1
|
Priyamvada P, Ashok G, Mathpal S, Anbarasu A, Ramaiah S. Marine Compound-Carpatamide D as a Potential Inhibitor Against TOP2A and Its Mutant D1021Y in Colorectal Cancer: Insights from DFT, MEP and Molecular Dynamics Simulation. Mol Biotechnol 2024:10.1007/s12033-024-01265-9. [PMID: 39264528 DOI: 10.1007/s12033-024-01265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, hence there is an urgent need for new and effective therapeutic options. DNA topoisomerase 2A (TOP2A) plays a crucial role in the cell cycle and is involved in CRC progression, making it essential to identify structural and functional relevant alterations. Among the 24 mutations, our findings indicated that mutation D1021Y has the most deleterious effect on the TOP2A protein. Based on virtual screening of 31,561 compounds, we identified three lead candidates: 17683 (nigrospoxydon C), 28461 (carpatamide D), and 28853 (6'-O-acetyl-isohomaarbutin), which showed promising inhibitory effect against TOP2A and its mutant form. These compounds were assessed for their stability using density functional theory (DFT) analysis, where carpatamide D possessed the least energy gap of 4.398 eV showing its high reactivity among all. Further, molecular docking also shows the carpatamide D as the top candidate, which exhibited favourable docking energy against the TOP2A wild type (- 7.47 kcal/mol) and with D1021Y mutant (- 7.62 kcal/mol) as compared to reference compound PK1, which showed - 6.11 kcal/mol TOP2A wild type and - 6.24 kcal/mol against mutant type. The molecular dynamics simulation was performed to analyse the dynamics and stability of complex, which revealed TOP2A_28641 and D1021Y_28641 complexes to be stable with least root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF). Molecular mechanics/Poisson-Boltzmann surface area calculations indicated that TOP2A_28641 and D1021Y_28641 complexes exhibited the lowest binding energy of - 23.55 kcal/mol and - 25.03 kcal/mol, respectively. Our findings suggest carpatamide D as a promising lead compound for the TOP2A_D1021Y targeted cancer therapies, which needs further experimental validation.
Collapse
Affiliation(s)
- P Priyamvada
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Gayathri Ashok
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Shalini Mathpal
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Jovanović M, Virijević K, Grujović M, Ćirić A, Petrović I, Arsenijević D, Živanović M, Ljujić B, Šeklić D. Armillaria ostoyae extracts inhibit EMT of cancer cell lines via TGF-β and Wnt/β-catenin signaling components. FOOD BIOSCI 2024; 57:103250. [DOI: 10.1016/j.fbio.2023.103250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
3
|
Matias-Barrios VM, Dong X. The Implication of Topoisomerase II Inhibitors in Synthetic Lethality for Cancer Therapy. Pharmaceuticals (Basel) 2023; 16:94. [PMID: 36678591 PMCID: PMC9866718 DOI: 10.3390/ph16010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
DNA topoisomerase II (Top2) is essential for all eukaryotic cells in the regulation of DNA topology through the generation of temporary double-strand breaks. Cancer cells acquire enhanced Top2 functions to cope with the stress generated by transcription and DNA replication during rapid cell division since cancer driver genes such as Myc and EZH2 hijack Top2 in order to realize their oncogenic transcriptomes for cell growth and tumor progression. Inhibitors of Top2 are therefore designed to target Top2 to trap it on DNA, subsequently causing protein-linked DNA breaks, a halt to the cell cycle, and ultimately cell death. Despite the effectiveness of these inhibitors, cancer cells can develop resistance to them, thereby limiting their therapeutic utility. To maximize the therapeutic potential of Top2 inhibitors, combination therapies to co-target Top2 with DNA damage repair (DDR) machinery and oncogenic pathways have been proposed to induce synthetic lethality for more thorough tumor suppression. In this review, we will discuss the mode of action of Top2 inhibitors and their potential applications in cancer treatments.
