1
|
Chang S, Ren D, Zhang L, Liu S, Yang W, Cheng H, Zhang X, Hong E, Geng D, Wang Y, Chen C, Zhang J, Shi T, Guo Y, Ni X, Wang H, Jin Y. Therapeutic SHPRH-146aa encoded by circ-SHPRH dynamically upregulates P21 to inhibit CDKs in neuroblastoma. Cancer Lett 2024; 598:217120. [PMID: 39002691 DOI: 10.1016/j.canlet.2024.217120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Recent research has underscored the significance of circular RNAs (circRNAs) in various cancers, including neuroblastoma (NB). Specifically, circ-SHPRH, a unique circRNA, has been revealed to inhibit tumor growth by sequestering miRNAs or producing the SHPRH-146aa protein. To explore circ-SHPRH's involvement in NB and its potential application in gene therapy, this study examined circ-SHPRH expression in 94 NB tissues and cell lines (SK-N-BE(2), SH-SY5Y) using real-time PCR and fluorescence in situ hybridization (FISH). Functional assays encompassing both overexpression and knockdown experiments in NB cell lines, as well as in vivo investigations, were conducted. RNA-seq analysis revealed a correlation between circ-SHPRH and the pathway of P21 (CDKN1A), a pivotal cell cycle regulator. Validation through PCR and other techniques confirmed that circ-SHPRH upregulated P21 expression. Furthermore, the regulatory role of circ-SHPRH in the P21-CDK pathway was corroborated through SHPRH-146aa expression analysis. Notably, adenovirus-mediated circ-SHPRH overexpression effectively curbed NB tumor growth in NSG mice, while combining circ-SHPRH with everolimus exhibited potential for NB treatment. This study elucidates the remarkable significance of circ-SHPRH in NB and its prospective utility in gene therapy, thereby paving the way for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Saishuo Chang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Dong Ren
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Li Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shan Liu
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Yang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Haiyan Cheng
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xuexi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Enyu Hong
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Di Geng
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yadi Wang
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chenghao Chen
- Department of Thoracic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yongli Guo
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China; Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Huanmin Wang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
2
|
Alrushaid N, Khan FA, Al-Suhaimi E, Elaissari A. Progress and Perspectives in Colon Cancer Pathology, Diagnosis, and Treatments. Diseases 2023; 11:148. [PMID: 37987259 PMCID: PMC10660546 DOI: 10.3390/diseases11040148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/03/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
Worldwide, colon cancer is the third most frequent malignancy and the second most common cause of death. Although it can strike anybody at any age, colon cancer mostly affects the elderly. Small, non-cancerous cell clusters inside the colon, commonly known as polyps, are typically where colon cancer growth starts. But over time, if left untreated, these benign polyps may develop into malignant tissues and develop into colon cancer. For the diagnosis of colon cancer, with routine inspection of the colon region for polyps, several techniques, including colonoscopy and cancer scanning, are used. In the case identifying the polyps in the colon area, efforts are being taken to surgically remove the polyps as quickly as possible before they become malignant. If the polyps become malignant, then colon cancer treatment strategies, such as surgery, chemotherapy, targeted therapy, and immunotherapy, are applied to the patients. Despite the recent improvements in diagnosis and prognosis, the treatment of colorectal cancer (CRC) remains a challenging task. The objective of this review was to discuss how CRC is initiated, and its various developmental stages, pathophysiology, and risk factors, and also to explore the current state of colorectal cancer diagnosis and treatment, as well as recent advancements in the field, such as new screening methods and targeted therapies. We examined the limitations of current methods and discussed the ongoing need for research and development in this area. While this topic may be serious and complex, we hope to engage and inform our audience on this important issue.
Collapse
Affiliation(s)
- Noor Alrushaid
- Universite Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France;
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Ebtesam Al-Suhaimi
- Biology Department, College of Science, Institute of Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Abdelhamid Elaissari
- Universite Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France;
| |
Collapse
|
3
|
Addison AP, McGinnis J, Ortiz-Guzman J, Tantry EK, Patel DM, Belfort BDW, Srivastava S, Romero JM, Arenkiel BR, Curry DJ. Molecular Neurosurgery: Introduction to Gene Therapy and Clinical Applications. JOURNAL OF PEDIATRIC EPILEPSY 2023. [DOI: 10.1055/s-0042-1760292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AbstractTo date, more than 100 clinical trials have used sequence-based therapies to address diseases of the pediatric central nervous system. The first targeted pathologies share common features: the diseases are severe; they are due (mostly) to single variants; the variants are well characterized within the genome; and the interventions are technically feasible. Interventions range from intramuscular and intravenous injection to intrathecal and intraparenchymal infusions. Whether the therapeutic sequence consists of RNA or DNA, and whether the sequence is delivered via simple oligonucleotide, nanoparticle, or viral vector depends on the disease and the involved cell type(s) of the nervous system. While only one active trial targets an epilepsy disorder—Dravet syndrome—experiences with aromatic L-amino acid decarboxylase deficiency, spinal muscular atrophy, and others have taught us several lessons that will undoubtedly apply to the future of gene therapy for epilepsies. Epilepsies, with their diverse underlying mechanisms, will have unique aspects that may influence gene therapy strategies, such as targeting the epileptic zone or nodes in affected circuits, or alternatively finding ways to target nearly every neuron in the brain. This article focuses on the current state of gene therapy and includes its history and premise, the strategy and delivery vehicles most commonly used, and details viral vectors, current trials, and considerations for the future of pediatric intracranial gene therapy.
Collapse
Affiliation(s)
- Angela P. Addison
- Department of Surgery, Section of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - J.P. McGinnis
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, United States
| | - Joshua Ortiz-Guzman
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Evelyne K. Tantry
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Dhruv M. Patel
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of BioSciences, Rice University, Houston, Texas, United States
| | - Benjamin D. W. Belfort
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Snigdha Srivastava
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of BioSciences, Rice University, Houston, Texas, United States
| | - Benjamin R. Arenkiel
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Daniel J. Curry
- Department of Surgery, Section of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, United States
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
4
|
Non-Canonical Programmed Cell Death in Colon Cancer. Cancers (Basel) 2022; 14:cancers14143309. [PMID: 35884370 PMCID: PMC9320762 DOI: 10.3390/cancers14143309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Non-canonical PCD is an important player in colon cancer cell suicide. It influences colon cancer in many ways, such as through tumorigenesis, treatment, and prognosis. In this review, we present the mechanism, application, and prospect of different types of non-canonical PCD in colon cancer. Abstract Programmed cell death (PCD) is an evolutionarily conserved process of cell suicide that is regulated by various genes and the interaction of multiple signal pathways. Non-canonical programmed cell death (PCD) represents different signaling excluding apoptosis. Colon cancer is the third most incident and the fourth most mortal worldwide. Multiple factors such as alcohol, obesity, and genetic and epigenetic alternations contribute to the carcinogenesis of colon cancer. In recent years, emerging evidence has suggested that diverse types of non-canonical programmed cell death are involved in the initiation and development of colon cancer, including mitotic catastrophe, ferroptosis, pyroptosis, necroptosis, parthanatos, oxeiptosis, NETosis, PANoptosis, and entosis. In this review, we summarized the association of different types of non-canonical PCD with tumorigenesis, progression, prevention, treatments, and prognosis of colon cancer. In addition, the prospect of drug-resistant colon cancer therapy related to non-canonical PCD, and the interaction between different types of non-canonical PCD, was systemically reviewed.
Collapse
|
5
|
Hasbullah HH, Musa M. Gene Therapy Targeting p53 and KRAS for Colorectal Cancer Treatment: A Myth or the Way Forward? Int J Mol Sci 2021; 22:11941. [PMID: 34769370 PMCID: PMC8584926 DOI: 10.3390/ijms222111941] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy worldwide and is responsible as one of the main causes of mortality in both men and women. Despite massive efforts to raise public awareness on early screening and significant advancements in the treatment for CRC, the majority of cases are still being diagnosed at the advanced stage. This contributes to low survivability due to this cancer. CRC patients present various genetic changes and epigenetic modifications. The most common genetic alterations associated with CRC are p53 and KRAS mutations. Gene therapy targeting defect genes such as TP53 (tumor suppressor gene encodes for p53) and KRAS (oncogene) in CRC potentially serves as an alternative treatment avenue for the disease in addition to the standard therapy. For the last decade, significant developments have been seen in gene therapy for translational purposes in treating various cancers. This includes the development of vectors as delivery vehicles. Despite the optimism revolving around targeted gene therapy for cancer treatment, it also has various limitations, such as a lack of availability of related technology, high cost of the involved procedures, and ethical issues. This article will provide a review on the potentials and challenges of gene therapy targeting p53 and KRAS for the treatment of CRC.
