1
|
Ma Z, Zhou F, Jin H, Wu X. Crosstalk between CXCL12/CXCR4/ACKR3 and the STAT3 Pathway. Cells 2024; 13:1027. [PMID: 38920657 PMCID: PMC11201928 DOI: 10.3390/cells13121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The reciprocal modulation between the CXCL12/CXCR4/ACKR3 axis and the STAT3 signaling pathway plays a crucial role in the progression of various diseases and neoplasms. Activation of the CXCL12/CXCR4/ACKR3 axis triggers the STAT3 pathway through multiple mechanisms, while the STAT3 pathway also regulates the expression of CXCL12. This review offers a thorough and systematic analysis of the reciprocal regulatory mechanisms between the CXCL12/CXCR4/ACKR3 signaling axis and the STAT3 signaling pathway in the context of diseases, particularly tumors. It explores the potential clinical applications in tumor treatment, highlighting possible therapeutic targets and novel strategies for targeted tumor therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming 650500, China; (Z.M.); (F.Z.); (H.J.)
| |
Collapse
|
2
|
Schwertheim S, Alhardan M, Manka PP, Sowa JP, Canbay A, Schmidt HHJ, Baba HA, Kälsch J. Higher pNRF2, SOCS3, IRF3, and RIG1 Tissue Protein Expression in NASH Patients versus NAFL Patients: pNRF2 Expression Is Concomitantly Associated with Elevated Fasting Glucose Levels. J Pers Med 2023; 13:1152. [PMID: 37511764 PMCID: PMC10381647 DOI: 10.3390/jpm13071152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) embraces simple steatosis in non-alcoholic fatty liver (NAFL) to advanced non-alcoholic steatohepatitis (NASH) associated with inflammation, fibrosis, and cirrhosis. NAFLD patients often have metabolic syndrome and high risks of cardiovascular and liver-related mortality. Our aim was to clarify which proteins play a role in the progression of NAFL to NASH. The study investigates paraffin-embedded samples of 22 NAFL and 33 NASH patients. To detect potential candidates, samples were analyzed by immunohistochemistry for the proteins involved in innate immune regulation, autophagy, apoptosis, and antioxidant defense: IRF3, RIG-1, SOCS3, pSTAT3, STX17, SGLT2, Ki67, M30, Caspase 3, and pNRF2. The expression of pNRF2 immunopositive nuclei and SOCS3 cytoplasmic staining were higher in NASH than in NAFL (p = 0.001); pNRF2 was associated with elevated fasting glucose levels. SOCS3 immunopositivity correlated positively with RIG1 (r = 0.765; p = 0.001). Further, in NASH bile ducts showed stronger IRF3 immunostaining than in NAFL (p = 0.002); immunopositive RIG1 tissue was higher in NASH than in NAFL (p = 0.01). Our results indicate that pNRF2, SOCS3, IRF3, and RIG1 are involved in hepatic lipid metabolism. We suggest that they may be suitable for further studies to assess their potential as therapeutics.
Collapse
Affiliation(s)
- Suzan Schwertheim
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Malek Alhardan
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Paul P Manka
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Jan-Peter Sowa
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Ali Canbay
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Hartmut H-J Schmidt
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Julia Kälsch
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
3
|
Zhang B, Chen T, Cao M, Yuan C, Reiter RJ, Zhao Z, Zhao Y, Chen L, Fan W, Wang X, Zhou X, Li C. Gut Microbiota Dysbiosis Induced by Decreasing Endogenous Melatonin Mediates the Pathogenesis of Alzheimer's Disease and Obesity. Front Immunol 2022; 13:900132. [PMID: 35619714 PMCID: PMC9127079 DOI: 10.3389/fimmu.2022.900132] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/13/2022] [Indexed: 01/15/2023] Open
Abstract
Lifestyle choices, external environment, aging, and other factors influence the synthesis of melatonin. Although the physiological functions of melatonin have been widely studied in relation to specific organs, the systemic effects of endogenous melatonin reduction has not been reported. This study evaluates the systemic changes and possible pathogenic risks in an endogenous melatonin reduction (EMR) mouse model deficient in the rate limiting enzyme in melatonin production, arylalkylamine N-acetyltransferase (Aanat) gene. Using this model, we identified a new relationship between melatonin, Alzheimer’s disease (AD), and gut microbiota. Systematic changes were evaluated using multi-omics analysis. Fecal microbiota transplantation (FMT) was performed to examine the role of gut microbiota in the pathogenic risks of EMR. EMR mice exhibited a pan-metabolic disorder, with significant transcriptome changes in 11 organs, serum metabolome alterations as well as microbiota dysbiosis. Microbiota dysbiosis was accompanied by increased gut permeability along with gut and systemic inflammation. Correlation analysis revealed that systemic inflammation may be related to the increase of Ruminiclostridium_5 relative abundance. 8-month-old EMR mice had AD-like phenotypes, including Iba-1 activation, A β protein deposition and decreased spatial memory ability. Moreover, EMR mice showed decreased anti stress ability, under high-fat diet, EMR mice had greater body weight and more obvious hepatic steatosis compared with WT group. FMT improved gut permeability, systemic inflammation, and AD-related phenotypes, while reducing obesity in EMR mice. Our findings suggest EMR causes systemic changes mediated by gut microbiota dysbiosis, which may be a pathogenic factor for AD and obesity, we further proved the gut microbiota is a potential target for the prevention and treatment of AD and obesity.
Collapse
Affiliation(s)
- Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chenfeng Yuan
- College of Animal Sciences, Jilin University, Changchun, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Zijiao Zhao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yun Zhao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Wenjing Fan
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xin Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
4
|
Zheng H, Yan Y, Cheng J, Yu S, Wang Y. Association between SOCS3 hypermethylation and HBV-related hepatocellular carcinoma and effect of sex and age: A meta-analysis. Medicine (Baltimore) 2021; 100:e27604. [PMID: 34713837 PMCID: PMC8556007 DOI: 10.1097/md.0000000000027604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Suppressor 3 of cytokine signaling (SOCS3) hypermethylation has been reported to participate in hepatocellular carcinoma (HCC) development and progression, but conflicting results were published. This study aimed to analyze the clinical effects of SOCS3 hypermethylation in HCC and the effects of sex and age on SOCS3 hypermethylation in HCC. METHODS Databases were searched for relevant case-control and cohort studies on SOCS3 hypermethylation in HBV-related HCC. In vitro and in vivo studies and studies of patients with serious comorbidities were excluded. Review Manager 5.2 was used to estimate the effects of the results among the selected studies. Forest plots, sensitivity analysis, and bias analysis for the included studies were also conducted. RESULTS Finally, 8 relevant studies met the inclusion criteria. A significant difference in SOCS3 hypermethylation in HCC was found between tumor and nontumor groups (the odds ratio [OR] = 2.01, 95% confidence interval [CI]: 1.48-2.73, P < .00001; P for heterogeneity = .39, I2 = 5%). The meta-analysis suggested no significant difference in the effect of sex (OR = 1.00, 95% CI: 0.76-1.31, P = .76; P for heterogeneity = .44, I2 = 0%) and age on SOCS3 hypermethylation in HCC (OR = 1.11, 100% CI: 0.78-1.29, P = .03; P for heterogeneity = .14, I2 = 36%). Limited publication bias was observed in this study. CONCLUSION SOCS3 hypermethylation is associated with HBV-related HCC. Sex and age do not affect the association between SOCS3 hypermethylation and HCC. SOCS3 might be a treatment target for HCC.
Collapse
Affiliation(s)
- Hairu Zheng
- Department of Physical Examination, the Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yanggang Yan
- Department of Interventional Radiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiajia Cheng
- Cancer Center of Minimally Invasive and Comprehensive Therapy, Hainan Cancer Hospital, Haikou, China
| | - Shuyong Yu
- Cancer Center of Minimally Invasive and Comprehensive Therapy, Hainan Cancer Hospital, Haikou, China
| | - Yong Wang
- Department of Interventional Radiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, China
- Key laboratory of Emergency and Trauma (Hainan Medical University), Ministry of Education, China
- Hainan Clinical Research Center for Acute and Critical Diseases, the Second Affiliated Hospital of Hainan Medical University, China
| |
Collapse
|
5
|
Ge Y, Gu P, Wang W, Cao L, Zhang L, Li J, Mu W, Wang H. Benzo[a]pyrene stimulates miR-650 expression to promote the pathogenesis of fatty liver disease and hepatocellular carcinoma via SOCS3/JAK/STAT3 cascades. J Mol Cell Biol 2021; 13:mjab052. [PMID: 34450627 PMCID: PMC8697348 DOI: 10.1093/jmcb/mjab052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Modern diets, which often feature high levels of fat and charcoal-grilled meat, contribute to the pathogenesis of obesity and nonalcoholic fatty liver disease (NAFLD), resulting in liver cancer progression. Benzo(a)pyrene (B[a]P) is a common environmental and foodborne pollutant found in smoke and fire-grilled foods, which can have an adverse effect on human health. Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer and the second leading cause of cancer-related deaths worldwide. The epidemiological studies suggest that both environmental risk factors and chronic liver injury including NAFL are important for HCC development, but the precise mechanisms linking eating habits to hepato-carcinogenesis remain unclear. In the present study, we demonstrated that various miRNAs in B[a]P-exposed tumor cells contribute to tumor metastasis, among which miR-650 could be the most potent inducer. Furthermore, we found that suppressor of cytokine signaling 3 (SOCS3) is directly regulated by miR-650 and its suppression regulates the activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) cascade. Our findings reveal a possible adverse outcome pathway of SOCS3/JAK/STAT3 regulation in B[a]P-induced HCC progress. These results provide a better understanding of the adverse effects of chronic exposure to B[a]P on human health.
Collapse
Affiliation(s)
- Yang Ge
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Pengfei Gu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Wenbo Wang
- Department of Oncology, Shanghai Tenth People's Hospital, School of Medicine,
Tongji University, Shanghai 200072, China
| | - Liyuan Cao
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Lulu Zhang
- Institute of Military Health Management, Second Military Medical
University, Shanghai 200433, China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Wei Mu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-cell
Omics, School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai 200025, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of
Sciences, Shanghai 200031, China
| |
Collapse
|
6
|
Yoshimura A, Ito M, Mise-Omata S, Ando M. SOCS: negative regulators of cytokine signaling for immune tolerance. Int Immunol 2021; 33:711-716. [PMID: 34415326 DOI: 10.1093/intimm/dxab055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/18/2021] [Indexed: 11/14/2022] Open
Abstract
Cytokines are important intercellular communication tools for immunity. Many cytokines promote gene transcription and proliferation through the JAK/STAT (Janus kinase / signal transducers and activators of transcription) and the Ras/ERK (GDP/GTP-binding rat sarcoma protein / extracellular signal-regulated kinase) pathways, and these signaling pathways are tightly regulated. The SOCS (suppressor of cytokine signaling) family are representative negative regulators of JAK/STAT-mediated cytokine signaling and regulate the differentiation and function of T cells, thus being involved in immune tolerance. Human genetic analysis has shown that SOCS family members are strongly associated with autoimmune diseases, allergy and tumorigenesis. SOCS family proteins also function as immune-checkpoint molecules that contribute to the unresponsiveness of T cells to cytokines.
