1
|
Meche V, Kundnani NR, Sharma A, Căpăstraru FM, Nistor D, Sarau CA, Gaita L. Cardio-Renal Syndrome: Latest Developments in Device-Based Therapy. J Clin Med 2024; 13:7814. [PMID: 39768738 PMCID: PMC11677936 DOI: 10.3390/jcm13247814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Cardio-renal syndrome (CRS) is a complex condition involving bidirectional dysfunction of the heart and kidneys, in which the failure of one organ exacerbates failure in the other. Traditional pharmacologic treatments are often insufficient to manage the hemodynamic and neurohormonal abnormalities underlying CRS, especially in cases resistant to standard therapies. Device-based therapies have emerged as a promising adjunct or alternative approach, offering targeted intervention to relieve congestion, improve renal perfusion, and modulate hemodynamics. This study aimed to evaluate the efficacy and safety of various device-based therapies in CRS management, utilizing DRI2P2S classification to categorize interventions as dilators, reducers, interstitial modulators, pullers, pushers, and shifters. Methods: A comprehensive analysis of clinical trial data and observational studies involving device-based therapies in patients with CRS was conducted, with a focus on hemodynamic endpoints, renal and cardiac function, symptom relief, and adverse events. Devices included in the analysis were splanchnic denervation systems (dilators), devices for central and pulmonary pressure reduction (reducers), and systems targeting interstitial fluid (fluid shifters), among others. A systematic literature review from 2004 to 2024 was performed using databases including PubMed, Embase, and ClinicalTrials.gov, following PRISMA guidelines for study selection. Data were extracted on patient demographics, device type, trial design, outcomes, and follow-up duration. Results: Device-based therapies demonstrated varying levels of efficacy in CRS, with significant improvements observed in specific parameters. Notable results were a reduction in central venous pressure and improved diuretic responsiveness in acute CRS cases, while also stabilizing or improving renal function. Other relevant endpoints were fewer heart failure hospitalizations and a reduction in renal adverse events, reduced tissue congestion and improved quality of life scores. However, some devices presented challenges, including procedure-related complications and a learning curve for optimal device implantation. Conclusions: Device-based therapies offer a valuable addition to the CRS treatment paradigm, particularly in cases unresponsive to conventional diuretics and other pharmacologic measures. Each of them addresses specific pathophysiological components of CRS and shows promise in improving clinical outcomes. Nevertheless, further large-scale, long-term trials with comprehensive endpoints are needed to establish these therapies' roles in standard care and to optimize patient selection criteria. Enhanced understanding of device mechanisms and refinement of trial endpoints will be key to maximizing the impact of these therapies on quality of life and clinical outcomes for CRS patients.
Collapse
Affiliation(s)
- Vlad Meche
- Doctoral School, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Nilima Rajpal Kundnani
- University Clinic of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, Department VI—Cardiology, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania; (N.R.K.); (A.S.)
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Abhinav Sharma
- University Clinic of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, Department VI—Cardiology, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania; (N.R.K.); (A.S.)
| | - Flavia-Maria Căpăstraru
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Daciana Nistor
- Department of Functional Sciences, Physiology, Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Centre for Gene and Cellular Therapies in Cancer, 300723 Timisoara, Romania
| | - Cristian Andrei Sarau
- Department of Medical Semiology I, “Victor Babes” University of Medicine and Pharmacy, 300041 Timişoara, Romania
- Municipality University Emergency Hospital, 300254 Timisoara, Romania
| | - Laura Gaita
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- “Pius Brînzeu” Emergency County Hospital, 300723 Timisoara, Romania
| |
Collapse
|
2
|
Roehm B, McAdams M, Gordon J, Zhang S, Xu P, Grodin JL, Hedayati SS. Association of suPAR, ST2, and galectin-3 with eGFR decline and mortality in patients with advanced heart failure with reduced ejection fraction. J Investig Med 2024; 72:640-651. [PMID: 38715217 DOI: 10.1177/10815589241249991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Patients with heart failure with reduced ejection fraction (HFrEF) are at risk for chronic kidney disease (CKD). Elevated levels of circulating biomarkers soluble urokinase plasminogen activator receptor (suPAR), galectin-3, soluble suppression of tumorigenicity 2 (ST2), and N-terminal prohormone B-type natriuretic peptide (NT-proBNP) are associated with CKD progression and mortality. The predictive value of these biomarkers in a population with HFrEF and kidney disease is relatively unknown. We sought to determine whether these biomarkers were associated with longitudinal trajectory of estimated glomerular filtration rate (eGFR) in HFrEF and assess their association with mortality using a joint model to account for competing risks of ventricular assist device (VAD) implantation and heart transplantation. We included participants from the Registry Evaluation of Vital Information for Ventricular Assist Devices in Ambulatory Life with repeated eGFR measures over 2 years. Of 309 participants, mean age was 59 years, median eGFR 60 ml/min/1.73 m2, 45 participants died, 33 received VAD, and 25 received orthotopic heart transplantation. Higher baseline serum standardized suPAR (β coefficient = -0.36 √(ml/min/1.73 m2), 95% confidence interval (-0.48 to -0.24), p < 0.001), standardized galectin-3 (-0.14 √(ml/min/1.73 m2) (-0.27 to -0.02), p = 0.02), and log NT-proBNP (-0.23 √(ml/min/1.73 m2) (-0.31 to -0.15), p < 0.001) were associated with eGFR decline. ST2 and log NT-proBNP were associated with mortality. Higher baseline suPAR, galectin-3, and NT-proBNP are associated with eGFR decline in patients with HFrEF. Only ST2 and NT-proBNP are associated with greater mortality after controlling for other factors including change in eGFR. These biomarkers may provide prognostic value for kidney disease progression in HFrEF and inform candidacy for advanced heart failure therapies.