Collapse
Affiliation(s)
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| |
Collapse
|
6
|
Increased Temperature Facilitates Adeno-Associated Virus Vector Transduction of Colorectal Cancer Cell Lines in a Manner Dependent on Heat Shock Protein Signature. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9107140. [PMID: 32090115 PMCID: PMC7031720 DOI: 10.1155/2020/9107140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/30/2019] [Accepted: 08/10/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in human population. A great achievement in the treatment of CRC was the introduction of targeted biological drugs and solutions of chemotherapy, combined with hyperthermia. Cytoreductive surgery and HIPEC (hyperthermic intraperitoneal chemotherapy) extends the patients' survival with CRC. Recently, gene therapy approaches are also postulated. The studies indicate the possibility of enhancing the gene transfer to cells by recombinant adeno-associated vectors (rAAV) at hyperthermia. The rAAV vectors arouse a lot of attention in the field of cancer treatment due to many advantages. In this study, the effect of elevated temperature on the transduction efficiency of rAAV vectors on CRC cells with different origin and gene profile was examined. The effect of heat shock on the penetration of rAAV vectors into CRC cells in relation with the expression of HSP and AAV receptor genes was tested. It was found that the examined cells under hyperthermia (43°C, 1 h) are transduced at a higher level than in normal conditions (37°C). The results also indicate that studied RKO, HT-29, and LS411N cell lines express HSP genes at different levels under both 37°C and 43°C. Moreover, the results showed that the expression of AAV receptors increases in response to elevated temperature. The study suggests that increased rAAV transfer to CRC can be achieved under elevated temperature conditions. The obtained results provide information relevant to the design of new solutions in CRC therapy based on the combination of hyperthermia, chemotherapy, and gene therapy.
Collapse
|
7
|
Rafatmanesh A, Behjati M, Mobasseri N, Sarvizadeh M, Mazoochi T, Karimian M. The survivin molecule as a double-edged sword in cellular physiologic and pathologic conditions and its role as a potential biomarker and therapeutic target in cancer. J Cell Physiol 2019; 235:725-744. [PMID: 31250439 DOI: 10.1002/jcp.29027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022]
Abstract
Survivin is a member of the family of apoptosis inhibitory proteins with increased expression level in most cancerous tissues. Evidence shows that survivin plays regulatory roles in proliferation or survival of normal adult cells, principally vascular endothelial cells, T lymphocytes, primitive hematopoietic cells, and polymorphonuclear neutrophils. Survivin antiapoptotic role is, directly and indirectly, related to caspase proteins and shows its role in cell division through the chromosomal passenger complex. Survivin contains many genetic polymorphisms that the role of some variations has been proven in several cancers. The -31G/C polymorphism is one of the most important survivin mutations which is located in the promoter region on a CDE/CHR motif. This polymorphism can upregulate the survivin messenger RNA. In addition, its allele C can increase the risk of cancers in 1.27-fold than allele G. Considering the fundamental role of survivin in different cancers, this protein could be considered as a new therapeutic target in cancer treatment. For this purpose, various strategies have been designed including the prevention of survivin expression through inhibition of mRNA translation using antagonistic molecules, inhibition of survivin gene function through small inhibitory molecules, gene therapy, and immunotherapy. In this study, we describe the structure, played roles in physiological and pathological states and genetic polymorphisms of survivin. Finally, the role of survivin as a potential target in cancer therapy given challenges ahead has been discussed.
Collapse
Affiliation(s)
- Atieh Rafatmanesh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Mohaddeseh Behjati
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Mobasseri
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Tahereh Mazoochi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi V. Gene Therapy Leaves a Vicious Cycle. Front Oncol 2019; 9:297. [PMID: 31069169 PMCID: PMC6491712 DOI: 10.3389/fonc.2019.00297] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The human genetic code encrypted in thousands of genes holds the secret for synthesis of proteins that drive all biological processes necessary for normal life and death. Though the genetic ciphering remains unchanged through generations, some genes get disrupted, deleted and or mutated, manifesting diseases, and or disorders. Current treatment options—chemotherapy, protein therapy, radiotherapy, and surgery available for no more than 500 diseases—neither cure nor prevent genetic errors but often cause many side effects. However, gene therapy, colloquially called “living drug,” provides a one-time treatment option by rewriting or fixing errors in the natural genetic ciphering. Since gene therapy is predominantly a viral vector-based medicine, it has met with a fair bit of skepticism from both the science fraternity and patients. Now, thanks to advancements in gene editing and recombinant viral vector development, the interest of clinicians and pharmaceutical industries has been rekindled. With the advent of more than 12 different gene therapy drugs for curing cancer, blindness, immune, and neuronal disorders, this emerging experimental medicine has yet again come in the limelight. The present review article delves into the popular viral vectors used in gene therapy, advances, challenges, and perspectives.
Collapse
Affiliation(s)
- Reena Goswami
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Liliya Silayeva
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Isabelle Newkirk
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Deborah Doctor
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Karan Chawla
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Dhyan Chandra
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nageswararao Chilukuri
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Venkaiah Betapudi
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
9
|
Survivin-Based Treatment Strategies for Squamous Cell Carcinoma. Int J Mol Sci 2018; 19:ijms19040971. [PMID: 29587347 PMCID: PMC5979467 DOI: 10.3390/ijms19040971] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Survivin, an anti-apoptotic molecule abundantly expressed in most human neoplasms, has been reported to contribute to cancer initiation and drug resistance in a wide variety of human tumors. Efficient downregulation of survivin can sensitize tumor cells to various therapeutic interventions, generating considerable efforts in its validation as a new target in cancer therapy. This review thoroughly analyzes up-to-date information on the potential of survivin as a therapeutic target for new anticancer treatments. The literature dealing with the therapeutic targeting of survivin will be reviewed, discussing specifically squamous cell carcinomas (SCCs), and with emphasis on the last clinical trials. This review gives insight into the recent developments undertaken in validating various treatment strategies that target survivin in SCCs and analyze the translational possibility, identifying those strategies that seem to be the closest to being incorporated into clinical practice. The most recent developments, such as dominant-negative survivin mutants, RNA interference, anti-sense oligonucleotides, small-molecule inhibitors, and peptide-based immunotherapy, seem to be helpful for effectively downregulating survivin expression and reducing tumor growth potential, increasing the apoptotic rate, and sensitizing tumor cells to chemo- and radiotherapy. However, selective and efficient targeting of survivin in clinical trials still poses a major challenge.
Collapse
|
10
|
Li S, Yang Y, Ding Y, Tang X, Sun Z. Impacts of survivin and caspase-3 on apoptosis and angiogenesis in oral cancer. Oncol Lett 2017; 14:3774-3779. [PMID: 28927146 DOI: 10.3892/ol.2017.6626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to investigate the impact of survivin and caspase-3 on apoptosis and angiogenesis in oral cancer. A total of 16 oral leukoplakia cases accompanied by low-moderate epithelial dysplasia, 12 cases of oral leukoplakia accompanied by severe epithelial dysplasia, 17 cases of high-moderate differentiated oral squamous cell carcinoma and 10 cases of normal oral mucosa were selected. Immunohistochemistry was used to detect the expression levels of survivin, caspase-3, and caspase inhibitor factor VIII in lesions from each group. Terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling was performed to detect the apoptotic index of oral leukoplakia and cancer tissue. Immunohistochemistry revealed increased expression levels of survivin in oral cancer tissues, as compared with the normal mucosa, whereas the expression of Caspase-3 was decreased during malignant transformation. Microvascular density (MVD) was increased from 28.49±11.87 strips/mm2 (mean ± standard deviation, normal control group) to 91.98±40.20 strips/mm2 (oral cancer group). Therefore, survivin may serve an important role in oral cancer, as its expression was increased in association with a downward trend in caspase-3 expression and apoptotic index, whereas MVD was significantly increased.
Collapse
Affiliation(s)
- Shuxia Li
- Department of Oral Medicine, Beijing Stomatological Hospital of China, Capital Medical University, Beijing 100050, P.R. China
| | - Yanqi Yang
- Department of Orthodontics, School of Dentistry, Hong Kong University, Hong Kong 999077, P.R. China
| | - Yanping Ding
- Department of Oral Medicine, Beijing Stomatological Hospital of China, Capital Medical University, Beijing 100050, P.R. China
| | - Xiaofei Tang
- Institute of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Zheng Sun
- Department of Oral Medicine, Beijing Stomatological Hospital of China, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
11
|
Khan Z, Khan AA, Yadav H, Prasad GBKS, Bisen PS. Survivin, a molecular target for therapeutic interventions in squamous cell carcinoma. Cell Mol Biol Lett 2017; 22:8. [PMID: 28536639 PMCID: PMC5415770 DOI: 10.1186/s11658-017-0038-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Squamous cell carcinoma (SCC) is the most common cancer worldwide. The treatment of locally advanced disease generally requires various combinations of radiotherapy, surgery, and systemic therapy. Despite aggressive multimodal treatment, most of the patients relapse. Identification of molecules that sustain cancer cell growth and survival has made molecular targeting a feasible therapeutic strategy. Survivin is a member of the Inhibitor of Apoptosis Protein (IAP) family, which is overexpressed in most of the malignancies including SCC and totally absent in most of the normal tissues. This feature makes survivin an ideal target for cancer therapy. It orchestrates several important mechanisms to support cancer cell survival including inhibition of apoptosis and regulation of cell division. Overexpression of survivin in tumors is also associated with poor prognosis, aggressive tumor behavior, resistance to therapy, and high tumor recurrence. Various strategies have been developed to target survivin expression in cancer cells, and their effects on apoptosis induction and tumor growth attenuation have been demonstrated. In this review, we discuss recent advances in therapeutic potential of survivin in cancer treatment.