Collapse
Affiliation(s)
- Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinanomachi, Shinjyuku-ku, Tokyo, Japan
| | - Minako Ito
- Medical Institute of Bioregulation Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Setsuko Mise-Omata
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinanomachi, Shinjyuku-ku, Tokyo, Japan
| | - Makoto Ando
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinanomachi, Shinjyuku-ku, Tokyo, Japan
| |
Collapse
|
7
|
Yin Y, Qu L, Zhu D, Wu Y, Zhou X. Effect of SOCS3 on apoptosis of human trophoblasts via adjustment of the JAK2/STAT3 signaling pathway in preterm birth. Transl Pediatr 2021; 10:1637-1646. [PMID: 34295778 PMCID: PMC8261589 DOI: 10.21037/tp-21-39] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/12/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The expression of suppressor of cytokine signaling 3 (SOCS3) was induced by interleukin-6 (IL-6) in preterm placental tissues. However, its role in IL-6 induced apoptosis of trophoblast cells derived from preterm placental tissues remains to be elucidated. METHODS Primary cytotrophoblasts from human preterm placental tissues were used to stably knock down and overexpress the level of SOCS3 by corresponding lentiviral vectors and the expression of SOCS3 was validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. The effect of SOCS3 overexpression or knockdown on the proliferation and apoptosis of IL-6 treated human cytotrophoblasts were determined by Cell Counting Kit-8 (CCK8) assay and Annexin-V/Propidium Iodide (PI) double-staining assay, respectively. Based on it, we detected the proteins associated with the Janus Tyrosine Kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway and apoptosis, such as JAK2, p-JAK2, STAT3, p-STAT3, B-cell lymphoma-2 (Bcl-2) and BCL2-associated X (Bax) by Western blot. RESULTS IL-6-treatment resulted in significant apoptosis of human cytotrophoblasts. Overexpressing SOCS3 in the cytotrophoblasts reduced cell apoptosis, while the knockdown of SCOS3 had the opposite effects. Further analyses showed that SOCS3 overexpression inhibited JAK2 and STAT3 phosphorylation, which was induced by IL-6 stimulation. CONCLUSIONS SOCS3 plays a protective role in human preterm placental tissue-derived cytotrophoblasts from IL-6 induced apoptosis by feedback inhibition of JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Yin Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Qu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dicong Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
YOSHIMURA A, AKI D, ITO M. SOCS, SPRED, and NR4a: Negative regulators of cytokine signaling and transcription in immune tolerance. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:277-291. [PMID: 34121041 PMCID: PMC8403526 DOI: 10.2183/pjab.97.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cytokines are important intercellular communication tools for immunity. Most cytokines utilize the JAK-STAT and Ras-ERK pathways to promote gene transcription and proliferation; however, this signaling is tightly regulated. The suppressor of cytokine signaling (SOCS) family and SPRED family are a representative negative regulators of the JAK-STAT pathway and the Ras-ERK pathway, respectively. The SOCS family regulates the differentiation and function of CD4+ T cells, CD8+ T cells, and regulatory T cells, and is involved in immune tolerance, anergy, and exhaustion. SPRED family proteins have been shown to inactivate Ras by recruiting the Ras-GTPase neurofibromatosis type 1 (NF1) protein. Human genetic analysis has shown that SOCS family members are strongly associated with autoimmune diseases, allergies, and tumorigenesis, and SPRED1 is involved in NF1-like syndromes and tumors. We also identified the NR4a family of nuclear receptors as a key transcription factor for immune tolerance that suppresses cytokine expression and induces various immuno-regulatory molecules including SOCS1.
Collapse
Affiliation(s)
- Akihiko YOSHIMURA
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Correspondence should be addressed: A. Yoshimura, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan (e-mail: )
| | - Daisuke AKI
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Minako ITO
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Khan MGM, Ghosh A, Variya B, Santharam MA, Ihsan AU, Ramanathan S, Ilangumaran S. Prognostic significance of SOCS1 and SOCS3 tumor suppressors and oncogenic signaling pathway genes in hepatocellular carcinoma. BMC Cancer 2020; 20:774. [PMID: 32807134 PMCID: PMC7433106 DOI: 10.1186/s12885-020-07285-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background SOCS1 and SOCS3 genes are considered tumor suppressors in hepatocellular carcinoma (HCC) due to frequent epigenetic repression. Consistent with this notion, mice lacking SOCS1 or SOCS3 show increased susceptibility to diethylnitrosamine (DEN)-induced HCC. As SOCS1 and SOCS3 are important regulators of cytokine and growth factor signaling, their loss could activate oncogenic signaling pathways. Therefore, we examined the correlation between SOCS1/SOCS3 and key oncogenic signaling pathway genes as well as their prognostic significance in HCC. Methods The Cancer Genome Atlas dataset on HCC comprising clinical and transcriptomic data was retrieved from the cBioportal platform. The correlation between the expression of SOCS1 or SOCS3 and oncogenic pathway genes was evaluated using the GraphPad PRISM software. The inversely correlated genes were assessed for their impact on patient survival using the UALCAN platform and their expression quantified in the regenerating livers and DEN-induced HCC tissues of mice lacking Socs1 or Socs3. Finally, the Cox proportional hazards model was used to evaluate the predictive potential of SOCS1 and SOCS3 when combined with the genes of select oncogenic signaling pathways. Results SOCS1 expression was comparable between HCC and adjacent normal tissues, yet higher SOCS1 expression predicted favorable prognosis. In contrast, SOCS3 expression was significantly low in HCC, yet it lacked predictive potential. The correlation between SOCS1 or SOCS3 expression and key genes of the cell cycle, receptor tyrosine kinase, growth factor and MAPK signaling pathways were mostly positive than negative. Among the negatively correlated genes, only a few showed elevated expression in HCC and predicted survival. Many PI3K pathway genes showed mutual exclusivity with SOCS1 and/or SOCS3 and displayed independent predictive ability. Among genes that negatively correlated with SOCS1 and/or SOCS3, only CDK2 and AURKA showed corresponding modulations in the regenerating livers and DEN-induced tumors of hepatocyte-specific Socs1 or Socs3 deficient mice and predicted patient survival. The Cox proportional hazards model identified the combinations of SOCS1 or SOCS3 with CXCL8 and DAB2 as highly predictive. Conclusions SOCS1 expression in HCC has an independent prognostic value whereas SOCS3 expression does not. The predictive potential of SOCS1 expression is increased when combined with other oncogenic signaling pathway genes.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Immunology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Amit Ghosh
- Cell biology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Bhavesh Variya
- Cell biology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Madanraj Appiya Santharam
- Cell biology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Awais Ullah Ihsan
- Cell biology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Sheela Ramanathan
- Immunology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada.,Cell biology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada.,CRCHUS, Sherbrooke, Québec, J1H 5N4, Canada
| | - Subburaj Ilangumaran
- Immunology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada. .,Cell biology graduate program, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 North 12th avenue, Sherbrooke, QC, J1H 5N4, Canada. .,CRCHUS, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
10
|
Chen L, Huang X, Zhang W, Liu Y, Chen B, Xiang Y, Zhang R, Zhang M, Feng J, Liu S, Duan T, Chen X, Wang W, Pan T, Yan L, Jin T, Li G, Li Y, Xie T, Sui X. Correlation of PD-L1 and SOCS3 Co-expression with the Prognosis of Hepatocellular Carcinoma Patients. J Cancer 2020; 11:5440-5448. [PMID: 32742491 PMCID: PMC7391185 DOI: 10.7150/jca.46158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/14/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose: To investigate the correlation between the expression of PD-L1, SOCS3 and immune-related biomarkers CD276, CD4, CD8 in hepatocellular carcinoma (HCC) and further determine the relationship with clinicopathologic characteristics and the prognostic value of their co-expression in HCC patients. Methods: We assessed the expression of PD-L1, CD276, SOCS3, CD4 and CD8 by immunohistochemistry in tumor tissue from 74 HCC patients who underwent curative hepatectomy. Results: High expression of PD-L1 was significantly associated with high Edmondson grade (p<0.01) and elevated enzyme (p=0.037); high expression of CD276 was significantly correlated with high Edmondson grade (p=0.021); high expression of SOCS3 was significantly associated with age (p=0.026) and tumor size (p=0.041), while PD-L1 showed no significant correlation. The expression of PD-L1, CD276, SOCS3 protein and other clinicopathological factors (sex, vascular invasion, tumor number, tumor capsule, pT stage, liver cirrhosis, HBsAg, TBiL, AFP) showed no significant correlation (p>0.05). High expression of CD8 was respectively significantly associated with worse overall survival (OS) (p=0.002). There was no significantly difference between CD4 and CD8 high-expression and overall survival (OS) (p=0.100). Both high expression of PD-L1 (p=0.003) and low expression of SOCS3 (p=0.015) was significantly associated with worse overall survival (OS). But CD276 only had a trendency (p=0.166). Additionally, multivariate Cox regression models implied that PD-L1, SOCS3, as well as both CD4 and CD8 was an independent prognostic factor for OS (p<0.05). Furthermore, HCC patients with PD-L1 low-expression and SOCS3 high-expression had a better prognostic according to the different pT stages (p<0.05). Conclusions: We for the first time demonstrated that PD-L1 and SOCS3 were independent prognostic factor for HCC patients. Co-expression of low PD-L1 and high SOCS3 could be a better predictive marker for HCC patients.
Collapse
Affiliation(s)
- Liuxi Chen
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xingxing Huang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenzheng Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ying Liu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Bi Chen
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Yu Xiang
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ruonan Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Mingming Zhang
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jiao Feng
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shuiping Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ting Duan
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaying Chen
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wengang Wang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ting Pan
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lili Yan
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ting Jin
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Guohua Li
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yongqiang Li
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| |
Collapse
|
11
|
Chen M, Zeng J, Chen S, Li J, Wu H, Dong X, Lei Y, Zhi X, Yao L. SPTBN1 suppresses the progression of epithelial ovarian cancer via SOCS3-mediated blockade of the JAK/STAT3 signaling pathway. Aging (Albany NY) 2020; 12:10896-10911. [PMID: 32516133 PMCID: PMC7346039 DOI: 10.18632/aging.103303] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
SPTBN1 plays an anticancer role in many kinds of tumors and participates in the chemotherapeutic resistance of epithelial ovarian cancer (EOC). Here, we reported that lower SPTBN1 expression was significantly related to advanced EOC stage and shorter progression-free survival. SPTBN1 expression was also higher in less invasive EOC cell lines. Moreover, SPTBN1 decreased the migration ability of the EOC cells A2780 and HO8910 and inhibited the growth of EOC cells in vitro and tumor xenografts in vivo. SPTBN1 suppression increased the epithelial mesenchymal transformation marker Vimentin while decreasing E-cadherin expression. By analyzing TCGA data and immunohistochemistry staining of tumor tissue, we found that SPTBN1 and SOCS3 were positively coexpressed in EOC patients. SOCS3 overexpression or JAK2 inhibition decreased the proliferation and migration of EOC cells as well as the expression of p-JAK2, p-STAT3 and Vimentin, which were enhanced by the downregulation of SPTBN1, while E-cadherin expression was also reversed. It was also verified in mouse embryonic fibroblasts (MEFs) that loss of SPTBN1 activated the JAK/STAT3 signaling pathway with suppression of SOCS3. Our results suggest that SPTBN1 suppresses the progression of epithelial ovarian cancer via SOCS3-mediated blockade of the JAK/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Mo Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jia Zeng
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Shuyi Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiajia Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Huijie Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuhui Dong
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yuan Lei
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Liangqing Yao
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| |
Collapse
|
12
|
Phosphorylated STAT3 expression linked to SOCS3 methylation is associated with proliferative ability of gastric mucosa in patients with early gastric cancer. Oncol Lett 2020; 19:3542-3550. [PMID: 32269628 PMCID: PMC7115067 DOI: 10.3892/ol.2020.11462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Gastric cancers (GCs) may develop in the gastric mucosa after elimination of Helicobacter pylori (H. pylori) using eradication therapy. Cytokine signaling is a key mechanism underlying GC development and progression, and STAT3 signaling may serve a central role in gastritis-associated tumorigenesis. In the present study, suppressor of cytokine signaling 3 (SOCS3) methylation was examined, as an activator of phosphorylated (p-)STAT3 expression in the non-neoplastic gastric mucosa (non-NGM) of patients with early GC. The methylation status of the SOCS3 gene promoter was analyzed using methylation-specific PCR in the non-NGM of patients with or without early GC. Expression levels of p-STAT3 and Ki67 were investigated immunohistochemically in non-NGM with early GC before and after H. pylori eradication. In non-NGM, SOCS3 promoter methylation was detected in 17/51 patients (33.3%) with early GC. In those patients, the non-NGM labeling indices of both Ki67 and p-STAT3 were significantly higher compared with that in patients with early GC without SOCS3 methylation. A significant correlation between Ki67 and p-STAT3 expression levels was demonstrated in the non-NGM of patients with early GC. In patients with early GC without SOCS3 methylation, the labeling indices of both Ki67 and p-STAT3 in non-NGM were significantly reduced after H. pylori eradication, whereas no such change was observed in patients with early GC with SOCS3 methylation. SOCS3 methylation is associated with continuous p-STAT3 overexpression and enhanced epithelial cell proliferation in non-NGM of patients with early GC.