Collapse
Affiliation(s)
- Victor M. Matias-Barrios
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Xuesen Dong
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
4
|
Nishimoto A, Takemoto Y, Saito T, Kurazumi H, Tanaka T, Harada E, Shirasawa B, Hamano K. Nuclear β-catenin expression is positively regulated by JAB1 in human colorectal cancer cells. Biochem Biophys Res Commun 2020; 533:548-552. [PMID: 32977947 DOI: 10.1016/j.bbrc.2020.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/29/2022]
Abstract
Wnt/β-catenin signaling is important for development and progression of colorectal cancer (CRC). The degradation complex for β-catenin is functionally impaired in CRC cells, thereby resulting in the accumulation of β-catenin and its translocation into the nucleus. Nuclear β-catenin interacts with and co-activates T cell factor4 (TCF4), resulting in β-catenin/TCF4-dependent transcription. Therefore, nuclear β-catenin has been categorized as the main driving force in the tumorigenesis of CRC. Recent studies reveal that Jun activation domain-binding protein 1 (JAB1) enhances the degradation of seven in absentia homolog-1 (SIAH-1), a putative E3 ubiquitin ligase of β-catenin, and positively regulates the expression of total β-catenin in human CRC cells. An another recent study also shows that nuclear β-catenin is ubiquitinated and degraded by an E3 ubiquitin ligase, tripartite motif-containing protein 33 (TRIM33). However, the regulatory mechanism for the expression of nuclear β-catenin remains to be fully understood. In this study, we have demonstrated that JAB1 positively regulates the expression of nuclear β-catenin, c-MYC as a β-catenin/TCF4 target, and cell cycle regulators, such as Ki-67 and topoisomerase IIα, in human CRC cells. Taken together, these results suggest that JAB1 is considered as a promising target for novel CRC therapy.
Collapse
Affiliation(s)
- Arata Nishimoto
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan; Department of Medical Education, Yamaguchi University Graduate School of Medicine, Ube, Japan.
| | - Yoshihiro Takemoto
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Toshiro Saito
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroshi Kurazumi
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Toshiki Tanaka
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Eijiro Harada
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Bungo Shirasawa
- Department of Medical Education, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
5
|
Aquaporin 1 promotes sensitivity of anthracycline chemotherapy in breast cancer by inhibiting β-catenin degradation to enhance TopoIIα activity. Cell Death Differ 2020; 28:382-400. [PMID: 32814878 PMCID: PMC7852611 DOI: 10.1038/s41418-020-00607-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Anthracyclines are a class of conventional and commonly used frontline chemotherapy drugs to treat breast cancer. However, the anthracycline-based regimens can only reduce breast cancer mortality by 20–30%. Furthermore, there is no appropriate biomarker for predicting responses to this kind of chemotherapy currently. Here we report our findings that may fill this gap by showing the AQP1 (Aquaporin1) protein as a potential response predictor in the anthracycline chemotherapy. We showed that breast cancer patients with a high level of AQP1 expression who underwent the anthracycline treatment had a better clinical outcome relative to those with a low level of AQP1 expression. In the exploration of the underlying mechanisms, we found that the AQP1 and glycogen synthase kinase-3β (GSK3β) competitively interacted with the 12 armadillo repeats of β-catenin, followed by the inhibition of the β-catenin degradation that led to β-catenin’s accumulation in the cytoplasm and nuclear translocation. The nuclear β-catenin interacted with TopoIIα and enhanced TopoIIα’s activity, which resulted in a high sensitivity of breast cancer cells to anthracyclines. We also found, the miR-320a-3p can attenuate the anthracycline’s chemosensitivity by inhibiting the AQP1 expression. Taken together, our findings suggest the efficacy of AQP1 as a response predictor in the anthracycline chemotherapy. The application of our study includes, but is not limited to, facilitating screening of the most appropriate breast cancer patients (who have a high AQP1 expression) for better anthracycline chemotherapy and improved prognosis purposes.