Collapse
Affiliation(s)
- Zakir Khan
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474001 MP India.,Department of Biomedical Sciences, Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hariom Yadav
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | | | - Prakash Singh Bisen
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474001 MP India
| |
Collapse
|
12
|
Khan Z. Survivin as a Therapeutic Target in Squamous Cell Carcinoma. SQUAMOUS CELL CARCINOMA 2017:183-203. [DOI: 10.1007/978-94-024-1084-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Cheng XJ, Lin JC, Ding YF, Zhu L, Ye J, Tu SP. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues. Oncotarget 2016; 7:7096-109. [PMID: 26771139 PMCID: PMC4872771 DOI: 10.18632/oncotarget.6898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/31/2015] [Indexed: 01/06/2023] Open
Abstract
Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiao Jiao Cheng
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jia Cheng Lin
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Fei Ding
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liming Zhu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jing Ye
- Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shui Ping Tu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
14
|
Santiago-Ortiz JL, Schaffer DV. Adeno-associated virus (AAV) vectors in cancer gene therapy. J Control Release 2016; 240:287-301. [PMID: 26796040 PMCID: PMC4940329 DOI: 10.1016/j.jconrel.2016.01.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/08/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Gene delivery vectors based on adeno-associated virus (AAV) have been utilized in a large number of gene therapy clinical trials, which have demonstrated their strong safety profile and increasingly their therapeutic efficacy for treating monogenic diseases. For cancer applications, AAV vectors have been harnessed for delivery of an extensive repertoire of transgenes to preclinical models and, more recently, clinical trials involving certain cancers. This review describes the applications of AAV vectors to cancer models and presents developments in vector engineering and payload design aimed at tailoring AAV vectors for transduction and treatment of cancer cells. We also discuss the current status of AAV clinical development in oncology and future directions for AAV in this field.
Collapse
Affiliation(s)
- Jorge L Santiago-Ortiz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
15
|
Trachana SP, Pilalis E, Gavalas NG, Tzannis K, Papadodima O, Liontos M, Rodolakis A, Vlachos G, Thomakos N, Haidopoulos D, Lykka M, Koutsoukos K, Kostouros E, Terpos E, Chatziioannou A, Dimopoulos MA, Bamias A. The Development of an Angiogenic Protein "Signature" in Ovarian Cancer Ascites as a Tool for Biologic and Prognostic Profiling. PLoS One 2016; 11:e0156403. [PMID: 27258020 PMCID: PMC4892506 DOI: 10.1371/journal.pone.0156403] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/13/2016] [Indexed: 01/07/2023] Open
Abstract
Advanced ovarian cancer (AOC) is one of the leading lethal gynecological cancers in developed countries. Based on the important role of angiogenesis in ovarian cancer oncogenesis and expansion, we hypothesized that the development of an "angiogenic signature" might be helpful in prediction of prognosis and efficacy of anti-angiogenic therapies in this disease. Sixty-nine samples of ascitic fluid- 35 from platinum sensitive and 34 from platinum resistant patients managed with cytoreductive surgery and 1st-line carboplatin-based chemotherapy- were analyzed using the Proteome ProfilerTM Human Angiogenesis Array Kit, screening for the presence of 55 soluble angiogenesis-related factors. A protein profile based on the expression of a subset of 25 factors could accurately separate resistant from sensitive patients with a success rate of approximately 90%. The protein profile corresponding to the "sensitive" subset was associated with significantly longer PFS (8 [95% Confidence Interval {CI}: 8-9] vs. 20 months [95% CI: 15-28]; Hazard ratio {HR}: 8.3, p<0.001) and OS (20.5 months [95% CI: 13.5-30] vs. 74 months [95% CI: 36-not reached]; HR: 5.6 [95% CI: 2.8-11.2]; p<0.001). This prognostic performance was superior to that of stage, histology and residual disease after cytoreductive surgery and the levels of vascular endothelial growth factor (VEGF) in ascites. In conclusion, we developed an "angiogenic signature" for patients with AOC, which can be used, after appropriate validation, as a prognostic marker and a tool for selection for anti-angiogenic therapies.
Collapse
Affiliation(s)
- Sofia-Paraskevi Trachana
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
- * E-mail:
| | - Eleftherios Pilalis
- Metabolic Engineering and Bioinformatics Program Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Nikos G. Gavalas
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Kimon Tzannis
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Olga Papadodima
- Metabolic Engineering and Bioinformatics Program Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Michalis Liontos
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Alexandros Rodolakis
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Georgios Vlachos
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Nikolaos Thomakos
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Dimitrios Haidopoulos
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Maria Lykka
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Konstantinos Koutsoukos
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Efthimios Kostouros
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Evagelos Terpos
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Aristotelis Chatziioannou
- Metabolic Engineering and Bioinformatics Program Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| |
Collapse
|
16
|
Development of replication-competent adenovirus for bladder cancer by controlling adenovirus E1a and E4 gene expression with the survivin promoter. Oncotarget 2015; 5:5615-23. [PMID: 25015402 PMCID: PMC4170600 DOI: 10.18632/oncotarget.2151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Survivin is a member of the inhibitors of apoptosis protein family. Here, we examined survivin expression and confirmed abundant survivin expression in bladder cancer cells. This expression pattern indicated that the transcriptional regulatory elements that control survivin expression could be utilized to discriminate cancer from normal cells. We therefore generated a novel adenovirus termed Ad5/35E1apsurvivinE4 with the following characteristics: 1) E1A and E4 protein expression was dependent on survivin promoter activity; 2) the green fluorescence protein gene was inserted into the genome under the control of the CMV promoter; 3) most of the E3 sequences were deleted, but the construct was still capable of expressing the adenovirus death protein with potent cytotoxic effects; and 4) the fiber knob was from serotype 35 adenovirus. As expected from the abundant survivin expression observed in bladder cancer cells, Ad5/35E1apsurvivinE4 replicated better in cancer cells than in normal cells by a factor of 106 to 102. Likewise, Ad5/35E1apsurvivinE4 exerted greater cytotoxic effects on all bladder cancer cell lines tested. Importantly, Ad5/35E1apsurvivinE4 inhibited the growth of Ku7-Luc orthotopic xenografts in nude mice. Taken together, Ad5/35E1apsurvivinE4 indicates that the survivin promoter may be utilized for the development of a replication-competent adenovirus to target bladder cancers.
Collapse
|
17
|
Cornago M, Garcia-Alberich C, Blasco-Angulo N, Vall-Llaura N, Nager M, Herreros J, Comella JX, Sanchis D, Llovera M. Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe. Cell Death Dis 2014; 5:e1435. [PMID: 25275596 PMCID: PMC4237242 DOI: 10.1038/cddis.2014.412] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/09/2014] [Accepted: 08/14/2014] [Indexed: 11/09/2022]
Abstract
Glioblastoma multiforme is resistant to conventional anti-tumoral treatments due to its infiltrative nature and capability of relapse; therefore, research efforts focus on characterizing gliomagenesis and identifying molecular targets useful on therapy. New therapeutic strategies are being tested in patients, such as Histone deacetylase inhibitors (HDACi) either alone or in combination with other therapies. Here two HDACi included in clinical trials have been tested, suberanilohydroxamic acid (SAHA) and valproic acid (VPA), to characterize their effects on glioma cell growth in vitro and to determine the molecular changes that promote cancer cell death. We found that both HDACi reduce glioma cell viability, proliferation and clonogenicity. They have multiple effects, such as inducing the production of reactive oxygen species (ROS) and activating the mitochondrial apoptotic pathway, nevertheless cell death is not prevented by the pan-caspase inhibitor Q-VD-OPh. Importantly, we found that HDACi alter cell cycle progression by decreasing the expression of G2 checkpoint kinases Wee1 and checkpoint kinase 1 (Chk1). In addition, HDACi reduce the expression of proteins involved in DNA repair (Rad51), mitotic spindle formation (TPX2) and chromosome segregation (Survivin) in glioma cells and in human glioblastoma multiforme primary cultures. Therefore, HDACi treatment causes glioma cell entry into mitosis before DNA damage could be repaired and to the formation of an aberrant mitotic spindle that results in glioma cell death through mitotic catastrophe-induced apoptosis.