Collapse
|
13
|
Wei L, Liu Q, Huang Y, Liu Z, Zhao R, Li B, Zhang J, Sun C, Gao B, Ding X, Yu X, He J, Sun A, Qin Y. Knockdown of CTCF reduces the binding of EZH2 and affects the methylation of the SOCS3 promoter in hepatocellular carcinoma. Int J Biochem Cell Biol 2020; 120:105685. [PMID: 31917284 DOI: 10.1016/j.biocel.2020.105685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 02/05/2023]
Abstract
The epigenetic silencing mechanism of suppressor 3 of cytokine signaling (SOCS3) in cancers has not been fully elucidated. Polycomb repressive complexes 2 (PRC2), an important epigenetic regulatory factors, exerts a critical role in repressing the initial phase of gene transcription. Whether PRC2 participates the down- regulation of SOCS3 in Hepatocellular carcinoma (HCC) remains unclear and how does PRC2 be recruited target gene still needs to explore. In this study, Using TCGA HCC dataset, and detecting HCC tissue specimens and cell lines, we found that SOCS3 expression in HCC was inversely related to that of EZH2, and depended on its promoter methylation status. CTCF, vigilin, EZH2 and H3K27me3 were enriched at CTCF and EZH2 binding sites on the methylated SOCS3 gene promoter. The depletion of CTCF did not affect expression of EZH2 and DNMT1, but decrease recruitment of CTCF, vigilin, EZH2 and H3K27me3. Further, knockdown of CTCF led to a loss of methylation of the methylated SOCS3 promoter, which sequentially increased the expression of SOCS3 and decreased the expression of pSTAT3, the downstream effector. These findings suggest that the CTCF dependent recruitment of EZH2 to the SOCS3 gene promoter is likely to participate in the epigenetic silencing of SOCS3 and in regulating its gene expression.
Collapse
Affiliation(s)
- Ling Wei
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Qiuying Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Yuan Huang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Zhongjian Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Rongce Zhao
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu, 610041, Sichuan Province, China
| | - Bo Li
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu, 610041, Sichuan Province, China
| | - Jing Zhang
- West China College of Public Health, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Chengjun Sun
- West China College of Public Health, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Bo Gao
- Analytical & Testing Center, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xueqin Ding
- Analytical & Testing Center, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xiaoqin Yu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Jingyang He
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Aimin Sun
- Analytical & Testing Center, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
14
|
Khan MGM, Ghosh A, Variya B, Santharam MA, Kandhi R, Ramanathan S, Ilangumaran S. Hepatocyte growth control by SOCS1 and SOCS3. Cytokine 2019; 121:154733. [PMID: 31154249 DOI: 10.1016/j.cyto.2019.154733] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
The extraordinary capacity of the liver to regenerate following injury is dependent on coordinated and regulated actions of cytokines and growth factors. Whereas hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are direct mitogens to hepatocytes, inflammatory cytokines such as TNFα and IL-6 also play essential roles in the liver regeneration process. These cytokines and growth factors activate different signaling pathways in a sequential manner to elicit hepatocyte proliferation. The kinetics and magnitude of these hepatocyte-activating stimuli are tightly regulated to ensure restoration of a functional liver mass without causing uncontrolled cell proliferation. Hepatocyte proliferation can become deregulated under conditions of chronic inflammation, leading to accumulation of genetic aberrations and eventual neoplastic transformation. Among the control mechanisms that regulate hepatocyte proliferation, negative feedback inhibition by the 'suppressor of cytokine signaling (SOCS)' family proteins SOCS1 and SOCS3 play crucial roles in attenuating cytokine and growth factor signaling. Loss of SOCS1 or SOCS3 in the mouse liver increases the rate of liver regeneration and renders hepatocytes susceptible to neoplastic transformation. The frequent epigenetic repression of the SOCS1 and SOCS3 genes in hepatocellular carcinoma has stimulated research in understanding the growth regulatory mechanisms of SOCS1 and SOCS3 in hepatocytes. Whereas SOCS3 is implicated in regulating JAK-STAT signaling induced by IL-6 and attenuating EGFR signaling, SOCS1 is crucial for the regulation of HGF signaling. These two proteins also module the functions of certain key proteins that control the cell cycle. In this review, we discuss the current understanding of the functions of SOCS1 and SOCS3 in controlling hepatocyte proliferation, and its implications to liver health and disease.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Amit Ghosh
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Bhavesh Variya
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Madanraj Appiya Santharam
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Rajani Kandhi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Subburaj Ilangumaran
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| |
Collapse
|
15
|
Wu M, Song D, Li H, Yang Y, Ma X, Deng S, Ren C, Shu X. Negative regulators of STAT3 signaling pathway in cancers. Cancer Manag Res 2019; 11:4957-4969. [PMID: 31213912 PMCID: PMC6549392 DOI: 10.2147/cmar.s206175] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
STAT3 is the most ubiquitous member of the STAT family and involved in many biological processes, such as cell proliferation, differentiation, and apoptosis. Mounting evidence has revealed that STAT3 is aberrantly activated in many malignant tumors and plays a critical role in cancer progression. STAT3 is usually regarded as an effective molecular target for cancer treatment, and abolishing the STAT3 activity may diminish tumor growth and metastasis. Recent studies have shown that negative regulators of STAT3 signaling such as PIAS, SOCS, and PTP, can effectively retard tumor progression. However, PIAS, SOCS, and PTP have also been reported to correlate with tumor malignancy, and their biological function in tumorigenesis and antitumor therapy are somewhat controversial. In this review, we summarize actual knowledge on the negative regulators of STAT3 in tumors, and focus on the potential role of PIAS, SOCS, and PTP in cancer treatment. Furthermore, we also outline the STAT3 inhibitors that have entered clinical trials. Targeting STAT3 seems to be a promising strategy in cancer therapy.
Collapse
Affiliation(s)
- Moli Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China.,College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Danyang Song
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Hui Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Yang Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Sa Deng
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Changle Ren
- Surgery Department of Dalian Municipal Central Hospital, Dalian Medical University, Dalian 116033, People's Republic of China
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| |
Collapse
|
16
|
Liu K, Wu Z, Chu J, Yang L, Wang N. Promoter methylation and expression of SOCS3 affect the clinical outcome of pediatric acute lymphoblastic leukemia by JAK/STAT pathway. Biomed Pharmacother 2019; 115:108913. [PMID: 31054507 DOI: 10.1016/j.biopha.2019.108913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) has been characterized as one of the most crucial negative regulator in the JAK2/STAT3 signaling pathway. However, there are few studies on the relationship between SOCS3 and pediatric acute lymphoblastic leukemia (ALL). This study analyzes the influence of SOCS3 expression on the risk and the progression of pediatric ALL and the underlying mechanism. The levels of SOCS3, p-JAK2, p-STAT3, SOCS3 methylation, CD4+CD25+CD127lowTreg were detected by PCR, laser confocal microscopy, western blot, bisulfite sequencing and flow cytometry at different progression of ALL. We found that the SOCS3 expression level at initial diagnosis (DG) of ALL patients was significantly lower than that of healthy controls (HC), while the expression of SOCS3 methylation was opposite. The expression of SOCS3 and SOCS3 methylation were returned to normal in the complete remission (CR) stage, and there were no difference between resistance, relapse and initial diagnosis. The expression of SOCS3 decreased and weakened the inhibition of pSTAT3 expression in DG, resistance and relapse groups. The levels of Treg cells in ALL children were significantly higher than those in the HC children. There was a positive correlation between the expression level of STAT3 and the expression level of Treg cells in children with ALL, while that was negatively correlated with the expression levels of Treg cells. Compared with high-level of SOCS3, the low-level of SOCS3 patients had more high risk factors, as higher WBC counts, LDH level and much more poor prognostic genes. SOCS3 methylation leads to low-expression of SOCS3, which can lead to continuous activation of JAK/STAT3 and increased expression of Treg cells, which in turn affects the anti-tumor immunological effect of the body. Taken together, our data show that monitoring the level of SOCS3 can contribute to the understanding of the state of illness and evaluate the risk of progression of ALL.
Collapse
Affiliation(s)
- Kangkang Liu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhengyu Wu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jinhua Chu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Linhai Yang
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ningling Wang
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
17
|
Modulation of the IL-6-Signaling Pathway in Liver Cells by miRNAs Targeting gp130, JAK1, and/or STAT3. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:419-433. [PMID: 31026677 PMCID: PMC6479786 DOI: 10.1016/j.omtn.2019.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 12/19/2022]
Abstract
Interleukin-6 (IL-6)-type cytokines share the common receptor glycoprotein 130 (gp130), which activates a signaling cascade involving Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) transcription factors. IL-6 and/or its signaling pathway is often deregulated in diseases, such as chronic liver diseases and cancer. Thus, the identification of compounds inhibiting this pathway is of interest for future targeted therapies. We established novel cellular screening systems based on a STAT-responsive reporter gene (Cypridina luciferase). Of a library containing 538 microRNA (miRNA) mimics, several miRNAs affected hyper-IL-6-induced luciferase activities. When focusing on candidate miRNAs specifically targeting 3′ UTRs of signaling molecules of this pathway, we identified, e.g., miR-3677-5p as a novel miRNA affecting protein expression of both STAT3 and JAK1, whereas miR-16-1-3p, miR-4473, and miR-520f-3p reduced gp130 surface expression. Interestingly, combination treatment with 2 or 3 miRNAs targeting gp130 or different signaling molecules of the pathway did not increase the inhibitory effects on phospho-STAT3 levels and STAT3 target gene expression compared to treatment with single mimics. Taken together, we identified a set of miRNAs of potential therapeutic value for cancer and inflammatory diseases, which directly target the expression of molecules within the IL-6-signaling pathway and can dampen inflammatory signal transduction.
Collapse
|
18
|
Effect of cornel iridoid glycoside on microglia activation through suppression of the JAK/STAT signalling pathway. J Neuroimmunol 2019; 330:96-107. [PMID: 30852182 DOI: 10.1016/j.jneuroim.2019.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 01/07/2023]
Abstract
The effect of cornel iridoid glycoside (CIG), main component extracted from Cornus officinalis, on microglia activation has not been elucidated so far. We induced a mouse model of multiple sclerosis (MS), namely, the experimental autoimmune encephalomyelitis (EAE) model by immunization subcutaneously with the MOG35-55 peptide, which causes neuroinflammation and microglia activation. Our data demonstrated that CIG delayed the onset of the EAE, ameliorated the severity of the symptoms and inhibited the activation of microglia in different brain regions. In addition, we also found that CIG has therapeutic potential by modulating microglia polarization by reducing the expression and release of proinflammatory cytokines, chemokines and inhibiting phosphorylation in the JAK/STAT cell signalling pathway. Based on our findings, CIG might be a promising candidate for the prevention of neurological disorders such as multiple sclerosis (MS).
