1
|
Dong G, Gao P, Shi FE, Yu J, Zhu J. Acute kidney injury associated with thrombotic microangiopathy: Characterization, prevalence, and prognosis. Medicine (Baltimore) 2024; 103:e39431. [PMID: 39213222 PMCID: PMC11365647 DOI: 10.1097/md.0000000000039431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/02/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Acute kidney injury (AKI) is an important feature of thrombotic microangiopathy (TMA). This present study aimed to describe and analyze the characterization, prevalence, and prognosis in TMA patients with AKI. This study was an observational, retrospective patient cohort study in which patients were classified as AKI and non-AKI groups. An analysis of the relationship between the risk factors and AKI and in-hospital mortality was conducted using logistic regression. Kaplan-Meier curves were adopted to obtain the link between AKI and in-hospital mortality. There were 27 and 51 patients in the AKI and non-AKI groups, respectively, and the morbidity and mortality of AKI were 34.62% and 40.74%, respectively. AKI was associated with an older age (P = .033) and higher infection rates (P < .001). In comparison with the non-AKI group, the AKI group had tremendously intrarenal manifestations: hematuria (P < .001), proteinuria (P < .001). The AKI group received all continuous renal replacement therapy treatment (P < .001), but fewer glucocorticoids were used (P = .045). In-hospital mortality (P = .045) were higher in the AKI group. The risk factors for AKI (P = .037) were age. In addition, higher total bilirubin (P = .011) and age (P = .022) were significantly correlated with increasing risk of in-hospital mortality. Survival analysis by Kaplan-Meier revealed a significantly poor prognosis predicted by the AKI group (P = .045). Acute kidney injury could be commonly seen in TMA pneumonia and was related to a higher mortality rate.
Collapse
Affiliation(s)
- Guiying Dong
- Emergency Department, Peking University People’s Hospital, Beijing, PR China
| | - Peiliang Gao
- Emergency Department, Peking University People’s Hospital, Beijing, PR China
| | - Fang-E Shi
- Emergency Department, Peking University People’s Hospital, Beijing, PR China
| | - Jianbo Yu
- Emergency Department, Peking University People’s Hospital, Beijing, PR China
| | - Jihong Zhu
- Emergency Department, Peking University People’s Hospital, Beijing, PR China
| |
Collapse
|
2
|
Vorobev A, Bitsadze V, Yagubova F, Khizroeva J, Solopova A, Tretyakova M, Gashimova N, Grigoreva K, Einullaeva S, Drozhzhina M, Hajiyeva A, Khalilulina E, Cherepanov A, Kapanadze D, Egorova E, Kuneshko N, Gris JC, Elalamy I, Ay C, Makatsariya A. The Phenomenon of Thrombotic Microangiopathy in Cancer Patients. Int J Mol Sci 2024; 25:9055. [PMID: 39201740 PMCID: PMC11354439 DOI: 10.3390/ijms25169055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Thrombotic microangiopathy (TMA) encompasses a range of disorders characterized by blood clotting in small blood vessels, leading to organ damage. It can manifest as various syndromes, including thrombotic thrombocytopenic purpura (TTP), hemolytic-uremic syndrome (HUS), and others, each with distinct causes and pathophysiology. Thrombo-inflammation plays a significant role in TMA pathogenesis: inflammatory mediators induce endothelial injury and activation of platelet and coagulation cascade, contributing to microvascular thrombosis. Primary TMA, such as TTP, is primarily caused by deficient ADAMTS13 metalloproteinase activity, either due to antibody-mediated inhibition or intrinsic enzyme synthesis defects. In cancer patients, a significant reduction in ADAMTS13 levels and a corresponding increase in VWF levels is observed. Chemotherapy further decreased ADAMTS13 levels and increased VWF levels, leading to an elevated VWF/ADAMTS13 ratio and increased thrombotic risk. Drug-induced TMA (DITMA) can result from immune-mediated or non-immune-mediated mechanisms. Severe cases of COVID-19 may lead to a convergence of syndromes, including disseminated intravascular coagulation (DIC), systemic inflammatory response syndrome (SIRS), and TMA. Treatment of TMA involves identifying the underlying cause, implementing therapies to inhibit complement activation, and providing supportive care to manage complications. Plasmapheresis may be beneficial in conditions like TTP. Prompt diagnosis and treatment are crucial to prevent serious complications and improve outcomes.