Collapse
Affiliation(s)
- M Cornago
- Cell Signaling and Apoptosis Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Lleida, Spain
| | - C Garcia-Alberich
- Cell Signaling and Apoptosis Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Lleida, Spain
| | - N Blasco-Angulo
- Cell Signaling and Apoptosis Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Lleida, Spain
| | - N Vall-Llaura
- Cell Signaling and Apoptosis Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Lleida, Spain
| | - M Nager
- Calcium Signaling and Neuronal Differentiation Group, IRBLleida, Universitat de Lleida, Lleida, Spain
| | - J Herreros
- Calcium Signaling and Neuronal Differentiation Group, IRBLleida, Universitat de Lleida, Lleida, Spain
| | - J X Comella
- Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Institut de Neurociències, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - D Sanchis
- Cell Signaling and Apoptosis Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Lleida, Spain
| | - M Llovera
- Cell Signaling and Apoptosis Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Lleida, Spain
| |
Collapse
|
18
|
Zajakina A, Vasilevska J, Zhulenkovs D, Skrastina D, Spaks A, Plotniece A, Kozlovska T. High efficiency of alphaviral gene transfer in combination with 5-fluorouracil in a mouse mammary tumor model. BMC Cancer 2014; 14:460. [PMID: 24950740 PMCID: PMC4077127 DOI: 10.1186/1471-2407-14-460] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 06/17/2014] [Indexed: 11/17/2022] Open
Abstract
Background The combination of virotherapy and chemotherapy may enable efficient tumor regression that would be unachievable using either therapy alone. In this study, we investigated the efficiency of transgene delivery and the cytotoxic effects of alphaviral vector in combination with 5-fluorouracil (5-FU) in a mouse mammary tumor model (4 T1). Methods Replication-deficient Semliki Forest virus (SFV) vectors carrying genes encoding fluorescent proteins were used to infect 4 T1 cell cultures treated with different doses of 5-FU. The efficiency of infection was monitored via fluorescence microscopy and quantified by fluorometry. The cytotoxicity of the combined treatment with 5-FU and alphaviral vector was measured using an MTT-based cell viability assay. In vivo experiments were performed in a subcutaneous 4 T1 mouse mammary tumor model with different 5-FU doses and an SFV vector encoding firefly luciferase. Results Infection of 4 T1 cells with SFV prior to 5-FU treatment did not produce a synergistic anti-proliferative effect. An alternative treatment strategy, in which 5-FU was used prior to virus infection, strongly inhibited SFV expression. Nevertheless, in vivo experiments showed a significant enhancement in SFV-driven transgene (luciferase) expression upon intratumoral and intraperitoneal vector administration in 4 T1 tumor-bearing mice pretreated with 5-FU: here, we observed a positive correlation between 5-FU dose and the level of luciferase expression. Conclusions Although 5-FU inhibited SFV-mediated transgene expression in 4 T1 cells in vitro, application of the drug in a mouse model revealed a significant enhancement of intratumoral transgene synthesis compared with 5-FU untreated mice. These results may have implications for efficient transgene delivery and the development of potent cancer treatment strategies using alphaviral vectors and 5-FU.
Collapse
Affiliation(s)
- Anna Zajakina
- Department of Cell Biology, Biomedical Research and Study Centre, Ratsupites Str,, 1, Riga LV-1067, Latvia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang L, Kang Y, Zheng W, Li L, Shi L, Ma X. Effect on apoptosis and cell cycle of recombinant double negative dominant mutation Survivin (T34/117A) in breast cancer cell B-Cap-37. Biomed Pharmacother 2014; 68:277-84. [PMID: 24513056 DOI: 10.1016/j.biopha.2013.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/11/2013] [Indexed: 12/15/2022] Open
|
20
|
Fazilati M. Anti-neoplastic Applications of Heparin Coated Magnetic Nanoparticles Against Human Ovarian Cancer. J Inorg Organomet Polym Mater 2013. [DOI: 10.1007/s10904-013-0005-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Li XL, Shan S, Xiong M, Xia XH, Xu JJ, Chen HY. On-chip selective capture of cancer cells and ultrasensitive fluorescence detection of survivin mRNA in a single living cell. LAB ON A CHIP 2013; 13:3868-75. [PMID: 23912689 DOI: 10.1039/c3lc50587a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The rapid recognition of cancer cells and detection of tumor biomarker survivin mRNA plays a critical role in the early diagnosis of many cancers. Based on the integration of specific cancer cell capture and intracellular survivin mRNA detection, this work presents a novel and sensitive on-chip approach for the bioanalysis of survivin mRNA in a single living cell. The microchannel surface was firstly modified with a prostate stem cell antigen (PSCA) monoclonal antibody as the recognition element for prostate cancer cells (PC-3). As a result of the antigen-antibody specific affinity interactions, PC-3 cells could be selectively captured on the microchannel surface. After cell capture, nano-sized graphene oxide-poly(ethylene glycol) bis(amine) (NGO-PEG) was employed as a quencher and carrier of a signal tag, fluorescein isothiocyanate (FITC)-labeled antisense oligonucleotide (F-S1), which is complementary to part of survivin mRNA (target survivin mRNA), to transfect into the captured PC-3 cells. Upon the selective binding of S1 to intracellular survivin mRNA, F-S1 will be released from the NGO-PEG, inducing the fluorescence recovery of FITC. This antibody-based microfluidic device enables simple and inexpensive monitoring of the amount of survivin mRNA in single captured cell without the need for sample pretreatment. The survivin mRNA content in each PC-3 cell was estimated to be (4.8 ± 1.8) × 10(6) copies. This strategy opens a different perspective for ultrasensitive survivin mRNA detection, which may facilitate the early screening for malignancy.
Collapse
Affiliation(s)
- Xiang-Ling Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R.China.
| | | | | | | | | | | |
Collapse
|
22
|
Weng Y, Fei B, Chi AL, Cai M. Inhibition of gastric cancer cell growth in vivo by overexpression of adeno-associated virus-mediated survivin mutant C84A. Oncol Res 2013; 20:411-7. [PMID: 23924925 DOI: 10.3727/096504013x13657689383094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Survivin is overexpressed in most of human cancer cells and tissues. Its overexpression is associated with apoptosis inhibition, drug resistance, and poor prognosis. In this study, we investigated the effect of adeno-associated virus (AAV)-mediated survivin mutant Cys84Ala [rAAV-Sur-Mut(C84A)] on gastric cancer growth. Sur-Mut(C84A) was subcloned into the AAV expression vector pAM/CAG to generate recombinant (r)AAV-Sur-Mut(C84A) virus. Cell survival was determined by the MTT method. Apoptosis was measured by FACS analysis and TUNEL. Tumor growth was assessed using a xenograft mouse model. Results showed that treatment of rAAV-Sur-Mut(C84A) virus significantly reduced cell survival, induced apoptosis, and sensitized gastric cancer cells to 5-fluorouracil in vitro. Furthermore, treatment of rAAV-Sur-Mut(C84A) virus markedly induced apoptosis and inhibited gastric cancer growth in vivo. Moreover, rAAV-Sur-Mut(C84A) treatment strongly enhanced the antitumor activity of 5-fluorouracil. Our results suggest that the combination of rAAV-Sur-Mut(C84A) with chemotherapy may be a promising strategy for gastric cancer therapy.
Collapse
Affiliation(s)
- Yuan Weng
- Department of Thoracic and Cardiovascular Surgery, No. 4 People's Hospital of Wuxi City, Wuxi City, PR China
| | | | | | | |
Collapse
|
23
|
Fei B, Chi AL, Weng Y. Hydroxycamptothecin induces apoptosis and inhibits tumor growth in colon cancer by the downregulation of survivin and XIAP expression. World J Surg Oncol 2013; 11:120. [PMID: 23721525 PMCID: PMC3679846 DOI: 10.1186/1477-7819-11-120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/12/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND 10-Hydroxycamptothecin (10-HCPT), isolated from a Chinese tree Camptotheca acuminate, inhibits the activity of topoisomerase I and has a broad spectrum of anticancer activity in vitro and in vivo. It has been shown that HCPT is more active and less toxic than conventional camptothecins and can induce cancer cell apoptosis. However, the mechanisms of HCPT-induced apoptosis in colon cancer cells remain unclear. In this study, we investigated the effects of HCPT on apoptosis of colon cancer and underlying mechanism. METHODS Cell proliferation was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay, and apoptosis was measured using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Expression of genes was detected using real-time reverse transcription-polymerase chain reaction (real time-PCR) and Western blot. Tumor growth in vivo was evaluated using a nude mouse xenograft model. RESULTS HCPT could significantly inhibit cell proliferation and induce apoptosis in colon cancer SW1116 and Colo 205 cells in dose- and time-dependent manners. HCPT treatment activated the activities of caspase 3, 7, 8 and 9, downregulated the expression of survivin, survivinΔEx3, survivin-3B and XIAP, and upregulated expression of surviving 2B. Moreover, the combination of HCPT and 5-fluorouracial (5-FU) synergistically induced apoptosis and downregulated the expression of survivin and XIAP. Knockdown of survivin and XIAP by siRNA sensitized colon cancer to HCTP-induced apoptosis. Furthermore, HCPT treatment significantly inhibited SW1116 xenograft tumor growth. CONCLUSIONS Our results elucidate new mechanisms of HCPT antitumor by the downregulation of survivin and XIAP expression. The combination of HCPT with 5-FU or IAP inhibitors may be a potential strategy for colon cancer treatment.
Collapse
Affiliation(s)
- Bojian Fei
- Department of Surgical Oncology, No.4 people’s hospital, Wuxi City 214062, PR China
| | | | | |
Collapse
|
24
|
Castells M, Thibault B, Delord JP, Couderc B. Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci 2012; 13:9545-9571. [PMID: 22949815 PMCID: PMC3431813 DOI: 10.3390/ijms13089545] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 12/17/2022] Open
Abstract
Tumor development principally occurs following the accumulation of genetic and epigenetic alterations in tumor cells. These changes pave the way for the transformation of chemosensitive cells to chemoresistant ones by influencing the uptake, metabolism, or export of drugs at the cellular level. Numerous reports have revealed the complexity of tumors and their microenvironment with tumor cells located within a heterogeneous population of stromal cells. These stromal cells (fibroblasts, endothelial or mesothelial cells, adipocytes or adipose tissue-derived stromal cells, immune cells and bone marrow-derived stem cells) could be involved in the chemoresistance that is acquired by tumor cells via several mechanisms: (i) cell-cell and cell-matrix interactions influencing the cancer cell sensitivity to apoptosis; (ii) local release of soluble factors promoting survival and tumor growth (crosstalk between stromal and tumor cells); (iii) direct cell-cell interactions with tumor cells (crosstalk or oncologic trogocytosis); (iv) generation of specific niches within the tumor microenvironment that facilitate the acquisition of drug resistance; or (v) conversion of the cancer cells to cancer-initiating cells or cancer stem cells. This review will focus on the implication of each member of the heterogeneous population of stromal cells in conferring resistance to cytotoxins and physiological mediators of cell death.