Collapse
|
19
|
Sarmah N, Baruah MN, Baruah S. Immune Modulation in HLA-G Expressing Head and Neck Squamous Cell Carcinoma in Relation to Human Papilloma Virus Positivity: A Study From Northeast India. Front Oncol 2019; 9:58. [PMID: 30859089 PMCID: PMC6397850 DOI: 10.3389/fonc.2019.00058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Tumor specific ectopic expression of the immunomodulatory molecule, HLA-G is known to mediate immune tolerance and promote carcinogenesis. Viruses too employ strategies to evade immune surveillance. Considering the role of both HLA-G and HPV in tumor growth and progression, it is pertinent to investigate the relationship between HLA-G and HPV in context of immune modulation in HNSCC. Method: A hospital based case–control study was conducted in histopathologically confirmed HNSCC tissues. HLA-G isoform expression and HPV association studies were carried out and mRNA levels of HLA-G, markers of proliferation and differentiation (ki-67, keratin 18, cyclin D1), immune checkpoint molecules (IL-10, PD-1. TGF-β), SOCS (SOCS1 and SOCS3) and pro-inflammatory cytokine IFN-γ were determined. Results: Higher expression of HLA-G was noted in HPV positive tumors (5.14 fold, p = 0.002). HLA-G7 was the most frequent isoform (29/80) found in HNSCC particularly in HPV positive tumors (13/16). In HPV negative tumors, all the checkpoint molecules were upregulated along with pro–inflammatory IFN-γ. In contrast, in HPV positive tumors, IFN-γ expression was higher (2.12 fold) but levels of IL-10, PD-1, TGF-β, SOCS1 and SOCS3 were markedly lower (fold change of IL-10 = 0.37, PD1 = 0.41, TGF-β = 0.17, SOCS1 = 0.055, SOCS3 = 0.027). HPV positive tumors were more proliferative and differentiated with higher expression of ki-67 and keratin18 (6.25 fold, p = 0.079 and 10.62 fold, p = 0.009). Decreased expression of cyclin D1 was noted in HPV positive tumors (6.94 fold, p = 0.006) than HPV negative tumors (17.69 fold). Also, HLA-G7 expressing HPV positive tumors showed lowest expression of cyclin D1. Interestingly, SOCS showed normal expression in HLA-G7 expressing HPV negative tumors (1.2 and 1.4 fold). IFN-γ was downregulated in HPV positive tumors without HLA-G7 (0.31 fold). Conclusion: Our data suggests that SOCS were downregulated irrespective of HLA-G positivity and IFN- γ expression appeared to be mediated by HLA-G. SOCS are reported to have anti-tumor activity and also SOCS and soluble HLA-G are known to interfere with cell cycle progression. Hence, through regulating HLA-G expression, HPV positive tumors could mediate immune suppression by manipulating SOCS, IFN-γ, IL-10 and cyclin D1 pathways which needs further exploration.
Collapse
Affiliation(s)
- Neelanjana Sarmah
- Immunology and Immunogenetics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | | | - Shashi Baruah
- Immunology and Immunogenetics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
20
|
Zhao G, Gong L, Su D, Jin Y, Guo C, Yue M, Yao S, Qin Z, Ye Y, Tang Y, Wu Q, Zhang J, Cui B, Ding Q, Huang H, Hu L, Chen Y, Zhang P, Hu G, Chen L, Wong KK, Gao D, Ji H. Cullin5 deficiency promotes small-cell lung cancer metastasis by stabilizing integrin β1. J Clin Invest 2019; 129:972-987. [PMID: 30688657 DOI: 10.1172/jci122779] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
Metastasis is the dominant cause of patient death in small-cell lung cancer (SCLC), and a better understanding of the molecular mechanisms underlying SCLC metastasis may potentially improve clinical treatment. Through genome-scale screening for key regulators of mouse Rb1-/- Trp53-/- SCLC metastasis using the pooled CRISPR/Cas9 library, we identified Cullin5 (CUL5) and suppressor of cytokine signaling 3 (SOCS3), two components of the Cullin-RING E3 ubiquitin ligase complex, as top candidates. Mechanistically, the deficiency of CUL5 or SOCS3 disrupted the functional formation of the E3 ligase complex and prevented the degradation of integrin β1, which stabilized integrin β1 and activated downstream focal adhesion kinase/SRC (FAK/SRC) signaling and eventually drove SCLC metastasis. Low expression levels of CUL5 and SOCS3 were significantly associated with high integrin β1 levels and poor prognosis in a large cohort of 128 clinical patients with SCLC. Moreover, the CUL5-deficient SCLCs were vulnerable to the treatment of the FDA-approved SRC inhibitor dasatinib. Collectively, this work identifies the essential role of CUL5- and SOCS3-mediated integrin β1 turnover in controlling SCLC metastasis, which might have therapeutic implications.
Collapse
Affiliation(s)
- Gaoxiang Zhao
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Liyan Gong
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Chenchen Guo
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Meiting Yue
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Shun Yao
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Zhen Qin
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Ye
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Ying Tang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Qibiao Wu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Binghai Cui
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hsinyi Huang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yuting Chen
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Peiyuan Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA
| | - Daming Gao
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
21
|
Jiang K, Centeno BA. Primary Liver Cancers, Part 2: Progression Pathways and Carcinogenesis. Cancer Control 2018; 25:1073274817744658. [PMID: 29353494 PMCID: PMC5933573 DOI: 10.1177/1073274817744658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) and primary intrahepatic cholangiocarcinoma (ICC) have been increasing in incidence worldwide and are leading causes of cancer death. Studies of the molecular alterations leading to these carcinomas provide insights into the key mechanisms involved. A literature review was conducted to identify articles with information relevant to current understanding of the etiologies and molecular pathogenesis of HCC and ICC. Chronic inflammatory diseases are the key etiological risk factors for both HCC and ICC, although other diseases play a role, and for many ICCs, an underlying risk factor is not identified. Mutations in catenin beta 1 ( CTNBB1) and tumor protein 53 (P53) are the main genetic alterations in HCC. Isocitrate dehydrogenases 1 and 2 (IDH1/2), KRAS protooncogene GTPase (KRAS), a RAS Viral Oncogene Homolog in neoroblastoma (NRAS) and P53 are primary genetic alterations in ICC. In both diseases, the mutational landscape is dependent on the underlying etiology. The most significant etiologies and genetic processes involved in the carcinogenesis of HCC and ICC are reviewed.
Collapse
Affiliation(s)
- Kun Jiang
- 1 Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, FL, USA.,2 Department of Oncologic Sciences, Morsani College of Medicine at University of South Florida, Tampa, FL, USA
| | - Barbara A Centeno
- 1 Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, FL, USA.,2 Department of Oncologic Sciences, Morsani College of Medicine at University of South Florida, Tampa, FL, USA
| |
Collapse
|
22
|
Yoshimura A, Ito M, Chikuma S, Akanuma T, Nakatsukasa H. Negative Regulation of Cytokine Signaling in Immunity. Cold Spring Harb Perspect Biol 2018; 10:a028571. [PMID: 28716890 PMCID: PMC6028070 DOI: 10.1101/cshperspect.a028571] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines are key modulators of immunity. Most cytokines use the Janus kinase and signal transducers and activators of transcription (JAK-STAT) pathway to promote gene transcriptional regulation, but their signals must be attenuated by multiple mechanisms. These include the suppressors of cytokine signaling (SOCS) family of proteins, which represent a main negative regulation mechanism for the JAK-STAT pathway. Cytokine-inducible Src homology 2 (SH2)-containing protein (CIS), SOCS1, and SOCS3 proteins regulate cytokine signals that control the polarization of CD4+ T cells and the maturation of CD8+ T cells. SOCS proteins also regulate innate immune cells and are involved in tumorigenesis. This review summarizes recent progress on CIS, SOCS1, and SOCS3 in T cells and tumor immunity.
Collapse
Affiliation(s)
- Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Akanuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroko Nakatsukasa
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
23
|
Alterations in the p53-SOCS2 axis contribute to tumor growth in colon cancer. Exp Mol Med 2018; 50:1-10. [PMID: 29622769 PMCID: PMC5940812 DOI: 10.1038/s12276-017-0001-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 12/28/2022] Open
Abstract
Altered expression of suppressor of cytokine signaling (SOCS) is found in various tumors. However, regulation of SOCS2 by upstream molecules has yet to be clearly elucidated, particularly in tumor cells. SCOCS2 expression was examined in tumor cells transfected with an inducible p53 expression system. The impact of SOCS2 on cell proliferation was measured with in vitro assays. Inhibition of tumorigenicity by SOCS2 knockdown was assessed via a mouse model. Expression profiles were compared and genes differentially expressed were identified using four types of p53-null cells (Saos, HLK3, PC3, and H1299) and the same cells stably expressing p53. Twelve kinds of target genes were simultaneously upregulated or downregulated by p53 in three or more sets of p53-null cells. SOCS2 expression was reciprocally inhibited by inducible p53 expression in p53-null cells, even colon cancer cells. SOCS2 promoter activity was inhibited by wild type but not mutant p53. SOCS2 knockdown inhibited tumor growth in vitro and in an animal xenograph model. SOCS2 overexpression was detected in a murine model of azoxymethane/dextran sulfate sodium-induced colitis-associated colon cancer compared to mock-treated controls. SOCS2 expression was heterogeneously upregulated in some human colon cancers. Thus, SOCS2 was upregulated by p53 dysfunction and seemed to be associated with the tumorigenic potential of colon cancer. Insights into a signaling protein’s role in cell growth could inform new therapeutic strategies for treating colon cancer. SOCS-2 acts as an ‘off switch’ for cell signaling pathways. It has been identified as possibly protective against many cancers, although some cancers are associated with elevated SOCS-2 levels. Researchers led by Daeghon Kim at Chonbuk National University Hospital in South Korea have now shown that the effects of SOCS-2 are apparently dependent on how much of it is present. Moderate levels of SOCS-2 can suppress growth in colon cancer cells, but Kim’s team showed that excessive SOCS-2 has the opposite effect, promoting proliferation. The researchers also identified a gene commonly mutated in cancer cells that can drive overproduction of SOCS-2. Drugs that inhibit SOCS-2 or block its production may therefore offer useful treatments for colorectal cancer.
Collapse
|
24
|
Kwon OS, Kim JH, Kim JH. [The Development of Hepatocellular Carcinoma in Non-alcoholic Fatty Liver Disease]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2018. [PMID: 28637103 DOI: 10.4166/kjg.2017.69.6.348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) may be one of the important causes of cryptogenic hepatocellular carcinoma (HCC). NAFLD-related HCCs (NAFLD-HCCs) have the following clinical features: high body mass index, deranged lipid profiles, diabetes mellitus, hypertension, and metabolic syndrome. Among them, obesity, diabetes mellitus, and high Fe contents in the liver are risk factors of developing HCC in patients with NAFLD. Inflammatory cytokines, adipokines, insulin like growth factor-I, and lipotoxicity are intermingled and may cross react with each other to develop HCC. Because there is no guideline for early detection of HCC in patients with NAFLD, NAFLD-HCCs tend to be greater in size and in advanced stages when detected compared with hepatitis virus-related HCCs. Therefore, there is an urgent need of a surveillance program for the early detection of HCC. Treatment of NAFLD-HCCs is not different from other causes-related HCCs. However, patients with NAFLD-HCCs have cardiovascular disease and other metabolic problems, which may complicate treatment.