Collapse
Affiliation(s)
- Bethany Roehm
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meredith McAdams
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan Gordon
- Division of Cardiology, Rush University Medical Center, Chicago, IL, USA
| | - Song Zhang
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pin Xu
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin L Grodin
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - S Susan Hedayati
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Nephrology and Hypertension, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
3
|
Jiang FW, Guo JY, Lin J, Zhu SY, Dai XY, Saleem MAU, Zhao Y, Li JL. MAPK/NF-κB signaling mediates atrazine-induced cardiorenal syndrome and antagonism of lycopene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171015. [PMID: 38369134 DOI: 10.1016/j.scitotenv.2024.171015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Atrazine (ATZ) is the most prevalent herbicide that has been widely used in agriculture to control broadleaf weeds and improve crop yield and quality. The heavy use of ATZ has caused serious environmental pollution and toxicity to human health. Lycopene (LYC), is a carotenoid that exhibits numerous health benefits, such as prevention of cardiovascular diseases and nephropathy. However, it remains unclear that whether ATZ causes cardiorenal injury or even cardiorenal syndrome (CRS) and the beneficial role of LYC on it. To test this hypothesis, mice were treated with LYC and/or ATZ for 21 days by oral gavage. This study demonstrated that ATZ exposure caused cardiorenal morphological alterations, and several inflammatory cell infiltrations mediated by activating NF-κB signaling pathways. Interestingly, dysregulation of MAPK signaling pathways and MAPK phosphorylation caused by ATZ have been implicated in cardiorenal diseases. ATZ exposure up-regulated cardiac and renal injury associated biomarkers levels that suggested the occurrence of CRS. However, these all changes were reverted, and the phenomenon of CAR was disappeared by LYC co-treatment. Based on our findings, we postulated a novel mechanism to elucidate pesticide-induced CRS and indicated that LYC can be a preventive and therapeutic agent for treating CRS by targeting MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jian-Ying Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | | | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Wang YY, Liu YY, Li J, Zhang YY, Ding YF, Peng YR. Gualou xiebai decoction ameliorates cardiorenal syndrome type II by regulation of PI3K/AKT/NF-κB signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155172. [PMID: 37976694 DOI: 10.1016/j.phymed.2023.155172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/08/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Cardiorenal syndromes type II (CRS2) is a multi-organ ailment that manifests as a combination of cardiac and renal dysfunction, resulting in chronic kidney disease due to chronic cardiac insufficiency. It affects at least 26 million people worldwide, and its prevalence is increasing. Gualou Xiebai Decoction (GXD), a traditional Chinese medicine (TCM) with a rich history of application in the management of coronary artery disease, has been explored for its potential therapeutic benefits in CRS2. Nevertheless, the mechanism by which GXD alleviates CRS2 remains obscure, necessitating further investigation. PURPOSE The aim of this study was to assess the effects of the ethanolic extract of GXD on CRS2 and to elucidate the underlying mechanism in a rat model of myocardial infarction, offering a potential target for clinical treatment for CRS2. STUDY DESIGN AND METHODS A rat model of CRS2 was induced by surgical myocardial infarction and treated with GXD for 10 weeks. Cardiac function was assessed using echocardiography, while serum and urine biochemistry were analyzed to evaluate potential cardiac and renal damage. Furthermore, tissue samples were obtained for histological, protein, and genetic investigations. In addition, network pharmacology analysis and molecular docking were utilized to predict the primary active compounds, potential therapeutic targets, and interventional pathways through which GXD could potentially exert its effects on CRS2. Subsequently, these predictions were confirmed in vivo and vitro through various analyses. RESULTS The current investigation employed echocardiography to exhibit the apparent cardiac remodeling following the induction of myocardial infarction. Damage to the heart and kidneys of CRS2 rats was effectively ameliorated by administration of GXD. The outcomes derived from the analyses of HE and Masson staining indicated that the pathological damage to the heart and kidney tissues of rats in the GXD groups was considerably alleviated. Using network pharmacology analysis, AKT1, IL-6, and TNF-α were identified as plausible therapeutic targets for the treatment of CRS with GXD. Subsequent functional and pathway enrichment analysis of the underlying targets disclosed that the PI3K/AKT/NF-κB signaling pathway may be involved in the mechanism of GXD in the treatment of CRS2. Immunohistochemical, western blot, RT-PCR and immunofluorescence staining were employed to demonstrate that GXD can regulate the PI3K/AKT/NF-κB signaling pathway in the CRS2 rat model. Ultimately, administration of the PI3K/AKT agonist 740Y-P counteracted the effect of diosmetin, which was one of the potential active components of GXD analysed by compound-target-disease network, on p-PI3K and p-AKT in vitro. CONCLUSIONS The findings of this study suggest that GXD improves cardiac and renal function in CRS2 rats and that the underlying mechanism involves inhibition of the PI3K/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Ying-Yu Wang
