1
|
Kawahara A, Kanno K, Yonezawa S, Otani Y, Kobayashi T, Tazuma S, Ito M. Depletion of hepatic stellate cells inhibits hepatic steatosis in mice. J Gastroenterol Hepatol 2022; 37:1946-1954. [PMID: 35933582 DOI: 10.1111/jgh.15974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Hepatic stellate cells (HSCs), the main source of extracellular matrix in hepatic fibrogenesis, produce various cytokines, growth factors, and morphogenetic proteins. Among these, several factors are known to promote hepatocyte lipid accumulation, suggesting that HSCs can be efficient therapeutic targets for non-alcoholic steatohepatitis (NASH). This study aimed to investigate the effects of HSC depletion on the development of hepatic steatosis and fibrosis in a murine NASH model. METHODS C57BL/6 mice were treated with gliotoxin (GTX), an apoptosis inducer of activated HSCs under the feeding of a choline-deficient l-amino acid-defined high-fat diet for 4 weeks. For in vitro study, Hc3716 cells, immortalized human hepatocytes, were treated with fatty acids in the presence or absence of LX2, immortalized HSCs. RESULTS Choline-deficient l-amino acid-defined high-fat diet increased pronounced hepatic steatosis, which was attenuated by GTX treatment, together with a reduction in the number of activated HSCs. This change was associated with the downregulation of the peroxisome proliferator-activated receptor gamma (PPARγ) and its downstream genes, including adipocyte protein 2, cluster of differentiation 36 (CD36), and fatty acid transport protein 1, all of which increase the fatty acid uptake into hepatocytes. As expected, GTX treatment improved hepatic fibrosis. Co-culture of hepatocytes with HSCs enhanced intracellular lipid accumulation, together with the upregulation of PPARγ and CD36 protein expressions. CONCLUSIONS In addition to the improvement in hepatic fibrogenesis, depletion of HSCs had a favorable effect on hepatic lipid metabolism in a mouse NASH model, suggesting that HSCs are potentially efficient targets for the treatment of NASH.
Collapse
Affiliation(s)
- Akihiro Kawahara
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Sayaka Yonezawa
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuichiro Otani
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomoki Kobayashi
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Susumu Tazuma
- JA Onomichi General Hospital, Onomichi, Hiroshima, Japan
| | - Masanori Ito
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
2
|
Chen S, Kang Y, Sun Y, Zhong Y, Li Y, Deng L, Tao J, Li Y, Tian Y, Zhao Y, Cheng J, Liu W, Feng GS, Lu Z. Deletion of Gab2 in mice protects against hepatic steatosis and steatohepatitis: a novel therapeutic target for fatty liver disease. J Mol Cell Biol 2016; 8:492-504. [PMID: 27282405 DOI: 10.1093/jmcb/mjw028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/31/2016] [Accepted: 01/03/2016] [Indexed: 02/07/2023] Open
Abstract
Fatty liver disease is a serious health problem worldwide and is the most common cause for chronic liver disease and metabolic disorders. The major challenge in the prevention and intervention of this disease is the incomplete understanding of the underlying mechanism and thus lack of potent therapeutic targets due to multifaceted and interdependent disease factors. In this study, we investigated the role of a signaling adaptor protein, GRB2-associated-binding protein 2 (Gab2), in fatty liver using an animal disease model. Gab2 expression in hepatocytes responded to various disease factor stimulations, and Gab2 knockout mice exhibited resistance to fat-induced obesity, fat- or alcohol-stimulated hepatic steatosis, as well as methionine and choline deficiency-induced steatohepatitis. Concordantly, the forced expression or knockdown of Gab2 enhanced or diminished oleic acid (OA)- or ethanol-induced lipid production in hepatocytes in vitro, respectively. During lipid accumulation in hepatocytes, both fat and alcohol induced the recruitment of PI3K or Socs3 by Gab2 and the activation of their downstream signaling proteins AKT, ERK, and Stat3. Therefore, Gab2 may be a disease-associated protein that is induced by pathogenic factors to amplify and coordinate multifactor-induced signals to govern disease development in the liver. Our research provides a novel potential target for the prevention and intervention of fatty liver disease.