Collapse
Affiliation(s)
- Oh Sang Kwon
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Joon Hwan Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Ju Hyun Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| |
Collapse
|
25
|
Tumor SOCS3 methylation status predicts the treatment response to TACE and prognosis in HCC patients. Oncotarget 2018; 8:28621-28627. [PMID: 28404963 PMCID: PMC5438677 DOI: 10.18632/oncotarget.16157] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Suppressor of cytokine signaling (SOCS) 1 and 3 methylation have been associated with clinical features and outcomes of cancer patients. However, their roles in determining the treatment response to transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC) remain unknown. RESULTS We found that presence of SOCS3 methylation is significantly associated with the major clinical features of HCC patients, including tumor stage, lymph node and vascular invasion. Of note, we observed that the presence of SOCS3 methylation is closely related to TACE response. In prognosis analyses, HCC patients with SOCS3 methylation presence have a poorer prognosis indicated by lower 3-, and 5-year survival rates and shorter mean survival period, than those without. Multivariate COX analysis confirms the prognostic role of the presence of SOCS3 methylation in HCC patients receiving TACE treatment. MATERIALS AND METHODS A total of 246 HCC patients receiving TACE were enrolled in this study. Tumor samples was obtained from echo-guided fine needle aspiration and genomic DNA from tumor samples was purified. SOCS1 and SOCS3 methylation status were detected using methylation-specific polymerase chain reaction. The treatment responses to TACE of patients were evaluated after procedure and all patients were followed for prognosis analysis. CONCLUSIONS This finding suggests that the presence of SOCS3 methylation is a marker to predict treatment response and prognosis in HCC patients receiving TACE therapy.
Collapse
|
26
|
Naseem S, Hussain T, Manzoor S. Interleukin-6: A promising cytokine to support liver regeneration and adaptive immunity in liver pathologies. Cytokine Growth Factor Rev 2018; 39:36-45. [PMID: 29361380 DOI: 10.1016/j.cytogfr.2018.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
Abstract
Liver pathologies (fibrosis, cirrhosis, alcoholic, non-alcoholic diseases and hepatocellular carcinoma) represent one of the most common causes of death worldwide. A number of genetic and environmental factors contribute to the development of liver diseases. Interleukin-6 (IL-6) is a pleiotropic cytokine, exerting variety of effects on inflammation, liver regeneration, and defence against infections by regulating adaptive immunity. Due to its high abundance in inflammatory settings, IL-6 is often viewed as a detrimental cytokine. However, accumulating evidence supports the view that IL-6 has a beneficial impact in numerous liver pathologies, due to its roles in liver regeneration and in promoting an anti-inflammatory response in certain conditions. IL-6 promotes proliferation, angiogenesis and metabolism, and downregulates apoptosis and oxidative stress; together these functions are critical for mediating hepatoprotection. IL-6 is also an important regulator of adaptive immunity where it induces T cell differentiation and regulates autoimmunity. It can augment antiviral adaptive immune responses and mitigate exhaustion of T cells during chronic infection. This review focuses on studies that present IL-6 as a key factor in regulating liver regeneration and in supporting effector immune functions and suggests that these functions of IL-6 can be exploited in treatment strategies for liver pathologies.
Collapse
Affiliation(s)
- Sidrah Naseem
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Tabinda Hussain
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| |
Collapse
|
27
|
Detection of promoter methylation status of suppressor of cytokine signaling 3 (SOCS3) in tissue and plasma from Chinese patients with different hepatic diseases. Clin Exp Med 2017; 18:79-87. [DOI: 10.1007/s10238-017-0473-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022]
|
28
|
Xiong H, Zhang Y, Chen S, Ni Z, He J, Li X, Li B, Zhao K, Yang F, Zeng Y, Chen B, He F. Induction of SOCS3 by liver X receptor suppresses the proliferation of hepatocellular carcinoma cells. Oncotarget 2017; 8:64083-64094. [PMID: 28969053 PMCID: PMC5609985 DOI: 10.18632/oncotarget.19321] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/10/2017] [Indexed: 02/06/2023] Open
Abstract
Liver X receptor (LXR), a member of nuclear receptor superfamily, is involved in the regulation of glucose, lipid and cholesterol metabolism. Recently, it has been reported that LXR suppress different kinds of cancers including hepatocellular carcinoma (HCC). However, the corresponding mechanism is still not well elucidated. In the present study, we found that activation of LXR downregulated cyclin D1 while upregulated p21 and p27 by elevating the level of suppressor of cytokine signaling 3 (SOCS3), leading to the cell cycle arrest at G1/S phase and growth inhibition of HCC cells. Moreover, we demonstrated that LXRα (not LXRβ) mediated the induction of SOCS3 in HCC cells. Subsequently, we showed that LXR activation enhanced the mRNA stability of SOCS3, but had no significant influence on the transcriptional activity of SOCS3 gene promoter. The experiments in nude mice revealed that LXR agonist inhibited the growth of xenograft tumors and enhanced SOCS3 expression in vivo. These results indicate that “LXRα-SOCS3-cyclin D1/p21/p27” is a novel pathway by which LXR exerts its anti-HCC effects, suggesting that the pathway may be a new potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Haojun Xiong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Shan Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Zhenhong Ni
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Jintao He
- Battalion 17 of Students, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xinzhe Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Kai Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Fan Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yijun Zeng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Bingbo Chen
- Laboratory Animal Center, Third Military Medical University, Chongqing 400038, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
29
|
Aglan HA, Ahmed HH, El-Toumy SA, Mahmoud NS. Gallic acid against hepatocellular carcinoma: An integrated scheme of the potential mechanisms of action from in vivo study. Tumour Biol 2017; 39:1010428317699127. [PMID: 28618930 DOI: 10.1177/1010428317699127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The global burden of hepatocellular carcinoma is increasing; actually, it is estimated as 750,000 new cases annually. This study was initiated to emphasize the possibility that gallic acid could alleviate hepatocarcinogenesis in vivo. In this study, 40 rats were enrolled and distributed as follows; group 1 was set as negative control, while all of groups 2, 3, and 4 were orally received N-nitrosodiethylamine for hepatocellular carcinoma induction. Group 2 was left untreated, whereas groups 3 and 4 were orally treated with gallic acid and doxorubicin, respectively. The current data indicated that gallic acid administration in hepatocellular carcinoma bearing rats yielded significant decline in serum levels of alpha-fetoprotein, glypican-3, and signal transducer and activator of transcription 3 along with significant enhancement in serum suppressors of cytokine signaling 3 level. Also, gallic acid-treated group displayed significant downregulation in the gene expression levels of hepatic gamma glutamyl transferase and heat shock protein gp96. Intriguingly, treatment with gallic acid remarkably ameliorated the destabilization of liver tissue architecture caused by N-nitrosodiethylamine intoxication as evidenced by histopathological investigation. In conclusion, this study demonstrates that the hepatocarcinogenic effect of N-nitrosodiethylamine can be abrogated by gallic acid supplementation owing to its affinity to regulate signal transducer and activator of transcription 3 signaling pathway through its outstanding bioactivities including antioxidant, anti-inflammatory, apoptotic, and antitumor effects.
Collapse
Affiliation(s)
- Hadeer A Aglan
- 1 Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Hanaa H Ahmed
- 1 Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Sayed A El-Toumy
- 2 Chemistry of Tannins Department, National Research Centre, Giza, Egypt
| | - Nadia S Mahmoud
- 1 Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
30
|
Shaw EJ, Smith EE, Whittingham-Dowd J, Hodges MD, Else KJ, Rigby RJ. Intestinal epithelial suppressor of cytokine signaling 3 (SOCS3) impacts on mucosal homeostasis in a model of chronic inflammation. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:336-345. [PMID: 28508554 PMCID: PMC5569373 DOI: 10.1002/iid3.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/13/2022]
Abstract
Introduction Suppressor of cytokine signaling 3 (SOCS3) is a tumour suppressor, limiting intestinal epithelial cell (IEC) proliferation in acute inflammation, and tumour growth, but little is known regarding its role in mucosal homeostasis. Resistance to the intestinal helminth Trichuris muris relies on an “epithelial escalator” to expel the parasite. IEC turnover is restricted by parasite‐induced indoleamine 2,3‐dioxygenase (IDO). Methods Mice with or without conditional knockout of SOCS3 were infected with T. muris. Crypt depth, worm burden, and proliferating cells and IDO were quantified. SOCS3 knockdown was also performed in human IEC cell lines. Results Chronic T. muris infection increased expression of SOCS3 in wild‐type mice. Lack of IEC SOCS3 led to a modest increase in epithelial turnover. This translated to a lower worm burden, but not complete elimination of the parasite suggesting a compensatory mechanism, possibly IDO, as seen in SOCS3 knockdown. Conclusions We report that SOCS3 impacts on IEC turnover following T. muris infection, potentially through enhancement of IDO. IDO may dampen the immune response which can drive IEC hyperproliferation in the absence of SOCS3, demonstrating the intricate interplay of immune signals regulating mucosal homeostasis, and suggesting a novel tumour suppressor role of SOCS3.
Collapse
Affiliation(s)
- Elisabeth J Shaw
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Emily E Smith
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Jayde Whittingham-Dowd
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Matthew D Hodges
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Kathryn J Else
- Faculty of Biology, Medicine, and Health, Manchester University, Manchester, UK
| | - Rachael J Rigby
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
31
|
Madonna S, Scarponi C, Morelli M, Sestito R, Scognamiglio PL, Marasco D, Albanesi C. SOCS3 inhibits the pathological effects of IL-22 in non-melanoma skin tumor-derived keratinocytes. Oncotarget 2017; 8:24652-24667. [PMID: 28445952 PMCID: PMC5421877 DOI: 10.18632/oncotarget.15629] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
Basal cell carcinomas (BCC) and squamous-cell carcinomas (SCC) are common malignancies in humans, caused by neoplastic transformation of keratinocytes of the basal or suprabasal layers of epidermis, respectively. Tumor-infiltrating lymphocytes (TILs) are frequently found in BCC and SCC, and functionally promote epithelial carcinogenesis. TILs secreting IL-22, in particular, participate to BCC and SCC growth by inducing keratinocyte proliferation and migration, as well as the expression of inflammatory, anti-apoptotic and pro-angiogenic genes.In this study, we identified SOCS3 as a valid candidate to be manipulated for suppressing tumorigenic functions in BCC and SCC. We found that SOCS3 and SOCS1 expression was reduced in vivo, in tumor lesions of BCC and SCC, as compared to other skin inflammatory conditions such as psoriasis, despite the high number of IL-22-secreting TILs. Moreover, IL-22 was not able to induce in vitro the transcriptional expression of SOCS3 in BCC-or SCC-derived keratinocytes, contrarily to healthy cells. Aimed at rescuing SOCS3 activity in these tumor contexts, a SOCS3-derived peptide, named KIR-ESS, was synthesized, and its ability in suppressing IL-22-induced responses was evaluated in healthy and transformed keratinocytes. We found that KIR-ESS peptide efficiently suppressed the IL-22 molecular signaling in keratinocytes, by acting on STAT3 and Erk1/2 cascade, as well as on the expression of STAT3-dependent downstream genes. Interestingly, after treatment with peptide, both healthy and transformed keratinocytes could no longer aberrantly proliferate and migrate in response to IL-22. Finally, treatment of athymic nude mice bearing SCC xenografts with KIR-ESS peptide concomitantly reduced tumor growth and activated STAT3 levels. As a whole, these data provides the rationale for the use in BCC and SCC skin tumors of SOCS3 mimetics, being able to inhibit the deleterious effects of IL-22 in these contexts.