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Yang-Yang Liu
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Jie Li
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Yun-Yun Zhang
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Yong-Fang Ding
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| | - Yun-Ru Peng
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| |
Collapse
|
5
|
Chien MJ, Li SJ, Wong SC, Chiang CH, Lin YY, Mersmann HJ, Chen CY. Determination of mitochondrial functions and damage in kidney in female LeeSung minipigs with a high-fat diet-induced obesity. Arch Physiol Biochem 2023; 129:1289-1297. [PMID: 34338085 DOI: 10.1080/13813455.2021.1949022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to investigate the nexus between mitochondrial function and kidney injury by using a dietary-induced obese minipig model. Female Lee-Sung minipigs feeding a high-fat diet (HFD) for 6 months exhibited obesity, hyperglycaemia and dyslipidemia. HFD elevated the levels of plasma biomarkers related to renal injury, including symmetric dimethylarginine, creatinine and urea nitrogen. An extensive structural change in tubules and glomeruli was observed in HFD-fed pigs. A great amount of triacylglycerol was accumulated in HFD kidney compared to control kidney, whereas a reduction of ATP level and antioxidant capacity were exhibited in HFD kidney. Moreover, HFD altered the expressions of mitochondrial-related protein in renal cortex. To conclude, long-term HFD feeding to Lee-Sung minipigs induced obesity and kidney injury accompanied by abnormal mitochondrial functions in the renal cortex, suggesting an interrelationship with renal disease progression.
Collapse
Affiliation(s)
- Miao-Ju Chien
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Sin-Jin Li
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shiu-Chung Wong
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsien Chiang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Harry J Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Yuan Y, Liu M, Zhang S, Lin Y, Huang Y, Zhou H, Xu X, Zhuang X, Liao X. Effect of blood pressure index on clinical outcomes in patients with heart failure and chronic kidney disease. ESC Heart Fail 2023; 10:3330-3339. [PMID: 37667525 PMCID: PMC10682879 DOI: 10.1002/ehf2.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 09/06/2023] Open
Abstract
AIMS This study aimed to assess the effect of blood pressure (BP) index, in terms of level and variability, on the progression of cardiovascular and renal diseases in patients with both heart failure (HF) and chronic kidney disease (CKD). METHODS AND RESULTS The study involved patients with HF and CKD from the database of the Chronic Renal Insufficiency Cohort (CRIC) study. The study endpoint includes the following: (i) primary endpoint, including cardiovascular disease (CVD) events, renal events, and all-cause death; (ii) CVD events; (iii) renal events; and (iv) all-cause death. Among 3939 participants in the CRIC study, a total of 382 patients were included. The duration of the follow-up was 6.3 ± 2.7 years, the age was 60.2 ± 8.9 years, and 57.6% were male. BP index included 20 indicators in relation to BP level and variability, 4 of which were analysed including baseline systolic BP (SBP), standard deviation of SBP, coefficient of variation of diastolic BP (DBP CV), and average real variability of pulse pressure. In the Cox regression analysis after adjustment, baseline SBP was significant for the risk of primary endpoint [hazard ratio (HR) 1.22, 95% confidence interval (CI) 1.03-1.44, P = 0.02] and renal events (HR 1.54, 95% CI 1.22-1.95, P < 0.001), and DBP CV was significant for the risk of primary endpoint (HR 1.03, 95% CI 1.01-1.06, P = 0.02) and CVD events (HR 1.04, 95% CI 1.02-1.07, P < 0.01). The result of the forest plot depicted that baseline SBP had a linear association with the risk of CVD and renal events (P = 0.04 and 0.001, respectively) and DBP CV with CVD events (P = 0.02). As the restricted cubic spline models displayed, DBP CV featured a J- or L-curved association with the primary endpoint, renal events, and all-cause death (P for nonlinearity = 0.01, <0.001, and 0.01, respectively). CONCLUSIONS The baseline SBP and DBP CV may remain significant for clinical outcomes in patients with both HF and CKD. The increase in baseline SBP is associated with a higher risk of primary endpoint, CVD events, and renal events, and the increase in DBP CV with a higher risk of CVD events. Concerning nonlinear association, DBP CV features a J- or L-curved relationship with the primary endpoint, renal events, and all-cause death, with a higher risk at both low and high values. TRIAL REGISTRATION https://www. CLINICALTRIALS gov; unique identifier: NCT00304148.