Collapse
Affiliation(s)
- Shuai Chen
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yujia Kang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yan Sun
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanhong Zhong
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanli Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Lijuan Deng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Jin Tao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yang Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yinan Zhao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianghong Cheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Wenjie Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Gen-Sheng Feng
- Department of Pathology, and Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
3
|
Cesaratto L, Codarin E, Vascotto C, Leonardi A, Kelley MR, Tiribelli C, Tell G. Specific inhibition of the redox activity of ape1/ref-1 by e3330 blocks tnf-α-induced activation of IL-8 production in liver cancer cell lines. PLoS One 2013; 8:e70909. [PMID: 23967134 PMCID: PMC3744539 DOI: 10.1371/journal.pone.0070909] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/24/2013] [Indexed: 12/23/2022] Open
Abstract
APE1/Ref-1 is a main regulator of cellular response to oxidative stress via DNA-repair function and co-activating activity on the NF-κB transcription factor. APE1 is central in controlling the oxidative stress-based inflammatory processes through modulation of cytokines expression and its overexpression is responsible for the onset of chemoresistance in different tumors including hepatic cancer. We examined the functional role of APE1 overexpression during hepatic cell damage related to fatty acid accumulation and the role of the redox function of APE1 in the inflammatory process. HepG2 cells were stably transfected with functional and non-functional APE1 encoding plasmids and the protective effect of APE1 overexpression toward genotoxic compounds or FAs accumulation, was tested. JHH6 cells were stimulated with TNF-α in the presence or absence of E3330, an APE1 redox inhibitor. IL-8 promoter activity was assessed by a luciferase reporter assay, gene expression by Real-Time PCR and cytokines (IL-6, IL-8, IL-12) levels measured by ELISA. APE1 over-expression did not prevent cytotoxicity induced by lipid accumulation. E3330 treatment prevented the functional activation of NF-κB via the alteration of APE1 subcellular trafficking and reduced IL-6 and IL-8 expression induced by TNF-α and FAs accumulation through blockage of the redox-mediated activation of NF-κB. APE1 overexpression observed in hepatic cancer cells may reflect an adaptive response to cell damage and may be responsible for further cell resistance to chemotherapy and for the onset of inflammatory response. The efficacy of the inhibition of APE1 redox activity in blocking TNF-α and FAs induced inflammatory response opens new perspectives for treatment of inflammatory-based liver diseases.
Collapse
Affiliation(s)
- Laura Cesaratto
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, Udine, Italy
- Fondazione Italiana Fegato, AREA Science Park, Basovizza, Trieste, Italy
| | - Erika Codarin
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, Udine, Italy
| | - Carlo Vascotto
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, Udine, Italy
| | - Antonio Leonardi
- Dipartimento di Patologia Cellulare e Molecolare ‘L. Califano’ Università “Federico II” di Napoli, Napoli, Italy
| | - Mark R. Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, United States of America
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park, Basovizza, Trieste, Italy
- Dipartimento Scienze Cliniche, Università di Trieste, Trieste, Italy
| | - Gianluca Tell
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, Udine, Italy
- * E-mail:
| |
Collapse
|
4
|
Alterations in the redox state and liver damage: hints from the EASL Basic School of Hepatology. J Hepatol 2013; 58:365-74. [PMID: 23023012 DOI: 10.1016/j.jhep.2012.09.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/27/2012] [Accepted: 09/19/2012] [Indexed: 12/19/2022]
Abstract
The importance of a correct balance between oxidative and reductive events has been shown to have a paramount effect on cell function for quite a long time. However, in spite of this body of rapidly growing evidence, the implication of the alteration of the redox state in human disease has been so far much less appreciated. Liver diseases make no exception. Although not fully comprehensive, this article reports what discussed during an EASL Basic School held in 2012 in Trieste, Italy, where the effect of the alteration of the redox state was addressed in different experimental and human models. This translational approach resulted in further stressing the concept that this topic should be expanded in the future not only to better understand how oxidative stress may be linked to a liver damage but also, perhaps more important, how this may be the target for better, more focused treatments. In parallel, understanding how alteration of the redox balance may be associated with liver damage may help define sensitive and ideally early biomarkers of the disorder.
Collapse
|
5
|
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disorder worldwide, encompasses a spectrum of abnormal liver histology ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Population studies show that NAFLD is strongly associated with insulin resistance, obesity, type 2 diabetes mellitus, and lipid abnormalities. In the context of hepatic steatosis, factors that promote cell injury, inflammation, and fibrosis include oxidative stress, early mitochondrial dysfunction, endoplasmic reticulum stress, iron accumulation, apoptosis, adipocytokines, and stellate cell activation. The exact NASH prevalence is unknown because of the absence of simple noninvasive diagnostic tests. Although liver biopsy is the "gold standard" for the diagnosis of NASH, other tests are needed to facilitate the diagnosis and greatly reduce the requirement for invasive liver biopsy. In addition, the development of new fibrosis markers in NASH is needed to facilitate the assessment of its progression and the effectiveness of new therapies. The aim of this chapter, which is overview of biomarkers in NASH, is to establish a systematic approach to laboratory findings of the disease.