Collapse
Affiliation(s)
- Stefania Madonna
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
| | - Claudia Scarponi
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
| | - Martina Morelli
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
| | - Rosanna Sestito
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
- Current address: Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Daniela Marasco
- Department of Pharmacy, CIRPEB, University of Naples “Federico II”, Naples, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
| |
Collapse
|
32
|
Zhao R, Chen K, Zhou J, He J, Liu J, Guan P, Li B, Qin Y. The prognostic role of BORIS and SOCS3 in human hepatocellular carcinoma. Medicine (Baltimore) 2017; 96:e6420. [PMID: 28328845 PMCID: PMC5371482 DOI: 10.1097/md.0000000000006420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brother of regulator of imprinted sites (BORIS) is a DNA-binding protein that is normally expressed in the testes. However, aberrant expression of BORIS is observed in various carcinomas, indicating a malignant role for this protein. Furthermore, abolishment or reduction of suppressor of cytokine signaling 3 (SOCS3) expression directed by promoter methylation is considered significant in hepatocellular carcinoma (HCC) carcinogenesis. This study aims to investigate BORIS and SOCS3 expression in HCC specimens and assess the prognostic significance of these proteins.BORIS and SOCS3 expression was examined using immunohistochemistry in HCC tissues, along with corresponding paracarcinomatous, cirrhosis, hepatitis, and normal liver tissues. The expression levels of these 2 proteins in HCC were evaluated for their association with clinicopathological parameters. Survival analysis was performed using Kaplan-Meier curves, the log-rank test, and multivariate Cox regression analysis.BORIS expression was significantly higher in HCC tissues than in normal liver tissues. In contrast, SOCS3 expression was dramatically lower in HCC tissues. BORIS expression was associated with tumor size, differentiation grade, satellite lesions, and recurrence while SOCS3 expression correlated with differentiation grade, vascular invasion, and recurrence. A significant negative correlation between BORIS and SOCS3 was observed. Patients with high BORIS expression and/or low SOCS3 expression had poorer postoperative survival. Patients with both these characteristics had the poorest prognostic outcome.BORIS and SOCS3 are promising as valuable indicators for predicting HCC prognosis.
Collapse
Affiliation(s)
- Rongce Zhao
- Department of Liver Surgery and Liver Transplantation Center
| | - Kefei Chen
- Department of Liver Surgery and Liver Transplantation Center
| | - Jing Zhou
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University
| | - Jingyang He
- Department of Biochemistry and Molecular Biology
| | - Jun Liu
- Department of Liver Surgery and Liver Transplantation Center
| | - Peng Guan
- Department of Forensic Pathology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Bo Li
- Department of Liver Surgery and Liver Transplantation Center
| | - Yang Qin
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
33
|
Murakawa M, Asahina Y, Kawai-Kitahata F, Nakagawa M, Nitta S, Otani S, Nagata H, Kaneko S, Asano Y, Tsunoda T, Miyoshi M, Itsui Y, Azuma S, Kakinuma S, Tanaka Y, Iijima S, Tsuchiya K, Izumi N, Tohda S, Watanabe M. Hepatic IFNL4 expression is associated with non-response to interferon-based therapy through the regulation of basal interferon-stimulated gene expression in chronic hepatitis C patients. J Med Virol 2017; 89:1241-1247. [PMID: 28036111 DOI: 10.1002/jmv.24763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/27/2022]
Abstract
Single nucleotide polymorphisms (SNPs) within or near interferon lambda 4 (IFNL4) gene located upstream of IFNL3 are associated with response to anti-HCV therapy both in interferon (IFN)-based and IFN-free regimens. IFNL4 encodes IFNλ4, a newly discovered type III IFN, and its expression is controlled by rs368234815-TT/ΔG, which is in strong linkage disequilibrium (LD) with other tag SNPs within or near IFNL4 such as rs12979860 and rs8099917. Intrahepatic expression levels of IFN-stimulated genes (ISGs) affect the responsiveness to IFNα and are also associated with IFNL4 genotype. However, IFNL4 expressions and its role in intrinsic antiviral innate immunity remain unclear. This study evaluated the effect of IFNL4 on intrahepatic ISG expression and investigated its relationship with treatment outcomes in liver samples obtained from 49 chronic hepatitis C patients treated with pegylated (PEG)-IFN/ribavirin therapy. IFNL4 mRNA was detected in 11 of 22 patients with IFNL4-unfavorable SNPs but not in patients with favorable genotypes. IFNL4 expression was associated with non-response to PEG-IFN/ribavirin therapy. Intrahepatic expression of antiviral ISGs (ISG15 and MX1) was significantly higher in IFNL4-unfavorable patients with detectable IFNL4 mRNA than in patients with undetectable IFNL4 mRNA, whereas the expression of suppressive ISGs (RNF125, SOCS1, SOCS3, and RNF11) was lower in patients with detectable IFNL4 mRNA. In summary, intrahepatic expression of IFNL4 was associated with increased antiviral ISG expression and decreased suppressive ISG expression at baseline, resulting in poor responsiveness to IFNα-based therapy in HCV infection.
Collapse
Affiliation(s)
- Miyako Murakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Clinical Laboratory, Medical Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fukiko Kawai-Kitahata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayuri Nitta
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Otani
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroko Nagata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shun Kaneko
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yu Asano
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoyuki Tsunoda
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Miyoshi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Itsui
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishin Azuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sei Kakinuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Clinical Laboratory, Medical Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sayuki Iijima
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kaoru Tsuchiya
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Shuji Tohda
- Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
34
|
Liu C, Liu H, Chen J. [The Role of SOCS in the Development of Tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:620-5. [PMID: 27666555 PMCID: PMC5972954 DOI: 10.3779/j.issn.1009-3419.2016.09.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Suppressor of cytokine signaling (SOCS) family proteins are a group of negative regulatory factors that plays important roles in the negative regulation of cytokine responses by terminating the activation of the JAK-STAT and other signaling pathways. The family is composed of eight structurally related proteins. mainly through the inhibition of the activation of JAK-STAT signaling pathway and regulates cell proliferation, differentiation and apoptosis. In the process of tumor progression, the promoter CG island hypermethylation, gene mutation, gene deletion and inactivation lead to the abnormal expression of SOCS protein make JAK-STAT continuous activation, resulting in the development and metastasis of tumor. Here, we review the SOCS family members found, composition and molecular structure, the domain of the function, and the latest progress of development in tumor. Based on the important role of SOCS in tumor development, SOCS as a negative regulator factor represent a kind of tumor suppressor genes, has become a new target for tumor therapy.
Collapse
Affiliation(s)
- Chunlai Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General
Hospital, Tianjin 300052, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China;Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General
Hospital, Tianjin 300052, China
| |
Collapse
|
35
|
Liu C, Li Y, Dong Y, Zhang H, Li Y, Liu H, Chen J. [Methylation Status of the SOCS3 Gene Promoter in H2228 Cells and
EML4-ALK-positive Lung Cancer Tissues]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:565-70. [PMID: 27666544 PMCID: PMC5972959 DOI: 10.3779/j.issn.1009-3419.2016.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The EML4-ALK fusion gene is a newly discovered driver gene of non-small cell lung cancer and exhibits special clinical and pathological features. The JAK-STAT signaling pathway, an important downstream signaling pathway of EML4-ALK, is aberrantly sustained and activated in EML4-ALK-positive lung cancer cells fusion gene, but the underlying reason remains unknown. The suppressor of cytokine signaling (SOCS) is a negative regulatory factor that mainly inhibits the proliferation, differentiation, and induction of apoptotic cells by inhibiting the JAK-STAT signaling pathway. The aberrant methylation of the SOCS gene leads to inactivation of tumors and abnormal activation of the JAK2-STAT signaling pathway. The aim of this study is to investigate the methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 cells and lung cancer tissues. METHODS The methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 lung cancer cells and lung cancer tissues was detected by methylation-specific PCR (MSP) analysis and verified by DNA sequencing. The expression levels of SOCS3 in H2228 cells were detected by Western blot and Real-time PCR analyses after treatment with the DNA methyltransferase inhibitor 5'-Aza-dC. RESULTS MSP and DNA sequencing assay results indicated the presence of SOCS3 promoter methylation in H2228 cells as well as in three cases of seven EML4-ALK-positive lung cancer tissues. The expression level of SOCS3 significantly increased in H2228 cells after 5'-Aza-dC treatment. CONCLUSIONS The aerrant methylation of the SOCS3 promoter region in EML4-ALK (+) H2228 cells and lung cancer tissues may be significantly involved in the pathogenesis of EML4-ALK-positive lung cancer.
Collapse
Affiliation(s)
- Chunlai Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yunlong Dong
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jun Chen
- Department of Lung Cancer Surgery;Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
36
|
Guo F, Xu Z, Zhang Y, Jiang P, Huang G, Chen S, Lyu X, Zheng P, Zhao X, Zeng Y, Wang S, He F. FXR induces SOCS3 and suppresses hepatocellular carcinoma. Oncotarget 2016; 6:34606-16. [PMID: 26416445 PMCID: PMC4741476 DOI: 10.18632/oncotarget.5314] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is regarded as a vital repressor in the liver carcinogenesis mainly by inhibiting signal transducer and activator of transcription 3 (STAT3) activity. Farnesoid X Receptor (FXR), highly expressed in liver, has an important role in protecting against hepatocellular carcinoma (HCC). However, it is unclear whether the tumor suppressive activity of FXR involves the regulation of SOCS3. In the present study, we found that activation of FXR by its specific agonist GW4064 in HCC cells inhibited cell growth, induced cell cycle arrest at G1 phase, elevated p21 expression and repressed STAT3 activity. The above anti-tumor effects of FXR were dramatically alleviated by knockdown of SOCS3 with siRNA. Reporter assay revealed that FXR activation enhanced the transcriptional activity of SOCS3 promoter. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay displayed that FXR directly bound to IR9 DNA motif within SOCS3 promoter region. The in vivo study in nude mice showed that treatment with FXR ligand GW4064 could decelerate the growth of HCC xenografts, up-regulate SOCS3 and p21 expression and inhibit STAT3 phosphorylation in the xenografts. These results suggest that induction of SOCS3 may be a novel mechanism by which FXR exerts its anti-HCC effects, and the FXR-SOCS3 signaling may serve as a new potential target for the prevention/treatment of HCC.
Collapse
Affiliation(s)
- Fei Guo
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhizhen Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Peng Jiang
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Shan Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xilin Lyu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Ping Zheng
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yijun Zeng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Shuguang Wang
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
37
|
Urbschat A, Stumpf S, Hänze J, Paulus P, Maier TJ, Weipert C, Hofmann R, Hegele A. Expression of the anti-inflammatory suppressor of cytokine signaling 3 (SOCS3) in human clear cell renal cell carcinoma. Tumour Biol 2016; 37:9649-56. [PMID: 26797799 DOI: 10.1007/s13277-016-4857-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/13/2016] [Indexed: 12/26/2022] Open
Abstract
The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is a cytokine-activated transcription factor controlling inflammation, cell proliferation, survival, and differentiation in normal tissue as well as in tumor growth. One of its most important negative regulators is the suppressor of cytokine signaling 3 (SOCS3). Here, we analyzed SOCS3 and other tumor-associated local immune regulators in human clear cell renal cell carcinoma (ccRCC). Analyses were performed in tumor and adjacent tumor-free healthy renal tissue from 35 patients with ccRCC. For functional analysis, ccRCC Caki-1 cell lines were stimulated with IL-6 and IFNγ in cell culture assays. We observed significantly lower SOCS3 messenger RNA (mRNA) levels in tumor tissue compared to healthy tissue. SOCS3 mRNA strongly correlated within tumor and healthy tissue. Interestingly vice versa, SOCS3 protein levels were significantly higher in tumor tissue than in healthy tissue. IL-22 and IL-22R1 mRNA displayed no differences in tumor and healthy tissue. Stimulation of Caki-1 cells with IFNγ resulted in markedly increased SOCS3 mRNA levels. We conclude that SOCS3 along with STAT3 participates in regulatory mechanisms in ccRCC, which certainly features only one of multiple factors involved but nevertheless merits further attention.