Collapse
Affiliation(s)
- Ying Yuan
- Department of CardiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Menghui Liu
- Department of CardiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Shaozhao Zhang
- Department of CardiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yifen Lin
- Department of CardiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yiquan Huang
- Department of CardiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Huimin Zhou
- Department of CardiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xingfeng Xu
- Department of CardiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xiaodong Zhuang
- Department of CardiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xinxue Liao
- Department of CardiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
7
|
Ni SH, OuYang XL, Liu X, Lin JH, Li Y, Sun SN, Deng JP, Han XW, Zhang XJ, Li H, Huang YS, Chen ZX, Lian ZM, Wang ZK, Long WJ, Wang LJ, Yang ZQ, Lu L. A molecular phenotypic screen reveals that lobetyolin alleviates cardiac dysfunction in 5/6 nephrectomized mice by inhibiting osteopontin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154412. [PMID: 36191549 DOI: 10.1016/j.phymed.2022.154412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cardiovascular diseases are the major cause of mortality in patients with advanced chronic kidney diseases. The predominant abnormality observed among this population is cardiac dysfunction secondary to myocardial remodelings, such as hypertrophy and fibrosis, emphasizing the need to develop potent therapies that maintain cardiac function in patients with end-stage renal disease. AIMS To identify potential compounds and their targets as treatments for cardiorenal syndrome type 4 (CRS) using molecular phenotyping and in vivo/in vitro experiments. METHODS Gene expression was assessed using bioinformatics and verified in animal experiments using 5/6 nephrectomized mice (NPM). Based on this information, a molecular phenotyping strategy was pursued to screen potential compounds. Picrosirius red staining, wheat germ agglutinin staining, Echocardiography, immunofluorescence staining, and real-time quantitative PCR (qPCR) were utilized to evaluate the effects of compounds on CRS in vivo. Furthermore, qPCR, immunofluorescence staining and flow cytometry were applied to assess the effects of these compounds on macrophages/cardiac fibroblasts/cardiomyocytes. RNA-Seq analysis was performed to locate the targets of the selected compounds. Western blotting was performed to validate the targets and mechanisms. The reversibility of these effects was tested by overexpressing Osteopontin (OPN). RESULTS OPN expression increased more remarkably in individuals with uremia-induced cardiac dysfunction than in other cardiomyopathies. Lobetyolin (LBT) was identified in the compound screen, and it improved cardiac dysfunction and suppressed remodeling in NPM mice. Additionally, OPN modulated the effect of LBT on cardiac dysfunction in vivo and in vitro. Further experiments revealed that LBT suppressed OPN expression via the phosphorylation of c-Jun N-terminal protein kinase (JNK) signaling pathway. CONCLUSIONS LBT improved CRS by inhibiting OPN expression through the JNK pathway. This study is the first to describe a cardioprotective effect of LBT and provides new insights into CRS drug discovery.
Collapse
Affiliation(s)
- Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Lu OuYang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jin-Hai Lin
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yue Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Shu-Ning Sun
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jian-Ping Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Wei Han
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Jiao Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yu-Sheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zi-Xin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zhi-Ming Lian
- Guangzhou integrated traditional Chinese and Western Medicine Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zhen-Kui Wang
- Guangzhou integrated traditional Chinese and Western Medicine Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Wen-Jie Long
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| |
Collapse
|
8
|
Lin SM, Chang CH, Lin TY, Huang ACC, Lin CH, Chen YC, Chu PH. Plasma thrombomodulin levels are associated with acute kidney injury in patients with acute heart failure. Ann Med 2022; 54:3169-3176. [PMID: 36354140 PMCID: PMC9704091 DOI: 10.1080/07853890.2022.2142660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cardiorenal syndrome type I (CRS I) is defined as the development of acute kidney injury (AKI) following acute decompensated heart failure (ADHF). The clinical significance of endothelial markers in ADHF-associated AKI has yet to be clarified. This study therefore investigated the biological processes linking ADHF and AKI with the aim of determining whether the plasma markers of endothelial injury and activation are associated with AKI in patients with ADHF. The study prospectively recruited 125 consecutive patients admitted to a coronary