Collapse
Affiliation(s)
- Alexander Vorobev
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Victoria Bitsadze
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Fidan Yagubova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Jamilya Khizroeva
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Antonina Solopova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Maria Tretyakova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Nilufar Gashimova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Kristina Grigoreva
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Sabina Einullaeva
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Maria Drozhzhina
- Faculty of General Medicine, Russian University of Medicine, 4th Dolgorukovskaya Str., 127006 Moscow, Russia;
| | - Aygun Hajiyeva
- Faculty of General Medicine, I.M. Sechenov First State Moscow Medical University Baku Branch, Huseyn Javid, Yasamal, Baku AZ1141, Azerbaijan;
| | - Emilia Khalilulina
- Faculty of General Medicine, Pirogov Russian National Research Medical University, Ulitsa Ostrovityanova 1, 117997 Moscow, Russia;
| | - Alexander Cherepanov
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Daredzhan Kapanadze
- Center of Pathology of Pregnancy and Hemostasis «Medlabi», 340112 Tbilisi, Georgia;
| | - Elena Egorova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Nart Kuneshko
- Moscow’s Region Odintsovo Maternity Hospital, 143003 Odintsovo, Russia;
| | - Jean-Christophe Gris
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
- Faculty of Pharmaceutical and Biological Sciences, Montpellier University, 34093 Montpellier, France
| | - Ismail Elalamy
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
- Department Hematology and Thrombosis Center, Medicine Sorbonne University, 75012 Paris, France
- Hospital Tenon, 4 Rue de la Chine, 75020 Paris, France
| | - Cihan Ay
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
- Department of Medicine I, Clinical Division of Hematology and Hemostaseology, Medical University of Vienna, 1080 Vienna, Austria
| | - Alexander Makatsariya
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| |
Collapse
|
3
|
Cheng Y, Qin W, Lin L, Gao Y, Li M. Urinary complement factor D is increased in primary malignant hypertension: a single-center, cross-sectional study. Sci Rep 2024; 14:16253. [PMID: 39009768 PMCID: PMC11251191 DOI: 10.1038/s41598-024-66875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
Kidney injury is one of the detrimental consequences of primary malignant hypertension (pMHTN). There is a paucity of non-invasive biomarkers to enhance diagnosis and elucidate the underlying mechanisms. This study aims to explore urine protein biomarkers for pMHTN associated renal damage. In the discovery phase, urine samples were collected from 8 pMHTN, 19 disease controls (DCs), and 5 healthy controls (HCs). In-gel digestion combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was used for identification of proteins associated with pMHTN. In the validation phase, the differentially expressed proteins were validated by ELISA assay in cohort with 10 pMHTN patients, 37 DCs, and 30 HCs. Compared to DCs and HCs, a specific band between 15 and 25 kDa was found in 7 out of 8 patients with pMHTN. Further LC-MS/MS analysis revealed 5 differentially expressed proteins. ELISA validation demonstrated that urinary complement factor D (CFD) was significantly up regulated in pMHTN. By receiver operating characteristic curve analysis, urinary CFD/Cr showed moderate potential in discriminating pMHTN from DCs (the area under curve: 0.822, 95% CI 0.618-0.962). Urinary CFD may be a potential biomarker for pMHTN with its elevation indicative of the activation of the alternative complement pathway in pMHTN.
Collapse
Affiliation(s)
- Yaqi Cheng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Weiwei Qin
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Liling Lin
- Department of Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China.
| | - Mingxi Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
4
|
Desai SB, Ahdoot R, Malik F, Obert M, Hanna R. New guidelines and therapeutic updates for the management of lupus nephritis. Curr Opin Nephrol Hypertens 2024; 33:344-353. [PMID: 38334499 DOI: 10.1097/mnh.0000000000000969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) can be a devastating condition, striking young patients often in their prime reproductive years. Lupus nephritis is a common and serious complication occurring in roughly 50% of SLE cases, indicating a high likelihood of disease progression, morbidity, and mortality. As the early trials of steroid therapy, and later cyclophosphamide (CYC), therapeutic changes had been stagnant. Then came the introduction of mycophenolate mofetil (MMF) in the 2000s. After the Aspreva Lupus Management Study, there had been a dearth of trials showing positive therapy results. Since 2020, new studies have emerged for lupus nephritis involving the use of anti-BLYS agents, novel calcineurin inhibitors, CD20 blockade, and antiinterferon agents. Nephrology and rheumatology society guidelines in the United States and across the world are still catching up. RECENT FINDINGS Although therapeutic guidelines are being developed, updates that have come through have focused on improved diagnostic and monitoring guidelines. One theme is the recommendation of increasingly tight proteinuria control and firmer guidelines for the rapid induction of remission. The reality of multitarget therapy and the expectation of rapid induction for a more complete remission are being widely recognized. SUMMARY The need for more complete and more rapid induction and control of lupus nephritis is undisputed according to the evidence and guidelines, and the medications to achieve this are growing at a rate not seen over the prior two decades. What remains is a stepwise approach to recognize how to best optimize therapy. Based on available evidence, an algorithm for induction and maintenance treatment of lupus nephritis used by the University of California Irvine Lupus Nephritis clinic, is recommended.