Collapse
Affiliation(s)
| | | | | | - Bettina Couderc
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-5-61-42-46-44; Fax: +33-5-61-42-46-31
| |
Collapse
|
25
|
Tu SP, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, Liu A, Wang TC, Yang CS. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. CANCER PREVENTION RESEARCH (PHILADELPHIA, PA.) 2011. [PMID: 22030090 DOI: 10.1158/1940-6207.carp-11-0247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) accumulate in the spleen and tumors and contribute to tumor growth, angiogenesis, and progression. In this study, we examined the effects of curcumin on the activation and differentiation of MDSCs, their interaction with human cancer cells, and related tumor growth. Treatment with curcumin in the diet or by intraperitoneal injection significantly inhibited tumorigenicity and tumor growth, decreased the percentages of MDSCs in the spleen, blood, and tumor tissues, reduced interleukin (IL)-6 levels in the serum and tumor tissues in a human gastric cancer xenograft model and a mouse colon cancer allograft model. Curcumin treatment significantly inhibited cell proliferation and colony formation of cancer cells and decreased the secretion of murine IL-6 by MDSCs in a coculture system. Curcumin treatment inhibited the expansion of MDSCs, the activation of Stat3 and NF-κB in MDSCs, and the secretion of IL-6 by MDSCs, when MDSCs were cultured in the presence of IL-1β, or with cancer cell- or myofibroblast-conditioned medium. Furthermore, curcumin treatment polarized MDSCs toward a M1-like phenotype with an increased expression of CCR7 and decreased expression of dectin 1 in vivo and in vitro. Our results show that curcumin inhibits the accumulation of MDSCs and their interaction with cancer cells and induces the differentiation of MDSCs. The induction of MDSC differentiation and inhibition of the interaction of MDSCs with cancer cells are potential strategies for cancer prevention and therapy.
Collapse
|
26
|
Tu SP, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, Liu A, Wang TC, Yang CS. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila) 2011; 5:205-15. [PMID: 22030090 DOI: 10.1158/1940-6207.capr-11-0247] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) accumulate in the spleen and tumors and contribute to tumor growth, angiogenesis, and progression. In this study, we examined the effects of curcumin on the activation and differentiation of MDSCs, their interaction with human cancer cells, and related tumor growth. Treatment with curcumin in the diet or by intraperitoneal injection significantly inhibited tumorigenicity and tumor growth, decreased the percentages of MDSCs in the spleen, blood, and tumor tissues, reduced interleukin (IL)-6 levels in the serum and tumor tissues in a human gastric cancer xenograft model and a mouse colon cancer allograft model. Curcumin treatment significantly inhibited cell proliferation and colony formation of cancer cells and decreased the secretion of murine IL-6 by MDSCs in a coculture system. Curcumin treatment inhibited the expansion of MDSCs, the activation of Stat3 and NF-κB in MDSCs, and the secretion of IL-6 by MDSCs, when MDSCs were cultured in the presence of IL-1β, or with cancer cell- or myofibroblast-conditioned medium. Furthermore, curcumin treatment polarized MDSCs toward a M1-like phenotype with an increased expression of CCR7 and decreased expression of dectin 1 in vivo and in vitro. Our results show that curcumin inhibits the accumulation of MDSCs and their interaction with cancer cells and induces the differentiation of MDSCs. The induction of MDSC differentiation and inhibition of the interaction of MDSCs with cancer cells are potential strategies for cancer prevention and therapy.
Collapse
|
27
|
Xiong YQ, Sun HC, Zhu XD, Zhang W, Zhuang PY, Zhang JB, Xu HX, Kong LQ, Wu WZ, Qin LX, Tang ZY. Bevacizumab enhances chemosensitivity of hepatocellular carcinoma to adriamycin related to inhibition of survivin expression. J Cancer Res Clin Oncol 2011; 137:505-12. [PMID: 20490863 DOI: 10.1007/s00432-010-0914-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/06/2010] [Indexed: 12/13/2022]
Abstract
PURPOSE In recent years, anti-angiogenesis drugs have shown promising clinical effects against many tumors, particularly in combination with chemotherapy. Although the combination has become a standard of care for many tumors, the mechanisms of the chemosensitizing activity of anti-angiogenic drugs are not fully understood. Here, we sought to determine if anti-angiogenesis drug bevacizumab could enhance the chemosensitivity of HCC by inhibition of survivin. METHODS After treatment of human umbilical vein endothelial cells (HUVECs) and hepatocellular carcinoma (HCC) cell line PLC/PRF/5 (PLC) with bevacizumab or/and adriamycin, the direct effects were examined by survival assays, and the expression of Akt, Phospho-Akt and survivin were evaluated by western blot. Tumor growth was observed in a human HCC xenograft nude mouse model treated with different drugs, and the expression of PCNA, CD31 and survivin in tumor tissues were evaluated by means of immunohistochemistry. RESULTS Bevacizumab enhanced the chemosensitivity of HCC by inhibiting the VEGF-PI3 K/Akt-survivin signaling cascade in endothelial cells. The combination of bevacizumab with adriamycin therapy resulted in better outcomes compared with monotherapy in hepatocellular carcinoma xenografts; bevacizumab significantly inhibited tumor angiogenesis and growth. In addition, bevacizumab reduced survivin expression in tumor tissues, including tumor vascular endothelial cells in vivo, although it did not inhibit survivin expression in tumor cells in vitro. CONCLUSION These results implicate the bevacizumab-increased efficacy of adriamycin via an inhibition of survivin expression in malignant cells as well as tumor vasculature cells, which provides other insights into the mechanism of enhanced efficacy by combination of VEGF blocker and chemotherapeutic agents.
Collapse
Affiliation(s)
- Yu-Quan Xiong
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sicklick JK, Ahuja N. Stool and Blood Sampling for Early Detection of Colorectal Cancer. EARLY DIAGNOSIS AND TREATMENT OF CANCER SERIES: COLORECTAL CANCER 2011:93-105. [DOI: 10.1016/b978-1-4160-4686-8.50014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Abstract
Survivin, the smallest member of the inhibitors of apoptosis proteins (IAPs), plays an important role in the control of apoptosis, cell division, and cell migration/metastasis. Survivin is expressed and required for normal fetal development but is then generally no longer present in most adult tissues. However, reexpression of survivin is observed in numerous human cancers where presence of the protein is associated with enhanced proliferation, metastasis, poor prognosis, and decreased patient survival. Given the relatively selective expression in cancer cells, but not in normal tissue (tumor-associated antigen), and its importance in tumor cell biology, survivin has emerged as an attractive target for cancer treatment. Here, we discuss some aspects of survivin biology by focusing on why the protein appears to be so important for cancer cells and then discuss strategies that harness this dependence to eradicate tumors and situate survivin as a potential Achilles' heel of cancer.
Collapse
Affiliation(s)
- Alvaro Lladser
- Laboratory of Gene Immunotherapy, Fundacion Ciencia para la Vida, Santiago, Chile
| | | | | | | |
Collapse
|
30
|
Gao Y, Zhang H, Zhang M, Zhang H, Yu X, Kong W, Zha X, Wu Y. N-Terminal Deletion Effects of Human Survivin on Dimerization and Binding to Smac/DIABLO in Vitro. J Phys Chem B 2010; 114:15656-62. [PMID: 21062054 DOI: 10.1021/jp1036603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yang Gao
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | - Huafei Zhang
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | - Min Zhang
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | - Haihong Zhang
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | - Xianghui Yu
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | - Wei Kong
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | - Xiao Zha
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | - Yuqing Wu
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| |
Collapse
|
31
|
Wang CJ, Zhou ZG, Holmqvist A, Zhang H, Li Y, Adell G, Sun XF. Survivin expression quantified by Image Pro-Plus compared with visual assessment. Appl Immunohistochem Mol Morphol 2010; 17:530-5. [PMID: 19407655 DOI: 10.1097/pai.0b013e3181a13bf2] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Over the past decades, immunohistochemistry has gained significance and already taken a crucial position in diagnosis of diseases and prognosis of patients. However, manual interpretation of immunohistochemistry and reproducibility of the scoring systems can be highly subjective. In the article, the immunohistochemical staining of survivin in 98 rectal cancers was analyzed by using Image Pro-Plus (IPP) [3 parameters: density mean, area sum, and integrated optical density (IOD)] and the results were compared with visual assessment (2 parameters: intensity and percentage). The correlations between the 2 methods were examined, significant correlations were observed between density mean and staining intensity (Spearman correlation coefficient, rs=0.806, P<0.001), IOD and staining intensity (rs=0.914, P<0.001), area sum and staining percentage (rs=0.883, P<0.001), IOD and staining percentage (rs=0.884, P<0.001). There was no significant difference between survivin expression and clinicopathologic variables (P>0.05) by visual assessment. However, by IPP analysis, both the density mean and IOD were higher in better-differentiated cancers than in worse differentiated ones (P=0.02 and 0.03). There was a substantial agreement between the 2 methods. Density mean and IOD of IPP were representative parameters to assess the immunostaining quantification, and increased sensitivity in scoring and provided a more reliable and reproducible analysis of protein expression, especially, more information of the protein expression in relation to clinicopathologic variables can be provided by IPP analysis.