critical unit due to ADHF. Patients with and without AKI were compared in terms of soluble thrombomodulin (sTM), angiopoietin (Ang)-1 and -2 plasma levels as well as baseline characteristics. Among the study population, 14 (11.2%) patients developed CRS within 7 days after admission. The hemoglobin levels (median [IQR]11.3[10.8-12.6] vs. 13.5 [12.2-15.0] g/dL, p = 0.003) and baseline eGFR (66.5[35.7-87.9] vs. 78.5 [64.9-107.5] mL/minute/1.73m2, p = 0.044) of patients with CRS were lower than those of patients without CRS. Patients with CRS also presented elevated plasma levels of BNP (1317.5 [222.6-3375.5] vs. 258.2 [63.2-925.8] pg/mL, p = 0.008), Ang-2 (3993.0 [1561.3-15722.7] vs. 1805.9 [1196.9-3302.3] pg/mL, p = 0.006), and sTM (6665.7 [4707.1-11947.3] vs. 4132.2 [3338.0-5531.8] ng/mL, p < 0.001), compared to patients without CRS. Multivariate logistic regression analysis based on forward stepwise method identified that log sTM was the only independent risk factor for AKI (OR, 13.83; 3.02-63.28, p = 0.001). Furthermore, higher sTM levels were associated with AKI in patients with ADHF. These findings suggest a novel approach to dealing with kidney injury in the context of ADHF, involving the use of baseline biomarker profiles to identify individuals at risk of developing AKI.KEY MESSAGESThe clinical significance of endothelial markers in acute decompensated heart failure (ADHF)-associated acute kidney injury (AKI) has not previously been clarified. This study revealed that markers of endothelial injury (i.e. plasma soluble thrombomodulin (sTM) levels) were higher in ADHF patients with AKI than in those without AKI.Multivariate analysis identified sTM level > cutoff value of 4,855.2 pg/mL as an independent factor associated with the development of AKI. sTM could potentially be used as a biomarker to predict the development of AKI in patients with heart failure.These findings suggest a novel approach to dealing with kidney injury in the context of ADHF, involving the use of baseline biomarker profiles to identify individuals at risk of developing AKI.
Collapse
Affiliation(s)
- Shu-Min Lin
- Department of Thoracic Medicine, School of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan.,Department of Respiratory Therapy, School of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - Chih-Hsiang Chang
- Department of Nephrology, School of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - Ting-Yu Lin
- Department of Thoracic Medicine, School of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - Allen Chung-Cheng Huang
- Department of Thoracic Medicine, School of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - Chiung-Hung Lin
- Department of Thoracic Medicine, School of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - Yung-Chang Chen
- Department of Nephrology, School of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - Pao-Hsien Chu
- Department of Cardiology, School of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| |
Collapse
|
9
|
Heart Failure and Cardiorenal Syndrome: A Narrative Review on Pathophysiology, Diagnostic and Therapeutic Regimens-From a Cardiologist's View. J Clin Med 2022; 11:jcm11237041. [PMID: 36498617 PMCID: PMC9741317 DOI: 10.3390/jcm11237041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
In cardiorenal syndrome (CRS), heart failure and renal failure are pathophysiologically closely intertwined by the reciprocal relationship between cardiac and renal injury. Type 1 CRS is most common and associated with acute heart failure. A preexistent chronic kidney disease (CKD) is common and contributes to acute kidney injury (AKI) in CRS type 1 patients (acute cardiorenal syndrome). The remaining CRS types are found in patients with chronic heart failure (type 2), acute and chronic kidney diseases (types 3 and 4), and systemic diseases that affect both the heart and the kidney (type 5). Establishing the diagnosis of CRS requires various tools based on the type of CRS, including non-invasive imaging modalities such as TTE, CT, and MRI, adjuvant volume measurement techniques, invasive hemodynamic monitoring, and biomarkers. Albuminuria and Cystatin C (CysC) are biomarkers of glomerular filtration and integrity in CRS and have a prognostic impact. Comprehensive "all-in-one" magnetic resonance imaging (MRI) approaches, including cardiac magnetic resonance imaging (CMR) combined with functional MRI of the kidneys and with brain MRI are proposed for CRS. Hospitalizations due to CRS and mortality are high. Timely diagnosis and initiation of effective adequate therapy, as well as multidisciplinary care, are pertinent for the improvement of quality of life and survival. In addition to the standard pharmacological heart failure medication, including SGLT2 inhibitors (SGLT2i), renal aspects must be strongly considered in the context of CRS, including control of the volume overload (diuretics) with special caution on diuretic resistance. Devices involved in the improvement of myocardial function (e.g., cardiac resynchronization treatment in left bundle branch block, mechanical circulatory support in advanced heart failure) have also shown beneficial effects on renal function.