Collapse
Affiliation(s)
| | - Rebecca Ahdoot
- Division of Nephrology, Department of Medicine, University of California Irvine, Orange, California, USA
| | - Fatima Malik
- Division of Nephrology, Department of Medicine, University of California Irvine, Orange, California, USA
| | | | - Ramy Hanna
- Division of Nephrology, Department of Medicine, University of California Irvine, Orange, California, USA
| |
Collapse
|
5
|
Mubarak M, Raza A, Rashid R, Sapna F, Shakeel S. Thrombotic microangiopathy after kidney transplantation: Expanding etiologic and pathogenetic spectra. World J Transplant 2024; 14:90277. [PMID: 38576763 PMCID: PMC10989473 DOI: 10.5500/wjt.v14.i1.90277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 03/15/2024] Open
Abstract
Thrombotic microangiopathy (TMA) is an uncommon but serious complication that not only affects native kidneys but also transplanted kidneys. This review is specifically focused on post-transplant TMA (PT-TMA) involving kidney transplant recipients. Its reported prevalence in the latter population varies from 0.8% to 14% with adverse impacts on both graft and patient survival. It has many causes and associations, and the list of etiologic agents and associations is growing constantly. The pathogenesis is equally varied and a variety of patho genetic pathways lead to the development of microvascular injury as the final common pathway. PT-TMA is categorized in many ways in order to facilitate its management. Ironically, more than one causes are contributory in PT-TMA and it is often difficult to pinpoint one particular cause in an individual case. Pathologically, the hallmark lesions are endothelial cell injury and intravascular thrombi affecting the microvasculature. Early diagnosis and classification of PT-TMA are imperative for optimal outcomes but are challenging for both clinicians and pathologists. The Banff classification has addressed this issue and has developed minimum diagnostic criteria for pathologic diagnosis of PT-TMA in the first phase. Management of the condition is also challenging and still largely empirical. It varies from simple maneuvers, such as plasmapheresis, drug withdrawal or modification, or dose reduction, to lifelong complement blockade, which is very expensive. A thorough understanding of the condition is imperative for an early diagnosis and quick treatment when the treatment is potentially effective. This review aims to increase the awareness of relevant stakeholders regarding this important, potentially treatable but under-recognized cause of kidney allograft dysfunction.
Collapse
Affiliation(s)
- Muhammed Mubarak
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Amber Raza
- Department of Nephrology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Rahma Rashid
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Fnu Sapna
- Department of Pathology, Montefiore Medical Center, The University Hospital for Albert Einstein School of Medicine, Bronx, NY 10461, United States
| | - Shaheera Shakeel
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| |
Collapse
|
6
|
Selamet U, Ahdoot RS, Salasnek R, Abdelnour L, Hanna RM. Onconephrology: mitigation of renal injury in chemotherapy administration. Curr Opin Nephrol Hypertens 2024; 33:257-266. [PMID: 38095483 DOI: 10.1097/mnh.0000000000000960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
PURPOSE OF REVIEW Onconephrology was first coined as a name for the intersection of cancer medicine and nephrology in the early 2010s. It was recognized then that beyond and understanding of kidney physiology, a new generation of nephrologists skilled in both molecular biology and precision medicine were needed to deal with the challenges of emerging cancer therapies. Stem cell transplants, biologic agents, adjuvants blocking basic cellular signaling pathways, immunotherapy were found to promote novel anticancer outcomes, but also to pose new risks to the kidneys. The field rapidly overlapped with emerging expertise in vascular glomerular disease, glomerular disease, and the same biologic agents now applied to auto immune systemic and kidney diseases. RECENT FINDINGS Many categories of chemotherapeutic agents have been discovered to have adverse renal side effects. In this review, we address classic chemotherapeutic nephrotoxicity and oncologic clinical situations leading to acute kidney injury. We also review the frontiers of nephrotoxicity reported with cell cycle inhibitors, diverse classes of tyrosine kinase inhibitors, immune checkpoint inhibitors, chimeric antigen receptor T-cell therapy, anticancer vaccines, and thrombotic microangiopathies triggered by malignancy and chemotherapy. The aim will be to focus on published strategies to mitigate nephrotoxicity. SUMMARY As onconephrology expands into its own field, it gives birth to new subdisciplines. An understanding that patient populations want the benefits of chemotherapy without the renal (and other) systemic toxicities is emerging. A need to develop a new class of molecular and genetic experts in onconephrology to mitigate nephrotoxicity from chemotherapy is apparent and urgent.