Collapse
Affiliation(s)
- Chao-Jie Wang
- Institute of Digestive Surgery, Department of Colorectal Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Tu SP, Sun YW, Cui JT, Zou B, Lin MCM, Gu Q, Jiang SH, Kung HF, Korneluk RG, Wong BCY. Tumor suppressor XIAP-Associated factor 1 (XAF1) cooperates with tumor necrosis factor-related apoptosis-inducing ligand to suppress colon cancer growth and trigger tumor regression. Cancer 2010; 116:1252-63. [PMID: 20082449 DOI: 10.1002/cncr.24814] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND XIAP-associated factor 1 (XAF1) antagonizes the anticaspase activity of XIAP (X-linked inhibitor of apoptosis) and functions as a tumor suppressor in colon cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known as a potential anticancer agent. In this study, the synergistic effect of XAF1 and TRAIL on colon cancer growth was investigated. METHODS Adeno-XAF1 virus was generated and purified. Cell apoptosis was detected by flow-cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Protein expression of the different genes was determined by Western blot analysis. Tumorigenesis and tumor growth were assessed in subcutaneous nude mouse xenograft experiments. RESULTS Stable overexpression of XAF1-sensitized colon cancer cells to TRAIL-induced apoptosis significantly increased the activity of caspase 3, 7, 8, and 9; released cytochrome c; and down-regulated XIAP, survivin, and c-IAP-2. The restoration of XAF1 expression mediated by adenovirus (adeno-XAF1) directly induced apoptosis, and synergized TRAIL-induced apoptosis in colon cancer cells. Ex vivo transduction of adeno-XAF1 suppressed colon cancer formation in vivo. Furthermore, adeno-XAF1 treatment of mice significantly inhibited tumor growth, strongly enhanced TRAIL-induced apoptosis and antitumor activity in colon cancer xenograft models in vivo, and markedly prolonged the survival. Notably, the combined treatment with adeno-XAF1 and TRAIL completely eradicated the established tumors without detectable toxicity in normal tissue. CONCLUSIONS The combined restoration of XAF1 expression and TRAIL treatment may be a potent strategy for colon cancer therapy.
Collapse
Affiliation(s)
- Shui Ping Tu
- Department of Gastroenterology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chen B, Liang Y, Wu W, Cheng J, Xia G, Gao F, Ding J, Gao C, Shao Z, Li G, Chen W, Xu W, Sun X, Liu L, Li X, Wang X. Synergistic effect of magnetic nanoparticles of Fe(3)O(4) with gambogic acid on apoptosis of K562 leukemia cells. Int J Nanomedicine 2010; 4:251-9. [PMID: 20011242 PMCID: PMC2789437 DOI: 10.2147/ijn.s7932] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Indexed: 01/29/2023] Open
Abstract
Gambogic acid (GA) has a significant anticancer effect on a wide variety of solid tumors. Recently, many nanoparticles have been introduced as drug-delivery systems to enhance the efficiency of anticancer drug delivery. The aim of this study was to investigate the potential benefit of combination therapy with GA and magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4). The proliferation of K562 cells and their cytotoxicity were evaluated by MTT assay. Cell apoptosis was observed and analyzed by microscope and flow cytometry, respectively. Furthermore, real-time polymerase chain reaction and Western blotting analyses were performed to examine gene transcription and protein expression, respectively. The results showed that MNPs-Fe3O4 dramatically enhanced GA-induced cytotoxicity and apoptosis in K562 cells. The typical morphological features of apoptosis treated with GA and MNPs-Fe3O4 were observed under an optical microscope and a fluorescence microscope, respectively. The transcription of caspase-3 and bax gene in the group treated with GA and MNPs-Fe3O4 was higher than that in the GA-alone group or MNPs-Fe3O4-alone group, but the transcription of bcl-2, nuclear factor-κB, and survivin degraded as did the expression of corresponding proteins in K562 cells. Our data suggests a potential clinical application of a combination of GA and MNPs-Fe3O4 in leukemia therapy.
Collapse
Affiliation(s)
- Baoan Chen
- Department of Hematology, The Affiliated Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pennati M, Folini M, Zaffaroni N. Targeting Survivin in Cancer Therapy: Pre-clinical Studies. APOPTOSOME 2010:147-168. [DOI: 10.1007/978-90-481-3415-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
35
|
Tu S, Wai-Yin Sun R, Lin MCM, Tao Cui J, Zou B, Gu Q, Kung HF, Che CM, Wong BCY. Gold (III) porphyrin complexes induce apoptosis and cell cycle arrest and inhibit tumor growth in colon cancer. Cancer 2009; 115:4459-69. [PMID: 19572413 DOI: 10.1002/cncr.24514] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Gold (III) compounds have exhibited favorable antitumor properties both in vitro and in vivo. In a previous study, the authors reported that the novel gold (III) complex 1a (gold 1a) exhibited strong cytotoxicity in some tumor cell lines. In the current study, the effect of gold 1a was investigated on colon cancer cells. METHODS The cytotoxicity of gold 1a was determined by using the 3-(4,5-dimethyl-2-thihazyl)-2,5-diphenyl-2H-tetrazolium bromide method. Flow cytometry was used to detect apoptosis and cell cycle. The expression of protein was evaluated by Western blot assay. Tumor growth in vivo was evaluated in nude mice. RESULTS Gold 1a exhibited marked cytotoxic effects in vitro to human colon cancer, and the concentration of drug required to inhibit cell growth by 50% compared with control (IC(50)) values ranged from 0.2 muM to 3.4 muM, which represented 8.7-fold to 20.8-fold greater potency than that of cisplatin. Gold 1a significantly induced apoptosis and cell cycle arrest and cleaved caspase 3, caspase 7, and poly(ADP-ribose) polymerase; released cytochrome C, and up-regulated p53, p21, p27, and Bax. In vivo, intraperitoneal injection of gold 1a at doses of 1.5 mg/kg and 3.0 mg/kg significantly inhibited tumor cell proliferation, induced apoptosis, and suppressed colon cancer tumor growth. An acute toxicology study indicated that gold 1a at effective antitumor concentrations did not cause any toxic side effects in mice. CONCLUSIONS The current results suggested that gold 1a may be a new potential therapeutic drug for colon cancer.
Collapse
Affiliation(s)
- Shuiping Tu
- Department of Medicine, the University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Michaelis M, Klassert D, Barth S, Suhan T, Breitling R, Mayer B, Hinsch N, Doerr HW, Cinatl J, Cinatl J. Chemoresistance acquisition induces a global shift of expression of aniogenesis-associated genes and increased pro-angogenic activity in neuroblastoma cells. Mol Cancer 2009; 8:80. [PMID: 19788758 PMCID: PMC2761864 DOI: 10.1186/1476-4598-8-80] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/29/2009] [Indexed: 01/13/2023] Open
Abstract
Background Chemoresistance acquisition may influence cancer cell biology. Here, bioinformatics analysis of gene expression data was used to identify chemoresistance-associated changes in neuroblastoma biology. Results Bioinformatics analysis of gene expression data revealed that expression of angiogenesis-associated genes significantly differs between chemosensitive and chemoresistant neuroblastoma cells. A subsequent systematic analysis of a panel of 14 chemosensitive and chemoresistant neuroblastoma cell lines in vitro and in animal experiments indicated a consistent shift to a more pro-angiogenic phenotype in chemoresistant neuroblastoma cells. The molecular mechanims underlying increased pro-angiogenic activity of neuroblastoma cells are individual and differ between the investigated chemoresistant cell lines. Treatment of animals carrying doxorubicin-resistant neuroblastoma xenografts with doxorubicin, a cytotoxic drug known to exert anti-angiogenic activity, resulted in decreased tumour vessel formation and growth indicating chemoresistance-associated enhanced pro-angiogenic activity to be relevant for tumour progression and to represent a potential therapeutic target. Conclusion A bioinformatics approach allowed to identify a relevant chemoresistance-associated shift in neuroblastoma cell biology. The chemoresistance-associated enhanced pro-angiogenic activity observed in neuroblastoma cells is relevant for tumour progression and represents a potential therapeutic target.