Collapse
|
10
|
Prastaro M, Nardi E, Paolillo S, Santoro C, Parlati ALM, Gargiulo P, Basile C, Buonocore D, Esposito G, Filardi PP. Cardiorenal syndrome: Pathophysiology as a key to the therapeutic approach in an under-diagnosed disease. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1110-1124. [PMID: 36218199 PMCID: PMC9828083 DOI: 10.1002/jcu.23265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 06/09/2023]
Abstract
Cardiorenal syndrome is a clinical condition that impacts both the heart and the kidneys. One organ's chronic or acute impairment can lead to the other's chronic or acute dysregulation. The cardiorenal syndrome has been grouped into five subcategories that describe the etiology, pathophysiology, duration, and pattern of cardiac and renal dysfunction. This classification reflects the large spectrum of interrelated dysfunctions and underlines the bidirectional nature of heart-kidney interactions. However, more evidence is needed to apply these early findings in medical practice. Understanding the relationship between these two organs during each organ's impairment has significant clinical implications that are relevant for therapy in both chronic and acute conditions. The epidemiology, definition, classification, pathophysiology, therapy, and outcome of each form of cardiorenal syndrome are all examined in this review.
Collapse
Affiliation(s)
- Maria Prastaro
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Ermanno Nardi
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Stefania Paolillo
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Ciro Santoro
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Antonio L. M. Parlati
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Paola Gargiulo
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Christian Basile
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Davide Buonocore
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Giovanni Esposito
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | | |
Collapse
|
11
|
Buda V, Prelipcean A, Cozma D, Man DE, Negres S, Scurtu A, Suciu M, Andor M, Danciu C, Crisan S, Dehelean CA, Petrescu L, Rachieru C. An Up-to-Date Article Regarding Particularities of Drug Treatment in Patients with Chronic Heart Failure. J Clin Med 2022; 11:2020. [PMID: 35407628 PMCID: PMC8999552 DOI: 10.3390/jcm11072020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Since the prevalence of heart failure (HF) increases with age, HF is now one of the most common reasons for the hospitalization of elderly people. Although the treatment strategies and overall outcomes of HF patients have improved over time, hospitalization and mortality rates remain elevated, especially in developed countries where populations are aging. Therefore, this paper is intended to be a valuable multidisciplinary source of information for both doctors (cardiologists and general physicians) and pharmacists in order to decrease the morbidity and mortality of heart failure patients. We address several aspects regarding pharmacological treatment (including new approaches in HF treatment strategies [sacubitril/valsartan combination and sodium glucose co-transporter-2 inhibitors]), as well as the particularities of patients (age-induced changes and sex differences) and treatment (pharmacokinetic and pharmacodynamic changes in drugs; cardiorenal syndrome). The article also highlights several drugs and food supplements that may worsen the prognosis of HF patients and discusses some potential drug-drug interactions, their consequences and recommendations for health care providers, as well as the risks of adverse drug reactions and treatment discontinuation, as an interdisciplinary approach to treatment is essential for HF patients.
Collapse
Affiliation(s)
- Valentina Buda
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Andreea Prelipcean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
| | - Dragos Cozma
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Dana Emilia Man
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Simona Negres
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Alexandra Scurtu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Maria Suciu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Minodora Andor
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Simina Crisan
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Lucian Petrescu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Ciprian Rachieru
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Center for Advanced Research in Cardiovascular Pathology and Hemostasis, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
12
|
Hein AM, Scialla JJ, Sun JL, Greene SJ, Shaw LK, Chiswell K, Pun PH, Mentz RJ. Estimated Glomerular Filtration Rate Variability in Patients With Heart Failure and Chronic Kidney Disease. J Card Fail 2021; 27:1175-1184. [PMID: 33971291 DOI: 10.1016/j.cardfail.2021.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Greater variability in the estimated glomerular filtration rate (eGFR) is associated with higher mortality in patients with chronic kidney disease (CKD). Heart failure (HF) is common in CKD and may increase variability through changes in hemodynamic and volume regulation. We sought to determine if patients with vs without HF have higher kidney function variability in CKD, and to define the association with mortality. METHODS AND RESULTS Patients undergoing coronary angiography from 2003 to 2013 with an eGFR of less than 60 mL/min/1.73 m2 were evaluated from the Duke Databank for Cardiovascular Disease. Variability in the eGFR, measured as the coefficient of variation (CV) of residuals from the regression of eGFR vs time, was calculated spanning 3 months to 2 years after catheterization. Mortality was assessed 2 to 7 years after catheterization. Patients were grouped into 3 HF phenotypes: HF with reduced ejection fraction, HF with preserved ejection, and no HF. Regression was used to evaluate associations between HF phenotypes and variability in the eGFR and between variability in the eGFR and mortality rate with stratification by HF phenotype. Among 3767 participants, the median eGFR at baseline was 45 mL/min/1.73 m2 (interquartile range 33-53 mL/min/1.73 m2), and longitudinal measures of eGFR over 21 months had within-patient residual variability (CV) of 14% (9%-20%). In adjusted analyses, variability in the eGFR was greater in those with HF with preserved ejection (n = 695, CV difference 0.98%, 95% confidence interval 0.14%-1.81%) or HF with reduced ejection fraction (n = 800, CV difference 2.51%, 95% confidence interval 1.66%-3.37%) relative to no HF (n = 2272). In 3068 participants eligible for mortality analysis, the presence of HF and greater variability in the eGFR were each associated independently with higher mortality, but there was no evidence of interaction between variability in the eGFR and any HF phenotype (all P for interaction ≥.49). CONCLUSIONS Variability in the eGFR is greater in patients with HF and associated with mortality. Prediction algorithms and classification schemes should consider not only static, but also dynamic eGFR variability in HF and CKD prognostication.