Collapse
Affiliation(s)
- Umut Selamet
- Department of Medical Oncology of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Rebecca S Ahdoot
- Department of Medicine- Division of Nephrology, University of California-Irvine, Irvine
| | - Reed Salasnek
- Department of Medicine- Division of Nephrology, University of California-Irvine, Irvine
| | - Lama Abdelnour
- Department of Medicine-Division of Nephrology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ramy M Hanna
- Department of Medicine- Division of Nephrology, University of California-Irvine, Irvine
| |
Collapse
|
7
|
Tran MH, Patel S, Desai S, Ciurea S, Lee BJ, Hanna R. Thrombotic microangiopathy - the importance of a multidisciplinary approach. Curr Opin Nephrol Hypertens 2024; 33:247-256. [PMID: 38018789 DOI: 10.1097/mnh.0000000000000954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight the importance of a multidisciplinary thrombotic microangiopathies (TMA) Team. This goal will be accomplished through review of the complement system, discuss various causes of thrombotic microangiopathies (TMA), and aspects of their diagnosis and management. In so doing, readers will gain an appreciation for the complexity of this family of disorders and realize the benefit of a dedicated multidisciplinary TMA Team. RECENT FINDINGS TMA causes derive from multiple specialty areas, are difficult to timely recognize, pose complex challenges, and require multidisciplinary management. Hematopoietic stem cell transplant-associated TMA (TA-TMA) and TA-TMA related multiorgan dysfunction syndrome (TA-TMA MODS) are areas of burgeoning research; use of complement testing and eculizumab precision-dosing has been found to better suppress complement activity in TA-TMA than standard eculizumab dosing. Newer tests are available to risk-stratify obstetric patients at risk for severe pre-eclampsia, whose features resemble those of TA-TMA MODS. Numerous disorders may produce TMA-like findings, and a systematic approach aids in their identification. TMA Teams elevate institutional awareness of increasingly recognized TMAs, will help expedite diagnostic and therapeutic interventions, and create pathways to future TMA-related research and facilitate access to clinical trials. SUMMARY Establishment of a TMA-Team is valuable in developing the necessary institutional expertise needed to promptly recognize and appropriately manage patients with TMA.
Collapse
Affiliation(s)
- Minh-Ha Tran
- University of California-Irvine, Department of Pathology-Division of Transfusion Medicine
| | - Samir Patel
- University of California Irvine, Department of Medicine - Division of Nephrology
| | - Sheetal Desai
- University of California-Irvine, Department of Medicine- Division of Rheumatology
| | - Stefan Ciurea
- University of California Irvine, Department of Medicine- Division of Hematology-Oncology-HSCT/CT Program
| | - Benjamin J Lee
- University of California Irvine, Department of Pharmacy, Irvine, California, USA
| | - Ramy Hanna
- University of California Irvine, Department of Medicine - Division of Nephrology
| |
Collapse
|
8
|
Voora S, Shah S, Nadim MK. Management of the kidney transplant recipient in the intensive care unit. Curr Opin Crit Care 2023; 29:587-594. [PMID: 37861189 DOI: 10.1097/mcc.0000000000001098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW Kidney transplantation is the ideal treatment for patients with chronic kidney disease and end stage renal disease. While centers are performing more transplants every year, the need for organ transplantation outpaces the supply of organ donors. Due to a growing population of patients with advanced kidney disease and a scarcity of kidneys from deceased donors, patients face extended wait times. By the time patients approach transplantation they have multiple comorbidities, in particular cardiovascular complications. Their risk of complications is further compounded by exposure to immunosuppression post kidney transplantation. Kidney transplant recipients (KTRs) are medically complex and may require acute management in the intensive care unit (ICU), as a result of cardiovascular complications, infections, and/or respiratory compromise from lung infections and/or acute pulmonary edema. Acute complication of immunosuppression, such as thrombotic microangiopathy and posterior reversible encephalopathy syndrome may also warrant ICU admission. This review will cover assessment of high-risk complications and management strategies following kidney transplantation. RECENT FINDINGS For intensivists caring for KTRs, it is imperative to understand anatomical considerations of the transplanted kidney, unique infectious risks faced by this population, and appropriate modulation of immunosuppression. SUMMARY Recognizing potential complications and implementing appropriate management strategies for KTRs admitted to the ICU will improve kidney allograft and patient survival outcomes.