Collapse
Affiliation(s)
- Anja Urbschat
- Department of Urology and Pediatric Urology, University Hospital of the Philipps-University Marburg, Baldinger Strasse, Marburg, Germany.
| | - Svenja Stumpf
- Department of Urology and Pediatric Urology, University Hospital of the Philipps-University Marburg, Baldinger Strasse, Marburg, Germany
| | - Jörg Hänze
- Department of Urology and Pediatric Urology, University Hospital of the Philipps-University Marburg, Baldinger Strasse, Marburg, Germany
| | - Patrick Paulus
- Department of Anesthesiology and Operative Intensive Care Medicine, Kepler University Hospital Linz, Linz, Austria
| | | | - Christine Weipert
- Clinic of Urology and Andrology, Landeskrankenhaus Hall in Tirol, Hall, Austria
| | - Rainer Hofmann
- Department of Urology and Pediatric Urology, University Hospital of the Philipps-University Marburg, Baldinger Strasse, Marburg, Germany
| | - Axel Hegele
- Department of Urology and Pediatric Urology, University Hospital of the Philipps-University Marburg, Baldinger Strasse, Marburg, Germany
| |
Collapse
|
38
|
Rim MY, Kwon OS, Ha M, Kim JS, Ko KI, Kim DK, Jang PK, Han JY, Park PH, Jung YK, Choi DJ, Kim YS, Kim JH. [Clinical features of non-alcoholic fatty liver disease in cryptogenic hepatocellular carcinoma]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2016; 63:292-8. [PMID: 24870301 DOI: 10.4166/kjg.2014.63.5.292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND/AIMS Nonalcoholic fatty liver disease (NAFLD) may be one of the important causes of cryptogenic hepatocellular carcinoma (HCC). The aim of this study was to evaluate whether patients with cryptogenic HCC share clinical features similar to that of NAFLD. METHODS Cryptogenic HCC was defined as HCC that occurs in patients with the following conditions: HBsAg(-), anti-HCV(-), and alcohol ingestion of less than 20 g/day. All patients diagnosed with cryptogenic HCC from 2005 to 2012 (cryptogenic HCC group), and all patients diagnosed with HBV associated HCC between 2008 and 2012 (HBV-HCC group) were enrolled in the present study. Clinical features, BMI, lipid profiles, presence of diabetes mellitus, hypertension, and metabolic syndrome were compared between the two groups. RESULTS Cryptogenic HCC group was composed of 35 patients (19 males and 16 females) with a mean age of 70 ± 11 years. HBV-HCC group was composed of 406 patients (318 males and 88 females) with a mean age of 56 ± 7 years. Patients in the cryptogenic HCC group were older (p=0.001) and female dominant (p=0.042) than those in the HBV-HCC group. There were no differences in the laboratory test results including lipid profiles and Child-Turcotte-Pugh class between the two groups. Patients in the cryptogenic HCC group had higher prevalence of diabetes (37% vs. 17%, p=0.015), hypertension (49% vs.27%, p=0.051), metabolic syndrome (37% vs. 16%, p=0.001), and higher BMI (25.3 kg/m(2) vs. 24.1 kg/m(2), p=0.042) than those in the HBV- HCC group. The tumor stage was more advanced (stage III and IV) at diagnosis in the cryptogenic HCC group than in the HBV-HCC group (60% vs. 37%, p=0.007). CONCLUSIONS Cryptogenic HCC has clinical features similar to that of NAFLD and is diagnosed at a more advanced tumor stage.
Collapse
Affiliation(s)
- Min Young Rim
- Department of Internal Medicine, Gachon University Gil Medical Center, 21 Namdong-daero 774beon-gil, Namdong-gu, Incheon 405-760, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Teng YC, Shen ZQ, Kao CH, Tsai TF. Hepatocellular carcinoma mouse models: Hepatitis B virus-associated hepatocarcinogenesis and haploinsufficient tumor suppressor genes. World J Gastroenterol 2016; 22:300-325. [PMID: 26755878 PMCID: PMC4698494 DOI: 10.3748/wjg.v22.i1.300] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
The multifactorial and multistage pathogenesis of hepatocellular carcinoma (HCC) has fascinated a wide spectrum of scientists for decades. While a number of major risk factors have been identified, their mechanistic roles in hepatocarcinogenesis still need to be elucidated. Many tumor suppressor genes (TSGs) have been identified as being involved in HCC. These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors: the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele. Hepatitis B virus (HBV) is one of the most important risk factors associated with HCC. Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor, one advantage of mouse models for HBV/HCC research is the numerous and powerful genetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs. Here, we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner. Discoveries obtained using mouse models will have a great impact on HCC translational medicine.
Collapse
|
40
|
Zhu JG, Yuan DB, Chen WH, Han ZD, Liang YX, Chen G, Fu X, Liang YK, Chen GX, Sun ZL, Liu ZZ, Chen JH, Jiang FN, Zhong WD. Prognostic value of ZFP36 and SOCS3 expressions in human prostate cancer. Clin Transl Oncol 2015; 18:782-91. [PMID: 26563146 DOI: 10.1007/s12094-015-1432-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/13/2015] [Indexed: 11/25/2022]
Abstract
PURPOSE ZFP36 ring finger protein (ZFP36) and the suppressor of cytokine signaling 3 (SOCS3) have been reported to, respectively, regulate NF-κB and STAT3 signaling pathways. To better understand the correlation of NF-κB and STAT3 negative regulates pathway, we have investigated the involvement of ZFP36 and SOCS3 expressions in human prostate cancer (PCa). METHODS In the present study, paired patient tissue microarrays were analyzed by immunohistochemistry, and the ZFP36 protein expression was quantitated as immunoreactive scores in patients with PCa. Associations between ZFP36/SOCS3 expression and various clinicopathological features and prognosis of PCa patients were statistically analyzed based on the Taylor database. Then, the functions of ZFP36 and SOCS3 in cancerous inflammation were determined using qPCR and immunohistochemistry in vitro and in vivo. RESULTS ZFP36 protein expression in PCa tissues was significantly lower than those in non-cancerous prostate tissues (P < 0.05). In mRNA level, ZFP36 and SOCS3 had a close correlation with each other (P < 0.01, Pearson r = 0.848), and its upregulation was both significantly associated with low Gleason score (P < 0.001 and P < 0.001, respectively), negative metastasis (P < 0.001 and P < 0.001, respectively), favorable overall survival (P < 0.001 and P < 0.05, respectively), and negative biochemical recurrence (P < 0.001 and P < 0.001, respectively). Functionally, LPS treatment could lead to the overexpression of ZFP36 and SOCS3 in vitro and vivo. CONCLUSIONS Our data offer the convincing evidence for the first time that the aberrant expressions of ZFP36 and SOCS3 may be involved into the progression and patients' prognosis of PCa, implying their potentials as candidate markers of this cancer.
Collapse
Affiliation(s)
- J-G Zhu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou, 550002, China
| | - D-B Yuan
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou, 550002, China
| | - W-H Chen
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou, 550002, China
| | - Z-D Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Y-X Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - G Chen
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - X Fu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Y-K Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - G-X Chen
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Z-L Sun
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou, 550002, China
| | - Z-Z Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - J-H Chen
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - F-N Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
| | - W-D Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, 510800, China.
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China.
| |
Collapse
|
41
|
Abstract
Hepatocellular carcinoma (HCC) is a major health problem. In human hepatocarcinogenesis, the balance between cell death and proliferation is deregulated, tipping the scales for a situation where antiapoptotic signals are overpowering the death-triggering stimuli. HCC cells harbor a wide variety of mutations that alter the regulation of apoptosis and hence the response to chemotherapeutical drugs, making them resistant to the proapoptotic signals. Considering all these modifications found in HCC cells, therapeutic approaches need to be carefully studied in order to specifically target the antiapoptotic signals. This review deals with the recent relevant contributions reporting molecular alterations for HCC that lead to a deregulation of apoptosis, as well as the challenge of death-inducing chemotherapeutics in current HCC treatment.
Collapse
Affiliation(s)
- Joaquim Moreno-Càceres
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Physiological Sciences II, University of Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Physiological Sciences II, University of Barcelona, Spain
| |
Collapse
|
42
|
Boosani CS, Agrawal DK. Methylation and microRNA-mediated epigenetic regulation of SOCS3. Mol Biol Rep 2015; 42:853-72. [PMID: 25682267 DOI: 10.1007/s11033-015-3860-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epigenetic gene silencing of several genes causes different pathological conditions in humans, and DNA methylation has been identified as one of the key mechanisms that underlie this evolutionarily conserved phenomenon associated with developmental and pathological gene regulation. Recent advances in the miRNA technology with high throughput analysis of gene regulation further increased our understanding on the role of miRNAs regulating multiple gene expression. There is increasing evidence supporting that the miRNAs not only regulate gene expression but they also are involved in the hypermethylation of promoter sequences, which cumulatively contributes to the epigenetic gene silencing. Here, we critically evaluated the recent progress on the transcriptional regulation of an important suppressor protein that inhibits cytokine-mediated signaling, SOCS3, whose expression is directly regulated both by promoter methylation and also by microRNAs, affecting its vital cell regulating functions. SOCS3 was identified as a potent inhibitor of Jak/Stat signaling pathway which is frequently upregulated in several pathologies, including cardiovascular disease, cancer, diabetes, viral infections, and the expression of SOCS3 was inhibited or greatly reduced due to hypermethylation of the CpG islands in its promoter region or suppression of its expression by different microRNAs. Additionally, we discuss key intracellular signaling pathways regulated by SOCS3 involving cellular events, including cell proliferation, cell growth, cell migration and apoptosis. Identification of the pathway intermediates as specific targets would not only aid in the development of novel therapeutic drugs, but, would also assist in developing new treatment strategies that could successfully be employed in combination therapy to target multiple signaling pathways.
Collapse
Affiliation(s)
- Chandra S Boosani
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | | |
Collapse
|
43
|
Jiang BG, Yang Y, Liu H, Gu FM, Yang Y, Zhao LH, Yuan SX, Wang RY, Zhang J, Zhou WP. SOCS3 Genetic Polymorphism Is Associated With Clinical Features and Prognosis of Hepatocellular Carcinoma Patients Receiving Hepatectomy. Medicine (Baltimore) 2015; 94:e1344. [PMID: 26447993 PMCID: PMC4616756 DOI: 10.1097/md.0000000000001344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previous studies showed that suppressor of cytokine signaling 3 (SOCS3) protein is associated with incidence and progression of hepatocellular carcinoma (HCC); however, the association between the genetic polymorphism of SOCS3 gene and HCC remains unknown. A total of 254 HCC patients and 354 healthy controls were enrolled. All HCC patients underwent partial hepatectomy as initial treatment and were followed. Three SOCS3 gene polymorphisms, namely, rs4969170 A>G, rs8064821 C>T, and rs12953258 C>A were determined. Our data show that the rs4969170 A>G polymorphism dramatically affects the susceptibility to HCC in our cohorts. Logistic regression analyses revealed that the rs4969170 GG is a risk factor for HCC after the adjustment with confounding factors. The rs4969170A>G polymorphism is also associated with the clinical features of HCC patients and predicts the postoperative relapse-free survival and overall survival. The rs4969170GG genotype carrier had a worse prognosis than the rs4969170AG and rs4969170AA carrier. Our findings suggest that the rs4969170A>G polymorphism of SOCS3 gene may be used as a prognostic predictor for HCC patients who underwent surgical treatment.