Collapse
Affiliation(s)
- Aaron M Hein
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Julia J Scialla
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina; Departments of Medicine and Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia; Duke Clinical Research Institute, Durham, North Carolina
| | - Jie-Lena Sun
- Duke Clinical Research Institute, Durham, North Carolina
| | - Stephen J Greene
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina
| | - Linda K Shaw
- Duke Clinical Research Institute, Durham, North Carolina
| | - Karen Chiswell
- Duke Clinical Research Institute, Durham, North Carolina
| | - Patrick H Pun
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina
| | - Robert J Mentz
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina.
| |
Collapse
|
13
|
Wang J, Sun X, Wang X, Cui S, Liu R, Liu J, Fu B, Gong M, Wang C, Shi Y, Chen Q, Cai G, Chen X. Grb2 Induces Cardiorenal Syndrome Type 3: Roles of IL-6, Cardiomyocyte Bioenergetics, and Akt/mTOR Pathway. Front Cell Dev Biol 2021; 9:630412. [PMID: 33829014 PMCID: PMC8019825 DOI: 10.3389/fcell.2021.630412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
Cardiorenal syndrome type 3 (CRS-3) is damage to the heart following acute kidney injury (AKI). Although many experiments have found that inflammation, oxidative stress, and cardiomyocyte death are involved in cardiomyocyte pathophysiological alterations during CRS-3, they lack a non-bias analysis to figure out the primary mediator of cardiac dysfunction. Herein proteomic analysis was operated in CRS-3 and growth factor receptor-bound protein 2 (Grb2) was identified as a regulator involving AKI-related myocardial damage. Increased Grb2 was associated with cardiac diastolic dysfunction and mitochondrial bioenergetics impairment; these pathological changes could be reversed through the administration of a Grb2-specific inhibitor during AKI. Molecular investigation illustrated that augmented Grb2 promoted cardiomyocyte mitochondrial metabolism disorder through inhibiting the Akt/mTOR signaling pathway. Besides that, Mouse Inflammation Array Q1 further identified IL-6 as the upstream stimulator of Grb2 upregulation after AKI. Exogenous administration of IL-6 induced cardiomyocyte damage and mitochondrial bioenergetics impairment, whereas these effects were nullified in cardiomyocytes pretreated with Grb2 inhibitor. Our results altogether identify CRS-3 to be caused by the upregulations of IL-6/Grb2 which contribute to cardiac dysfunction through inhibiting the Akt/mTOR signaling pathway and inducing cardiomyocyte mitochondrial bioenergetics impairment. This finding provides a potential target for the clinical treatment of patients with CRS-3.
Collapse
Affiliation(s)
- Jin Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Xu Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Shaoyuan Cui
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Ran Liu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Jiaona Liu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Bo Fu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Ming Gong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Conghui Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Yushen Shi
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Qianqian Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| |
Collapse
|
14
|
Adaptive Autophagy Offers Cardiorenal Protection in Rats with Acute Myocardial Infarction. Cardiol Res Pract 2020; 2020:7158975. [PMID: 32655948 PMCID: PMC7322605 DOI: 10.1155/2020/7158975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/14/2020] [Accepted: 05/15/2020] [Indexed: 01/19/2023] Open
Abstract
Objective Understanding the multifactorial changes involved in the kidney and heart after acute myocardial infarction (AMI) is prerequisite for further mechanisms and early intervention, especially autophagy changes. Here, we discussed the role of adaptive autophagy in the heart and kidney of rats with AMI. Methods A rat model of AMI was established by ligating the left anterior descending branch of the coronary artery. Animals were sacrificed at 2 and 4 weeks after the operation to assess the morphological and functional changes of the heart and kidney, as well as the autophagy pathway. In vitro, HK-2 and AC16 cell injuries and the autophagy pathway were assayed after autophagy was inhibited by 3-methyladenine (3-MA) in a hypoxia incubator. Results We found that the left ventricular systolic pressure (LVSP) significantly decreased in the model group at weeks 2 and 4. At weeks 2 and 4, the level of urinary kidney injury molecule 1 (uKIM1) of the model group was significantly higher than the sham group. At week 4, urinary neutrophil gelatinase-associated lipocalcin (uNGAL) and urinary albumin also significantly increased. At week 2, microtubule-associated protein 1 light chain 3-II (LC3-II), ATG5, and Beclin1 were significantly elevated in the heart and kidney compared with the sham-operated rats, but there was no change in p62 levels. At week 4, LC3-II did not significantly increase and p62 levels significantly increased. In addition, 3-MA markedly increased KIM1, NGAL, and the activity of caspase-3 in the hypoxic HK-2 and AC16 cell. Conclusion Autophagy will undergo adaptive changes and play a protective role in the heart and kidney of rats after AMI.