Collapse
Affiliation(s)
- Martin Michaelis
- Institut für Medizinische Virologie, Klinikum der J,W, Goethe-Universität, Paul Ehrlich-Str, 40, 60596 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tu SP, Liston P, Cui JT, Lin MCM, Jiang XH, Yang Y, Gu Q, Jiang SH, Lum CT, Kung HF, Korneluk RG, Wong BCY. Restoration of XAF1 expression induces apoptosis and inhibits tumor growth in gastric cancer. Int J Cancer 2009; 125:688-97. [PMID: 19358264 DOI: 10.1002/ijc.24282] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
XAF1 (XIAP-associated factor 1) is a novel XIAP binding protein that can antagonize XIAP and sensitize cells to other cell death triggers. Our previous results have shown that aberrant hypermethylation of the CpG sites in XAF1 promoter is strongly associated with lower expression of XAF1 in gastric cancers. In our study, we investigated the effect of restoration of XAF1 expression on growth of gastric cancers. We found that the restoration of XAF1 expression suppressed anchorage-dependent and -independent growth and increased sensitivity to TRAIL and drug-induced apoptosis. Stable cell clones expressing XAF1 exhibited delayed tumor initiation in nude mice. Restoration of XAF1 expression mediated by adenovirus vector greatly increased apoptosis in gastric cancer cell lines in a time- and dose-dependent manner and sensitized cancer cells to TRAIL and drugs-induced apoptosis. Adeno-XAF1 transduction induced cell cycle G2/M arrest and upregulated the expression of p21 and downregulated the expression of cyclin B1 and cdc2. Notably, adeno-XAF1 treatment significantly inhibited tumor growth, strongly enhanced the antitumor activity of TRAIL in a gastric cancer xenograft model in vivo, and significantly prolonged the survival time of animals bearing tumor xenografts. Complete eradication of established tumors was achieved on combined treatment with adeno-XAF1 and TRAIL. Our results document that the restoration of XAF1 inhibits gastric tumorigenesis and tumor growth and that XAF1 is a promising candidate for cancer gene therapy.
Collapse
Affiliation(s)
- Shui Ping Tu
- Department of Gastroenterology, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sun PH, Wu YL, Dong WJ, Qiao MM, Zhu LM, Tu SP. Construction of a survivin promoter-mediated adeno-associated virus expression vector carrying a fusion gene constituted with cytosine deaminase and survivin mutant. Shijie Huaren Xiaohua Zazhi 2009; 17:1085-1090. [DOI: 10.11569/wcjd.v17.i11.1085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a recombinant survivin promoter (SurP)-mediated adeno-associated virus expression vector carrying a fusion gene constituted with cytosine deaminase (CD) gene and glycin-linked survivin mutant (glySurMut), and to examine the expression of CDglySurMut fusion protein in cancer cells transfected with this vector.
METHODS: The CD gene and glySurMut fragments were amplified by polymerase chain reaction (PCR), and cloned into the adeno-associated virus expression vector PAM with survivin promoter (PAM/SurP). The recombinant vector was transformed into E.coli DH5α. and the positive clones were selected. The plasmid DNA was identified using restriction enzyme analysis and sequencing. The recombinant vector pAM/SurP-CDglySurMut was transfected into gastric cancer cells MKN45. The expression of fusion protein in cancer cells was detected using Western blot.
RESULTS: The CD gene and glySurMut were cloned from E.coli and gastric cancer cells, respectively. The restrictive enzyme analysis and sequencing showed that the fusion gene of CD and glySurMut was successfully inserted into the PAM/SurP vector. Western blot showed that the recombinant vector expressed the CDglySurMut fusion protein in gastric cancer cells.
CONCLUSION: Our results show the pAM/SurP-CDglySurMut vector can efficiently express the recombinant CDglySurMut fusion protein in gastric cancer cells, thus provides experiment evidence for targeting cancer gene therapy using this pAM/SurP-CDglySurMut vector.
Collapse
|
39
|
Lu J, Tan M, Huang WC, Li P, Guo H, Tseng LM, Su XH, Yang WT, Treekitkarnmongkol W, Andreeff M, Symmans F, Yu D. Mitotic deregulation by survivin in ErbB2-overexpressing breast cancer cells contributes to Taxol resistance. Clin Cancer Res 2009; 15:1326-34. [PMID: 19228734 DOI: 10.1158/1078-0432.ccr-08-0954] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Taxol resistance remains a major obstacle to improve the benefit of breast cancer patients. Here, we studied whether overexpression of ErbB2 may lead to mitotic deregulation in breast cancer cells via up-regulation of survivin that confers Taxol resistance. EXPERIMENTAL DESIGN ErbB2-overexpressing and ErbB2-low-expressing breast cancer cell lines were used to compare their mitotic exit rate, survivin expression level, and apoptosis level in response to Taxol. Survivin was then down-regulated by antisense oligonucleotides to evaluate its contribution to mitotic exit and Taxol resistance in ErbB2-overexpressing breast cancer cells. At last, specific PI3K/Akt and Src inhibitors were used to investigate the involvement of these two pathways in ErbB2-mediated survivin up-regulation and Taxol resistance. RESULTS We found that ErbB2-overexpressing cells expressed higher levels of survivin in multiple breast cancer cell lines and patient samples. ErbB2-overexpressing cells exited M phase faster than ErbB2-low-expressing cells, which correlated with the increased resistance to Taxol-induced apoptosis. Down-regulation of survivin by antisense oligonucleotide delayed mitotic exit of ErbB2-overexpressing cells and also sensitized ErbB2-overexpressing cells to Taxol-induced apoptosis. Moreover, ErbB2 up-regulated survivin at translational level and PI3K/Akt and Src activation are involved. In addition, combination treatment of Taxol with PI3K/Akt and Src inhibitor led to increased apoptosis in ErbB2-overexpressing breast cancer cells than single treatment. CONCLUSIONS Survivin up-regulation by ErbB2 is a critical event in ErbB2-mediated faster mitotic exit and contributes to Taxol resistance.
Collapse
Affiliation(s)
- Jing Lu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist Updat 2009; 12:55-64. [PMID: 19278896 DOI: 10.1016/j.drup.2009.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 12/27/2022]
Abstract
Cancers in the gastrointestinal system account for a large proportion of malignancies and cancer-related deaths with gastric cancer and colorectal cancer being the most common ones. For those patients in whom surgical resection is not possible, other therapeutic approaches are necessary. Disordered apoptosis has been linked to cancer development and treatment resistance. Apoptosis occurs via extrinsic or intrinsic signaling each triggered and regulated by many different molecular pathways. In recent years, the selective induction of apoptosis in tumor cells has been increasingly recognized as a promising approach for cancer therapy. A detailed understanding of the molecular pathways involved in the regulation of apoptosis is essential for developing novel effective therapeutic approaches. Apoptosis can be induced by many different approaches including activating cell surface death receptors (for example, Fas, TRAIL and TNF receptors), inhibiting cell survival signaling (such as EGFR, MAPK and PI3K), altering apoptosis threshold by modulating pro-apoptotic and anti-apoptotic members of the Bcl-2 family, down-regulating anti-apoptosis proteins (such as XIAP, survivin and c-IAP2), and using other pro-apoptotic agents. In this review, the authors reviewed the currently reported apoptosis-targeting approaches in gastrointestinal cancers.
Collapse
|
41
|
El-Omar EM. Role of Host Genetic Susceptibility in the Pathogenesis of Gastric Cancer. THE BIOLOGY OF GASTRIC CANCERS 2009:235-250. [DOI: 10.1007/978-0-387-69182-4_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
42
|
de Bruin EC, Medema JP. Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat Rev 2008; 34:737-49. [PMID: 18722718 DOI: 10.1016/j.ctrv.2008.07.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 07/08/2008] [Accepted: 07/11/2008] [Indexed: 01/01/2023]
|
43
|
McCarthy HO, Coulter JA, Robson T, Hirst DG. Gene therapy via inducible nitric oxide synthase: a tool for the treatment of a diverse range of pathological conditions. J Pharm Pharmacol 2008; 60:999-1017. [PMID: 18644193 DOI: 10.1211/jpp.60.8.0007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO(.)) is a reactive nitrogen radical produced by the NO synthase (NOS) enzymes; it affects a plethora of downstream physiological and pathological processes. The past two decades have seen an explosion in the understanding of the role of NO(.) biology, highlighting various protective and damaging modes of action. Much of the controversy surrounding the role of NO(.) relates to the differing concentrations generated by the three isoforms of NOS. Both calcium-dependent isoforms of the enzyme (endothelial and neuronal NOS) generate low-nanomolar/picomolar concentrations of NO(.). By contrast, the calcium-independent isoform (inducible NOS (iNOS)) generates high concentrations of NO(.), 2-3 orders of magnitude greater. This review summarizes the current literature in relation to iNOS gene therapy for the therapeutic benefit of various pathological conditions, including various states of vascular disease, wound healing, erectile dysfunction, renal dysfunction and oncology. The available data provide convincing evidence that manipulation of endogenous NO(.) using iNOS gene therapy can provide the basis for future clinical trials.