Collapse
Affiliation(s)
- Bei-Ge Jiang
- From the Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China (B-GJ, YY, HL, F-MG, YY, L-HZ, S-XY, R-YW, JZ, W-PZ)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gavrilina OA, Zvonkov EE, Biderman BV, Severina NA, Parovichnikova EN. [SOCSJ gene mutations in patients with diffuse large B-cell lymphoma]. TERAPEVT ARKH 2015; 87:105-111. [PMID: 26390734 DOI: 10.17116/terarkh2015877105-111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group of diseases, which accounts for 30% of all non-Hodgkin lymphomas. Current molecular studies have confirmed that there are several DLBCL subtypes characterized by different cellular origin, cytogenetic profile, molecular genetic disorders, and different pathogenesis. Impaired JAK-STAT signaling is a part of the pathogenesis of various cancers, including DLBCL. The review deals with the molecular genetic aspects of the occurrence of DLBCL and the function of the SOCSI gene that has been proven to be responsible for the development of several cancers. Mutations of this gene result from spontaneously impaired B-cell somatic hypermutation and they are frequently inactivating. The presence of point mutations in the functionally significant region of this gene in DLBCL could identify a group of patients with poor prognosis during standard chemotherapy.
Collapse
Affiliation(s)
- O A Gavrilina
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - E E Zvonkov
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - B V Biderman
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - N A Severina
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - E N Parovichnikova
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
45
|
IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis. Nat Commun 2015; 6:7847. [PMID: 26260587 PMCID: PMC4918330 DOI: 10.1038/ncomms8847] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/18/2015] [Indexed: 12/16/2022] Open
Abstract
Macrophage dysfunction plays a pivotal role during neovascular proliferation in diseases of ageing including cancers, atherosclerosis and blinding eye disease. In the eye, choroidal neovascularization (CNV) causes blindness in patients with age-related macular degeneration (AMD). Here we report that increased IL10, not IL4 or IL13, in senescent eyes activates STAT3 signalling that induces the alternative activation of macrophages and vascular proliferation. Targeted inhibition of both IL10 receptor-mediated signalling and STAT3 activation in macrophages reverses the ageing phenotype. In addition, adoptive transfer of STAT3-deficient macrophages into eyes of old mice significantly reduces the amount of CNV. Systemic and CD163+ eye macrophages obtained from AMD patients also demonstrate STAT3 activation. Our studies demonstrate that impaired SOCS3 feedback leads to permissive IL10/STAT3 signalling that promotes alternative macrophage activation and pathological neovascularization. These findings have significant implications for our understanding of the pathobiology of age-associated diseases and may guide targeted immunotherapy. Pathological neovascularization causes blinding eye disease. Here the authors show that IL10 activates STAT3 signalling in the macrophages in the ageing eye, promoting their polarization towards a pro-angiogenic phenotype; interfering with this pathway reverses the pathology in a mouse model.
Collapse
|
46
|
Roncero AM, López-Nieva P, Cobos-Fernández MA, Villa-Morales M, González-Sánchez L, López-Lorenzo JL, Llamas P, Ayuso C, Rodríguez-Pinilla SM, Arriba MC, Piris MA, Fernández-Navarro P, Fernández AF, Fraga MF, Santos J, Fernández-Piqueras J. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development. Leukemia 2015. [PMID: 26216197 PMCID: PMC4705429 DOI: 10.1038/leu.2015.202] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments.
Collapse
Affiliation(s)
- A M Roncero
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - P López-Nieva
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - M A Cobos-Fernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - M Villa-Morales
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - L González-Sánchez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | | | - P Llamas
- IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - C Ayuso
- IIS-Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | | | - M C Arriba
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - M A Piris
- Hospital Universitario Marqués de Valdecilla, Fundación IFIMAV, Santander, Spain
| | - P Fernández-Navarro
- Unidad de Epidemiología Ambiental y Cáncer, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain.,Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,IIS Puerta de Hierro, Majadahonda, Spain
| | - A F Fernández
- Unidad de Epigenética del Cáncer, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-CSIC), Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - M F Fraga
- Unidad de Epigenética del Cáncer, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-CSIC), Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB), Madrid, Spain
| | - J Santos
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - J Fernández-Piqueras
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| |
Collapse
|
47
|
Carson R, Celtikci B, Fenning C, Javadi A, Crawford N, Carbonell LP, Lawler M, Longley DB, Johnston PG, Van Schaeybroeck S. HDAC Inhibition Overcomes Acute Resistance to MEK Inhibition in BRAF-Mutant Colorectal Cancer by Downregulation of c-FLIPL. Clin Cancer Res 2015; 21:3230-3240. [PMID: 25813020 PMCID: PMC4504978 DOI: 10.1158/1078-0432.ccr-14-2701] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/06/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Activating mutations in the BRAF oncogene are found in 8% to 15% of colorectal cancer patients and have been associated with poor survival. In contrast with BRAF-mutant (MT) melanoma, inhibition of the MAPK pathway is ineffective in the majority of BRAFMT colorectal cancer patients. Therefore, identification of novel therapies for BRAFMT colorectal cancer is urgently needed. EXPERIMENTAL DESIGN BRAFMT and wild-type (WT) colorectal cancer models were assessed in vitro and in vivo. Small-molecule inhibitors of MEK1/2, MET, and HDAC were used, overexpression and siRNA approaches were applied, and cell death was assessed by flow cytometry, Western blotting, cell viability, and caspase activity assays. RESULTS Increased c-MET-STAT3 signaling was identified as a novel adaptive resistance mechanism to MEK inhibitors (MEKi) in BRAFMT colorectal cancer models in vitro and in vivo. Moreover, MEKi treatment resulted in acute increases in transcription of the endogenous caspase-8 inhibitor c-FLIPL in BRAFMT cells, but not in BRAFWT cells, and inhibition of STAT3 activity abrogated MEKi-induced c-FLIPL expression. In addition, treatment with c-FLIP-specific siRNA or HDAC inhibitors abrogated MEKi-induced upregulation of c-FLIPL expression and resulted in significant increases in MEKi-induced cell death in BRAFMT colorectal cancer cells. Notably, combined HDAC inhibitor/MEKi treatment resulted in dramatically attenuated tumor growth in BRAFMT xenografts. CONCLUSIONS Our findings indicate that c-MET/STAT3-dependent upregulation of c-FLIPL expression is an important escape mechanism following MEKi treatment in BRAFMT colorectal cancer. Thus, combinations of MEKi with inhibitors of c-MET or c-FLIP (e.g., HDAC inhibitors) could be potential novel treatment strategies for BRAFMT colorectal cancer.
Collapse
Affiliation(s)
- Robbie Carson
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Basak Celtikci
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Cathy Fenning
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Arman Javadi
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Nyree Crawford
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Lucia Perez Carbonell
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Mark Lawler
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Daniel B. Longley
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Patrick G. Johnston
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| |
Collapse
|
48
|
Fu XT, Dai Z, Song K, Zhang ZJ, Zhou ZJ, Zhou SL, Zhao YM, Xiao YS, Sun QM, Ding ZB, Fan J. Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int J Oncol 2015; 46:587-96. [PMID: 25405790 DOI: 10.3892/ijo.2014.2761] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/02/2014] [Indexed: 12/26/2022] Open
Abstract
Macrophages are a major component of the leukocyte infiltrate of tumors and play a pivotal role in the progression of hepatocellular carcinoma (HCC). However, the molecular mechanisms by which macrophages promote HCC invasion are poorly understood. The present study was undertaken to investigate the relationship between macrophages and epithelial-mesenchymal transition (EMT) of HCC. Double-staining immunohistochemistry was used to observe the association between macrophages and EMT markers in clinical HCC samples and it showed that EMT primarily occurred at the edge of the tumor nest, in which infiltrating macrophages were always observed. This indicated that CD68 which is a marker of macrophages, was correlated with EMT marker levels. In addition, after being cultured with macrophages for 24 h, the ability of HCC cells to migrate and invade increased, Snail and N-Cadherin expression was upregulated, and E-Cadherin was downregulated. An antibody array assay was applied to analyze the supernatant of these cultures and it demonstrated IL-8 increased significantly in the macrophage co-culture system. Finally, the role of macrophage-derived IL-8 in the invasion of HCC cells was assayed, and downstream signaling pathways were also investigated. We found that IL-8: i) may induce EMT and promote HCC cell migration and invasion and ii) is associated with the JAK2/STAT3/Snail signaling pathway. Taking together, these findings revealed that macrophages that have infiltrated tumors may induce epithelial-mesenchymal transition of HCC cells via the IL-8 activated JAK2/STAT3/Snail pathway. Thus, this may offer a potential target for developing new HCC therapies.
Collapse
Affiliation(s)
- Xiu-Tao Fu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Kang Song
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Zhuo-Jun Zhang
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Zheng-Jun Zhou
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Shao-Lai Zhou
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Yi-Ming Zhao
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Yong-Sheng Xiao
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Qi-Man Sun
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Zhen-Bin Ding
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| |
Collapse
|
49
|
Thagia I, Shaw EJ, Smith E, Else KJ, Rigby RJ. Intestinal epithelial suppressor of cytokine signaling 3 enhances microbial-induced inflammatory tumor necrosis factor-α, contributing to epithelial barrier dysfunction. Am J Physiol Gastrointest Liver Physiol 2015; 308:G25-31. [PMID: 25377316 PMCID: PMC4281689 DOI: 10.1152/ajpgi.00214.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A single layer of intestinal epithelial cells (IEC) lines the entire gastrointestinal tract and provides the first line of defense and barrier against an abundance of microbial stimuli. IEC homeostasis and repair are mediated through microbe-sensing Toll-like receptor (TLR)-induced inflammatory pathways. Increasing evidence supports a role of suppressor of cytokine signaling 3 (SOCS3) as a modulator of IEC turnover, balancing controlled repair and replenishment with excessive IEC proliferation predisposing to dysplasia and cancer. Our data indicate that SOCS3 can limit microbial-induced IEC repair, potentially through promoting tumor necrosis factor-α (TNF-α) and limiting TNFR2 expression. Activation of TLR5 signaling pathways, compared with other TLR, increases TNF-α mRNA in a dose-dependent manner and SOCS3 enhances TLR5-induced TNF-α. We also show that flagellin promotes transcription of TNFR2 and that SOCS3 limits this expression, presenting a mechanism of SOCS3 action. Our data also support the role of microbial ligands in epithelial wound healing and suggest that a functional consequence of increased TNF-α is reduced wound healing. These results provide further evidence to support the regulatory role of epithelial SOCS3 in intestinal health and suggest that the increased expression of SOCS3 observed in IBD may serve to perpetuate "inflammation" by promoting TNF-α production and limiting epithelial repair in response to commensal microflora.
Collapse
Affiliation(s)
- Imtiyaz Thagia
- 1Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK; and
| | - Elisabeth J. Shaw
- 1Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK; and
| | - Emily Smith
- 1Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK; and
| | - Kathryn J. Else
- 2Faculty of Life Sciences, Manchester University, Manchester, UK
| | - Rachael J. Rigby
- 1Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK; and
| |
Collapse
|
50
|
Abstract
In 2007, three scientists, Drs. Mario R. Capecchi, Martin J. Evans, and Oliver Smithies, received the Nobel Prize in Physiology or Medicine for their contributions of introducing specific gene modifications into mice. This technology, commonly referred to as gene targeting or knockout, has proven to be a powerful means for precisely manipulating the mammalian genome and has generated great impacts on virtually all phases of mammalian biology and basic biomedical research. Of note, germline mutations of many genes, especially tumor suppressors, often result in lethality during embryonic development or at developmental stages before tumor formation. This obstacle has been effectively overcome by the use of conditional knockout technology in conjunction with Cre-LoxP- or Flp-Frt-mediated temporal and/or spatial systems to generate genetic switches for precise DNA recombination. Currently, numerous conditional knockout mouse models have been successfully generated and applied in studying tumor initiation, progression, and metastasis. This review summarizes some conditional mutant mouse models that are widely used in cancer research and our understanding of the possible mechanisms underlying tumorigenesis.
Collapse
Affiliation(s)
- Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|