Collapse
|
15
|
Lo K, Penalver J, Mostafavi Toroghi H, Jeon H, Habib N, Hung Pinto W, Ram P, Gupta S, Rangaswami J. Invasive Hemodynamic Predictors of Renal Outcomes after Percutaneous Coronary Interventions. Cardiorenal Med 2019; 9:382-390. [DOI: 10.1159/000500949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/10/2019] [Indexed: 11/19/2022] Open
Abstract
Objectives: To determine the association of right heart invasive hemodynamic parameters with post-percutaneous coronary intervention (PCI) acute kidney injury (AKI). Background: AKI after PCI is associated with a high morbidity and mortality. Various mechanisms are implicated in AKI after PCI. However, the association between filling pressures and invasive hemodynamic measures of right heart function with post-PCI AKI has not been described. Methods: This is a retrospective single-center analysis of patients of who underwent simultaneous right heart catheterization (RHC) and left heart catheterization with PCI at the Einstein Medical Center, Philadelphia, between January 2010 and December 2016. We included patients who had hemodynamic parameters from the concomitant RHC as well as measurements of kidney function up to 1 month after the procedure. We excluded patients with ST elevation myocardial infarction, end-stage renal disease, cardiogenic shock, and PCI with a need for mechanical circulatory device support. Multivariate linear regression analysis was used to analyze the association between the various right ventricular hemodynamic parameters and eGFR within 1 week and 1 month after catheterization after adjusting for age, race, gender, diabetes and hypertension, contrast volume, cardiac index, and baseline eGFR. Results: Right atrial (RA) pressure was inversely associated with eGFR within 1 week (β = –1.66; 95% CI –3.06 to –0.25; p = 0.021) and 1 month after PCI (β = –2.14; 95% CI –4.08 to –0.20; p = 0.031). Conclusion: Elevated RA pressure is associated with a worsening kidney function after cardiac catheterization and PCI.
Collapse
|
16
|
Xue Y, Xu B, Su C, Han Q, Wang T, Tang W. Cardiorenal syndrome in incident peritoneal dialysis patients: What is its effect on patients' outcomes? PLoS One 2019; 14:e0218082. [PMID: 31173609 PMCID: PMC6555513 DOI: 10.1371/journal.pone.0218082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/26/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Peritoneal dialysis (PD) is increasingly used for long-term management of Cardiorenal Syndrome (CRS). We compared outcomes in incident PD patients according to their baseline heart failure status. METHODS This retrospective cohort study evaluated all-cause and cardiovascular mortality in incident PD patients with different heart failure status (non-CRS, acute heart failure [AHF], type II CRS, type IV CRS) who started PD between 2006 and 2016 in the Peking University Third Hospital. RESULTS Of 748 patients included in the study, there were 466 (62.3%), 214 (28.6%), 27 (3.6%), and 41 (5.5%) patients in the non-CRS, AHF, type II CRS and type IV CRS groups, respectively. Patients with CRS were older (p<0.001), with more diabetes mellitus (p<0.001), coronary heart history (p<0.001), higher estimated glomerular filtration rate (eGFR) (p<0.001), lower serum creatinine (p<0.001) and phosphorus levels (p = 0.003) compared to non-CRS patients. Respective all-cause survival rates for patients with non-CRS, AHF, type II CRS and type IV CRS were 90.6%, 87.1%, 85.2% and 84.8% at 1 year, and 63.1%, 47.7%, 27.3% and 35.1% at 5 years (p<0.001). The corresponding figures for cardiovascular survival were 93%, 92%, 84% and 81% at 1 year, and 67%, 59%, 55% and 54% at 5 years (p<0.001). However, after adjusting for confounding factors, the presence of CRS was not independently associated with all-cause mortality whereas type IV CRS (HR 2.10, 95% CI 1.03-4.28, p = 0.04) was associated with higher cardiovascular mortality as compared to without CRS. CONCLUSION Incident PD patients with different types of CRS had higher rates of both all-cause and cardiovascular mortality compared with patients without CRS. However, these observed adverse outcomes may be related to associated older age and higher prevalence of comorbidities, rather than CRS per se, except for type IV CRS, treatment strategies to reduce high cardiovascular CVD mortality may needed.
Collapse
Affiliation(s)
- Yanmei Xue
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Baozhen Xu
- Department of Nephrology, Peking University Third Hospital, Beijing, China
- School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunyan Su
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Qingfeng Han
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Tao Wang
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Wen Tang
- Department of Nephrology, Peking University Third Hospital, Beijing, China
- * E-mail:
| |
Collapse
|