Collapse
|
6
|
Au AY, Hasenwinkel JM, Frondoza CG. Hepatoprotective effects of S-adenosylmethionine and silybin on canine hepatocytes in vitro. J Anim Physiol Anim Nutr (Berl) 2012; 97:331-41. [PMID: 22320165 DOI: 10.1111/j.1439-0396.2012.01275.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inflammation and oxidative stress are associated with liver injury and development of liver disease. The transcription factors nuclear factor-kappa beta (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) play critical roles in modulating liver injury and damage. Activation of NF-κB induces production of pro-inflammatory molecules including prostaglandin E2 (PGE2 ), interleukin-8 (IL-8) and macrophage chemotactic protein-1 (MCP-1). Nrf2 regulates genes controlling antioxidants. Our laboratory previously showed that hepatocytes, the primary functional cell type comprising liver tissue, respond to the cytokine interleukin-1 beta (IL-1β) by increased production of PGE2 , IL-8 and MCP-1. This increase is associated with nuclear translocation of NF-κB. In this study, we evaluated whether primary canine hepatocytes pre-treated with the combination of S-adenosylmethionine (SAMe; 30 and 2000 ng/ml) and silybin (SB; 298 ng/ml), agents with known anti-inflammatory and antioxidant properties, could attenuate IL-1β-induced inflammation and oxidative stress. The SAMe and SB combination reduced cytokine-induced PGE2 , IL-8 and MCP-1 production while also inhibiting NF-κB nuclear translocation. These changes were accompanied by increased antioxidant enzyme-reduced glutathione (GSH) comparable to control levels. The study shows for the first time that the SAMe and SB combination inhibits both inflammation and oxidative stress through two separate signalling pathways.
Collapse
Affiliation(s)
- A Y Au
- Research and Development, Nutramax Laboratories, Inc., 2208 Lakeside Blvd., Edgewood, MD 21040, USA
| | | | | |
Collapse
|
7
|
Shi Y, Rehman H, Ramshesh VK, Schwartz J, Liu Q, Krishnasamy Y, Zhang X, Lemasters JJ, Smith CD, Zhong Z. Sphingosine kinase-2 inhibition improves mitochondrial function and survival after hepatic ischemia-reperfusion. J Hepatol 2012; 56:137-45. [PMID: 21756852 PMCID: PMC3220779 DOI: 10.1016/j.jhep.2011.05.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS The mitochondrial permeability transition (MPT) and inflammation play important roles in liver injury caused by ischemia-reperfusion (IR). This study investigated the roles of sphingosine kinase-2 (SK2) in mitochondrial dysfunction and inflammation after hepatic IR. METHODS Mice were gavaged with vehicle or ABC294640 (50 mg/kg), a selective inhibitor of SK2, 1 h before surgery and subjected to 1 h-warm ischemia to ~70% of the liver followed by reperfusion. RESULTS Following IR, hepatic SK2 mRNA and sphingosine-1-phosphate (S1P) levels increased ~25- and 3-fold, respectively. SK2 inhibition blunted S1P production and liver injury by 54-91%, and increased mouse survival from 28% to 100%. At 2 h after reperfusion, mitochondrial depolarization was observed in 74% of viable hepatocytes, and mitochondrial voids excluding calcein disappeared, indicating MPT onset in vivo. SK2 inhibition decreased mitochondrial depolarization and prevented MPT onset. Inducible nitric oxide synthase, phosphorylated NFκB-p65, TNFα mRNA, and neutrophil infiltration, all increased markedly after hepatic IR, and these increases were blunted by SK2 inhibition. In cultured hepatocytes, anoxia/re-oxygenation resulted in increases of SK2 mRNA, S1P levels, and cell death. SK2 siRNA and ABC294640 each substantially decreased S1P production and cell death in cultured hepatocytes. CONCLUSIONS SK2 plays an important role in mitochondrial dysfunction, inflammation responses, hepatocyte death, and survival after hepatic IR and represents a new target for the treatment of IR injury.