Collapse
Affiliation(s)
- Santhi Voora
- Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|
9
|
Gudsoorkar P, Abudayyeh A, Tchakarov A, Hanna R. Onconephrology and Thrombotic Microangiopathy: Looking Beyond the Horizon. Semin Nephrol 2023; 42:151345. [PMID: 37196461 DOI: 10.1016/j.semnephrol.2023.151345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Thrombotic microangiopathies (TMAs) represent a complex interaction of endothelial and podocyte biology, nephron physiology, complement genetics, and oncologic therapies with host immunology. The complexity of various factors, such as molecular causes, genetic expressions, and immune system mimicking, along with incomplete penetrance, make it difficult to find a straightforward solution. As a result, there may be variations in diagnosis, study, and treatment approaches, and achieving a consensus can be challenging. Here, we review the molecular biology, pharmacology, immunology, molecular genetics, and pathology of the various TMA syndromes in the setting of cancer. Controversies in etiology, nomenclature, and points requiring further clinical, translational, and bench research are discussed. Complement-mediated TMAs, chemotherapy drug-mediated TMAs, TMAs in monoclonal gammopathy, and other TMAs central to onconephrology practice are reviewed in detail. In addition, established and emerging therapies within the US Food and Drug Administration pipeline subsequently are discussed. Finally, a comprehensive review of critical areas of onconephrology clinical practice is presented as practical value to the clinical practitioner and seeds of investigation to be sown among the community of atypical hemolytic uremic syndrome researchers.
Collapse
Affiliation(s)
- Prakash Gudsoorkar
- Division of Nephrology, Kidney C.A.R.E. Program, University of Cincinnati, Cincinnati, OH
| | - Ala Abudayyeh
- Section of Nephrology, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Amanda Tchakarov
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX
| | - Ramy Hanna
- Division of Nephrology, Department of Medicine, University of California Irvine Medical Center, Orange, CA.
| |
Collapse
|
10
|
Yang XD, Ju B, Xu J, Xiu NN, Sun XY, Zhao XC. Glucocorticoid-induced thrombotic microangiopathy in paroxysmal nocturnal hemoglobinuria: A case report and review of literature. World J Clin Cases 2023; 11:1799-1807. [PMID: 36970013 PMCID: PMC10037281 DOI: 10.12998/wjcc.v11.i8.1799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Thrombotic microangiopathy (TMA) is a group of disorders that converge on excessive platelet aggregation in the microvasculature, leading to consumptive thrombocytopenia, microangiopathic hemolysis and ischemic end-organ dysfunction. In predisposed patients, TMA can be triggered by many environmental factors. Glucocorticoids (GCs) can compromise the vascular endothelium. However, GC-associated TMA has rarely been reported, which may be due to the lack of awareness of clinicians. Given the high frequency of thrombocytopenia during GC treatment, particular attention should be given to this potentially fatal complication.
CASE SUMMARY An elderly Chinese man had a 12-year history of aplastic anemia (AA) and a 3-year history of paroxysmal nocturnal hemoglobinuria (PNH). Three months earlier, methylprednisolone treatment was initiated at 8 mg/d and increased to 20 mg/d to alleviate complement-mediated hemolysis. Following GC treatment, his platelet counts and hemoglobin levels rapidly decreased. After admission to our hospital, the dose of methylprednisolone was increased to 60 mg/d in an attempt to enhance the suppressive effect. However, increasing the GC dose did not alleviate hemolysis, and his cytopenia worsened. Morphological evaluation of the marrow smears revealed increased cellularity with an increased percentage of erythroid progenitors without evident dysplasia. Cluster of differentiation (CD)55 and CD59 expression was significantly decreased on erythrocytes and granulocytes. In the following days, platelet transfusion was required due to severe thrombocytopenia. Observation of platelet transfusion refractoriness indicated that the exacerbated cytopenia may have been caused by the development of TMA due to GC treatment because the transfused platelet concentrates had no defects in glycosylphosphatidylinositol-anchored proteins. We examined blood smears and found a small number of schistocytes, dacryocytes, acanthocytes and target cells. Discontinuation of GC treatment resulted in rapidly increased platelet counts and steady increases in hemoglobin levels. The patient’s platelet counts and hemoglobin levels returned to the levels prior to GC treatment 4 weeks after GC discontinuation.
CONCLUSION GCs can drive TMA episodes. When thrombocytopenia occurs during GC treatment, TMA should be considered, and GCs should be discontinued.
Collapse
Affiliation(s)
- Xiao-Dong Yang
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Jia Xu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| |
Collapse
|