features of CKD and is not influenced by paraformaldehyde fixation of kidney samples. Thus, T2 relaxation time might be a candidate parameter for non-invasive assessment of renal fibrosis in human patients.
Collapse
Affiliation(s)
- Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- * E-mail:
| | - Jutta Jordan
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Stephan Ellmann
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Seymour Rosen
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Uder
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Carsten Willam
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
15
|
Looker HC, Mauer M, Nelson RG. Role of Kidney Biopsies for Biomarker Discovery in Diabetic Kidney Disease. Adv Chronic Kidney Dis 2018; 25:192-201. [PMID: 29580583 PMCID: PMC5875458 DOI: 10.1053/j.ackd.2017.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/18/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Although estimated glomerular filtration rate and albuminuria are well-established biomarkers of diabetic kidney disease (DKD), additional biomarkers are needed, especially for the early stages of the disease when both albuminuria and estimated glomerular filtration rate may still be in the normal range and are less helpful for identifying those at risk of progression. Traditional biomarker studies for early DKD are challenging because of a lack of good early clinical end points, and most rely on changes in existing imprecise biomarkers to assess the value of new biomarkers. There are well-characterized changes in kidney structure, however, that are highly correlated with kidney function, always precede the clinical findings of DKD and, at preclinical stages, predict DKD progression. These structural parameters may thus serve as clinically useful end points for identifying new biomarkers of early DKD. In addition, investigators are analyzing tissue transcriptomic data to identify pathways involved in early DKD which may have associated candidate biomarkers measurable in blood or urine, and differentially expressed microRNAs and epigenetic modifications in kidney tissue are beginning to yield important observations which may be useful in identifying new clinically useful biomarkers. This review examines the emerging literature on the use of kidney tissue in biomarker discovery in DKD.
Collapse
Affiliation(s)
- Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ; and the Department of Pediatrics and Medicine, University of Minnesota, Minneapolis, MN
| | - Michael Mauer
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ; and the Department of Pediatrics and Medicine, University of Minnesota, Minneapolis, MN
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ; and the Department of Pediatrics and Medicine, University of Minnesota, Minneapolis, MN.
| |
Collapse
|
16
|
Abstract
Chronic kidney disease (CKD) is defined by persistent urine abnormalities, structural abnormalities or impaired excretory renal function suggestive of a loss of functional nephrons. The majority of patients with CKD are at risk of accelerated cardiovascular disease and death. For those who progress to end-stage renal disease, the limited accessibility to renal replacement therapy is a problem in many parts of the world. Risk factors for the development and progression of CKD include low nephron number at birth, nephron loss due to increasing age and acute or chronic kidney injuries caused by toxic exposures or diseases (for example, obesity and type 2 diabetes mellitus). The management of patients with CKD is focused on early detection or prevention, treatment of the underlying cause (if possible) to curb progression and attention to secondary processes that contribute to ongoing nephron loss. Blood pressure control, inhibition of the renin-angiotensin system and disease-specific interventions are the cornerstones of therapy. CKD complications such as anaemia, metabolic acidosis and secondary hyperparathyroidism affect cardiovascular health and quality of life, and require diagnosis and treatment.
Collapse
|