Collapse
Affiliation(s)
- Yanjun Shi
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Hasibur Rehman
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Venkat K. Ramshesh
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Justin Schwartz
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Qinlong Liu
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Yasodha Krishnasamy
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Xun Zhang
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - John J. Lemasters
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
| | - Charles D. Smith
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425,Apogee Biotechnology Corporation, Hummelstown, PA 17036
| | - Zhi Zhong
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
8
|
Abstract
Recent genetic evidence has established a pathogenetic role for NF-kappaB signaling in cancer. NF-kappaB signaling is engaged transiently when normal B lymphocytes respond to antigens, but lymphomas derived from these cells accumulate genetic lesions that constitutively activate NF-kappaB signaling. Many genetic aberrations in lymphomas alter CARD11, MALT1, or BCL10, which constitute a signaling complex that is intermediate between the B-cell receptor and IkappaB kinase. The activated B-cell-like subtype of diffuse large B-cell lymphoma activates NF-kappaB by a variety of mechanisms including oncogenic mutations in CARD11 and a chronic active form of B-cell receptor signaling. Normal plasma cells activate NF-kappaB in response to ligands in the bone marrow microenvironment, but their malignant counterpart, multiple myeloma, sustains a variety of genetic hits that stabilize the kinase NIK, leading to constitutive activation of the classical and alternative NF-kappaB pathways. Various oncogenic abnormalities in epithelial cancers, including mutant K-ras, engage unconventional IkappaB kinases to activate NF-kappaB. Inhibition of constitutive NF-kappaB signaling in each of these cancer types induces apoptosis, providing a rationale for the development of NF-kappaB pathway inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Louis M Staudt
- Metabolism Branch, Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892-8322, USA.
| |
Collapse
|
9
|
Scaloni A, Codarin E, Di Maso V, Arena S, Renzone G, Tiribelli C, Quadrifoglio F, Tell G. Modern strategies to identify new molecular targets for the treatment of liver diseases: The promising role of Proteomics and Redox Proteomics investigations. Proteomics Clin Appl 2009; 3:242-62. [DOI: 10.1002/prca.200800169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Indexed: 12/16/2022]
|
10
|
Nuclear factor kappa B signaling either stimulates or inhibits neurite growth depending on the phosphorylation status of p65/RelA. J Neurosci 2008; 28:8246-56. [PMID: 18701687 DOI: 10.1523/jneurosci.1941-08.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor kappaB (NF-kappaB) signaling is known to promote neurite growth from developing sensory neurons and to enhance the size and complexity of pyramidal neuron dendritic arbors in the developing cerebral cortex. In marked contrast, here we show that NF-kappaB signaling can also exert a potent inhibitory influence on neurite growth in certain neurons, and can either promote or inhibit neurite growth in the same neurons depending on the mechanism of NF-kappaB activation. In neonatal superior cervical ganglion sympathetic neurons, enhancing NF-kappaB transcriptional activity by overexpressing either the p65 NF-kappaB subunit or the IkappaB kinase-beta (IKKbeta) subunit of the IkappaB kinase complex, or by tumor necrosis factor alpha (TNFalpha) treatment, strongly inhibits neurite growth. Paradoxically in neonatal nodose ganglion sensory neurons, enhancing NF-kappaB transcriptional activity by p65/p50 overexpression increases neurite growth, whereas enhancing NF-kappaB transcriptional activity by IKKbeta overexpression inhibits neurite growth. In addition to activating NF-kappaB, IKKbeta overexpression leads to phosphorylation of p65 on serine 536. Blockade of serine 536 phosphorylation by a S536A-p65 mutant protein prevents the growth-inhibitory effects of IKKbeta overexpression in both sensory and sympathetic neurons and the growth-inhibitory effects of TNFalpha on sympathetic neurons. Furthermore, expression of a p65 S536D phosphomimetic mutant inhibits neurite growth from sensory neurons. These results demonstrate that NF-kappaB can either stimulate or inhibit neurite growth in developing neurons depending on the phosphorylation status of p65.
Collapse
|
11
|
Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med 2008; 14:72-81. [PMID: 18218340 DOI: 10.1016/j.molmed.2007.12.003] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/03/2007] [Accepted: 12/03/2007] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH), a cause of cirrhosis and hepatocellular carcinoma, is characterized by fatty infiltration of the liver, inflammation, hepatocellular damage and fibrosis. Progress has been made in understanding the molecular and cellular mechanisms implicated in the pathogenesis of this condition, therefore, we here review recent developments regarding the basic mechanisms of NASH development. Accumulation of triglycerides in the hepatocytes is the result of increased inflow of free fatty acids and de novo lipogenesis. Steatosis leads to lipotoxicity, which causes apoptosis, necrosis, generation of oxidative stress and inflammation. The resulting chronic injury activates a fibrogenic response that leads eventually to end-stage liver disease. A better understanding of these mechanisms is crucial for the design of novel diagnostic and therapeutic strategies.
Collapse
|
12
|
Advances in the Discovery of IκB Kinase Inhibitors. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1016/s0065-7743(08)00010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|