Collapse
Affiliation(s)
- Helen O McCarthy
- School of Pharmacy, McClay Research Centre, Queen's University, Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK.
| | | | | | | |
Collapse
|
44
|
Li Z, Yao H, Ma Y, Dong Q, Chen Y, Peng Y, Zheng BJ, Huang JD, Chan CY, Lin MC, Sung JJ, Yuen KY, Kung HF, He ML. Inhibition of HBV gene expression and replication by stably expressed interferon-alpha1 via adeno-associated viral vectors. J Gene Med 2008; 10:619-27. [PMID: 18383553 PMCID: PMC7166674 DOI: 10.1002/jgm.1174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Interferon‐α2 (IFNα2) is routinely used for anti‐hepatitis B virus (HBV) treatment. However, the therapeutic efficiency is unsatisfactory, particularly in East Asia. Such inefficiency might be a result of the short half‐life, relatively low local concentration and strong side‐effects of interferons. Frequent and repeated injection is also a big burden for patients. In the present study, a single dose of vector‐delivered IFNα1 was tested for its anti‐HBV effects. Methods Adeno‐associated viral vector (AAV‐IFNα1) was generated to deliver the IFNα1 gene into hepatocytes. IFNα1, hepatitis B surface (HBsAg) and e (HBeAg) antigens were measured by enzyme‐linked immunosorbent assay and/or western blotting. The level of viral DNA was measured by quantitative real‐time polymerase chain reaction. Results AAV‐IFNα1 effectively transduced HBV‐producing cells (HepAD38) and mouse hepatocytes, where IFNα1 was expressed in a stable manner. Both intracellular and extracellular HBsAg and HBeAg were significantly reduced in vitro. In the HBV‐producing mice, the concentration of IFNα1 in the liver was eight‐fold higher than that in plasma. Compared with control groups, HBeAg/HBsAg antigen levels were reduced by more than ten‐fold from day 1–5, and dropped to an undetectable level on day 9 in the AAV‐IFNα1 group. Concurrently, the level of viral DNA decreased over 30‐fold for several weeks. Conclusions A single dose administration of AAV‐IFNα1 viral vector displayed prolonged transgene expression and superior antiviral effects both in vitro and in vivo. Therefore, the use of AAV‐IFNα1 might be a potential alternative strategy for anti‐HBV therapy. Copyright © 2008 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhi Li
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Helicobacter pylori infection is the most common chronic bacterial infection worldwide and is associated with divergent clinical outcomes that range from simple asymptomatic gastritis to more serious conditions, such as peptic ulcer disease and gastric cancer. The key determinants of these outcomes are the severity and distribution of H. pylori-induced gastritis. Host genetic factors play an important role in influencing disease risk, but identifying candidate genes is a major challenge that has to stem from a profound understanding of the pathophysiology of the disease. In the case of H. pylori, the most promising candidate genes are ones that attenuate gastric acid secretion and lead to a destructive chronic inflammatory response against the infection. In particular, certain cytokine and innate immune response gene polymorphisms appear to influence risk of gastric cancer and its precursor conditions. There are currently no convincing genetic risk markers for acquisition of H. pylori infection or risk of developing peptic ulcer disease. Future research agendas should focus on identifying the full genetic risk profile for H. pylori-induced gastric neoplasia. This will help to target the population most at risk by directing eradication therapy and closer follow-up to the affected individuals.
Collapse
Affiliation(s)
- Ailsa Snaith
- Department Medicine & Therapeutics, Aberdeen University, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | | |
Collapse
|
46
|
Gao Y, Ng SSM, Chau DHW, Yao H, Yang C, Man K, Huang PT, Huang C, Huang JJ, Kung HF, Lin MC. Development of recombinant adeno-associated virus and adenovirus cocktail system for efficient hTERTC27 polypeptide-mediated cancer gene therapy. Cancer Gene Ther 2008; 15:723-32. [PMID: 18535618 DOI: 10.1038/cgt.2008.33] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The low in vivo transduction efficiency of recombinant adeno-associated virus (rAAV) and the undesirably strong immunogenicity of adenovirus (rAdv) have limited their clinical utilization in cancer gene therapy. We have previously demonstrated that intratumoral injection of rAAV expressing a C-terminal polypeptide of human telomerase reverse transcriptase (rAAV-hTERTC27) effectively inhibits the growth of glioblastoma xenografts in nude mice. To further improve its efficacy, we combined rAAV-hTERTC27 with rAdv and investigated the efficiency of the cocktail vectors in vivo. At a nontherapeutic dose (1 x 10(8) plaque-forming units (PFUs)), rAdv-null and rAdv-hTERTC27 were equipotent in enhancing the therapeutic efficacy of rAAV-hTERTC27 (1.5 x 10(11) v.g.), and complete tumor regression was achieved in 25% of the treated animals. Importantly, the combination of rAAV-hTERTC27 and a therapeutic dose (2.5 x 10(9) PFU) of rAdv-hTERTC27 significantly augmented the therapeutic effects and led to a 38% complete tumor regression rate. In vivo optical imaging also showed that rAAV-luc/rAdv-luc cocktail vectors could synergistically enhance the early transient and latent sustained expression of luciferase, as compared to rAdv-luc and rAAV-luc alone. These findings suggest that the combination of rAAV-hTERTC27 and a therapeutic dose of rAdv-hTERTC27 is potentially a promising treatment for glioblastoma, and the rAAV/rAdv cocktail vector system warrants further development for cancer gene therapy.
Collapse
Affiliation(s)
- Y Gao
- Department of Chemistry, Institute of Molecular Biology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fei Q, Zhang H, Fu L, Dai X, Gao B, Ni M, Ge C, Li J, Ding X, Ke Y, Yao X, Zhu J. Experimental cancer gene therapy by multiple anti-survivin hammerhead ribozymes. Acta Biochim Biophys Sin (Shanghai) 2008; 40:466-77. [PMID: 18535745 DOI: 10.1111/j.1745-7270.2008.00430.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To improve the efficacy of gene therapy for cancer, we designed four hammerhead ribozyme adenoviruses (R1 to R4) targeting the exposed regions of survivin mRNA. In addition to the in vitro characterization, which included a determination of the sequence specificity of cleavage by primer extension, assays for cell proliferation and for in vivo tumor growth were used to score for ribozyme efficiency. The resulting suppression of survivin expression induced mitotic catastrophe and cell death via the caspase-3-dependent pathway. Importantly, administration of the ribozyme adenoviruses inhibited tumor growth in a hepatocellular carcinoma xenograft mouse model. Co-expression of R1, R3 and R4 ribozymes synergistically suppressed survivin and, as this combination targets all major forms of the survivin transcripts, produced the most potent anti-cancer effects. The adenoviruses carrying the multiple hammerhead ribozymes described in this report offered a robust gene therapy strategy against cancer.
Collapse
Affiliation(s)
- Qi Fei
- Fudan University School of Medicine, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Wang T, Wei J, Qian X, Ding Y, Yu L, Liu B. Gambogic acid, a potent inhibitor of survivin, reverses docetaxel resistance in gastric cancer cells. Cancer Lett 2008; 262:214-22. [PMID: 18248784 DOI: 10.1016/j.canlet.2007.12.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 11/29/2007] [Accepted: 12/03/2007] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Chemoresistance is a major obstacle to successful cancer chemotherapy. In this study, we examined the ability of gambogic acid (GA) to reverse docetaxel resistance in BGC-823/Doc gastric cancer cells. METHODS The cytotoxic and apoptotic effect of drugs were evaluated by MTT assay and double staining with both Annexin-V-FITC and PI. Cell cycle analysis was determined by PI-stained flow cytometry. Expression of survivin and bcl-2 were evaluated by real-time quantitative RT-PCR. RESULTS Treatment of BGC-823/Doc cells with gambogic acid at concentrations of 0.05 microM, 0.1 microM, and 0.2 microM, led to a dramatic increase in docetaxel-induced cytotoxicity without any cytotoxicity by itself. In parallel, gambogic acid treatment caused an increase in apoptotic cell death by docetaxel. Cell cycle analysis indicated that gambogic acid treatment potentiated docetaxel-induced G2/M arrest. Analysis of apoptotic associated gene revealed that gambogic acid singly or in combination with docetaxel significantly downregulate the mRNA expression of survivin, while with no effect on bcl-2. CONCLUSIONS Our results describe the potential role of gambogic acid to reverse docetaxel resistance though downregulation of survivin, which may make it an attractive new agent for the chemosensitization of cancer cells.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Oncology, Drum Tower Hospital, Clinical Cancer Institute of Nanjing University, Zhongshan Road 321, Nanjing 210008, China
| | | | | | | | | | | |
Collapse
|
50
|
Martinico SCM, Jezzard S, Sturt NJH, Michils G, Tejpar S, Phillips RK, Vassaux G. Assessment of endostatin gene therapy for familial adenomatous polyposis-related desmoid tumors. Cancer Res 2007; 66:8233-40. [PMID: 16912203 DOI: 10.1158/0008-5472.can-06-1209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constitutive activation of the Wnt signaling pathway is a hallmark of many cancers, including familial adenomatous polyposis (FAP)-related desmoid tumors. Endostatin is a well-known antiangiogenic protein that has been described recently as a potential inhibitor of this signaling pathway. Here, we show that endostatin directly induces apoptosis and inhibits the Wnt signaling pathway in colorectal cancer cell lines bearing mutations on the adenomatous polyposis coli (APC) gene as a model of FAP-related malignant cells. We then explore the relationship between apoptosis and inhibition of this pathway and show that they are not correlated. These results seem to contradict a well-recognized study, showing that reintroduction of the APC cDNA in APC-deficient cells leads to apoptosis. To reconcile our conclusions with the literature, we further show that a truncated fragment of APC capable of inhibiting the Wnt signaling pathway in SW480 cells is incapable of inducing apoptosis in these cells, confirming that APC-mediated apoptosis is uncoupled to the inhibition of the Wnt signaling pathway. Finally, we show that endostatin directly induces cell death on primary FAP-related desmoid tumor cells in culture. This phenomenon is also independent of the inhibition of the Wnt signaling pathway. Considering the current lack of effective treatment against desmoid tumors, we advocate that endostatin gene therapy represents an attractive new therapeutic approach for this disease.
Collapse
Affiliation(s)
- Sandra C M Martinico
- Institute of Cancer and Cancer Research UK Clinical Centre, Barts and The London Queen Mary's School of Medicine and Dentistry, London, UK
| | | | | | | | | | | | | |
Collapse
|