Collapse
|
6
|
Cai J, Tong Y, Huang L, Xia L, Guo H, Wu H, Kong X, Xia Q. Identification and validation of a potent multi-mRNA signature for the prediction of early relapse in hepatocellular carcinoma. Carcinogenesis 2019; 40:840-852. [PMID: 31059567 DOI: 10.1093/carcin/bgz018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/02/2019] [Accepted: 02/11/2019] [Indexed: 01/27/2023] Open
Abstract
Abstract
Early recurrence of hepatocellular carcinoma (HCC) is implicated in poor patient survival and is the major obstacle to improving prognosis. The current staging systems are insufficient for accurate prediction of early recurrence, suggesting that additional indicators for early recurrence are needed. Here, by analyzing the gene expression profiles of 12 Gene Expression Omnibus data sets (n = 1533), we identified 257 differentially expressed genes between HCC and non-tumor tissues. Least absolute shrinkage and selection operator regression model was used to identify a 24-messenger RNA (mRNA)-based signature in discovery cohort GSE14520. With specific risk score formula, patients were divided into high- and low-risk groups. Recurrence-free survival within 2 years (early-RFS) was significantly different between these two groups in discovery cohort [hazard ratio (HR): 7.954, 95% confidence interval (CI): 4.596–13.767, P < 0.001], internal validation cohort (HR: 8.693, 95% CI: 4.029–18.754, P < 0.001) and external validation cohort (HR: 5.982, 95% CI: 3.414–10.480, P < 0.001). Multivariable and subgroup analyses revealed that the 24-mRNA-based classifier was an independent prognostic factor for predicting early relapse of patients with HCC. We further developed a nomogram integrating the 24-mRNA-based signature and clinicopathological risk factors to predict the early-RFS. The 24-mRNA-signature-integrated nomogram showed good discrimination (concordance index: 0.883, 95% CI: 0.836–0.929) and calibration. Decision curve analysis demonstrated that the 24-mRNA-signature-integrated nomogram was clinically useful. In conclusion, our 24-mRNA signature is a powerful tool for early-relapse prediction and will facilitate individual management of HCC patients.
Collapse
Affiliation(s)
- Jie Cai
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Tong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lifeng Huang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Han Guo
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoni Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Reabroi S, Chairoungdua A, Saeeng R, Kasemsuk T, Saengsawang W, Zhu W, Piyachaturawat P. A silyl andrographolide analogue suppresses Wnt/β-catenin signaling pathway in colon cancer. Biomed Pharmacother 2018; 101:414-421. [DOI: 10.1016/j.biopha.2018.02.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022] Open
|
8
|
Pei YF, Yin XM, Liu XQ. TOP2A induces malignant character of pancreatic cancer through activating β-catenin signaling pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:197-207. [DOI: 10.1016/j.bbadis.2017.10.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022]
|
9
|
Yamada T, Masuda M. Emergence of TNIK inhibitors in cancer therapeutics. Cancer Sci 2017; 108:818-823. [PMID: 28208209 PMCID: PMC5448614 DOI: 10.1111/cas.13203] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
The outcome of patients with metastatic colorectal cancer remains unsatisfactory. To improve patient prognosis, it will be necessary to identify new drug targets based on molecules that are essential for colorectal carcinogenesis, and to develop therapeutics that target such molecules. The great majority of colorectal cancers (>90%) have mutations in at least one Wnt signaling pathway gene. Aberrant activation of Wnt signaling is a major force driving colorectal carcinogenesis. Several therapeutics targeting Wnt pathway molecules, including porcupine, frizzled receptors and tankyrases, have been developed, but none of them have yet been incorporated into clinical practice. Wnt signaling is most frequently activated by loss of function of the adenomatous polyposis coli (APC) tumor suppressor gene. Restoration of APC gene function does not seem to be a realistic therapeutic approach, and, therefore, only Wnt signaling molecules downstream of the APC gene product can be considered as targets for pharmacological intervention. Traf2 and Nck‐interacting protein kinase (TNIK) was identified as a regulatory component of the β‐catenin and T‐cell factor‐4 (TCF‐4) transcriptional complex. Several small‐molecule compounds targeting this protein kinase have been shown to have anti‐tumor effects against various cancers. An anthelmintic agent, mebendazole, was recently identified as a selective inhibitor of TNIK and is under clinical evaluation. TNIK regulates Wnt signaling in the most downstream part of the pathway, and its pharmacological inhibition seems to be a promising therapeutic approach. We demonstrated the feasibility of this approach by developing a small‐molecule TNIK inhibitor, NCB‐0846.
Collapse
Affiliation(s)
- Tesshi Yamada
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Mari Masuda
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
10
|
Zhou Q, Abraham AD, Li L, Babalmorad A, Bagby S, Arcaroli JJ, Hansen RJ, Valeriote FA, Gustafson DL, Schaack J, Messersmith WA, LaBarbera DV. Topoisomerase IIα mediates TCF-dependent epithelial-mesenchymal transition in colon cancer. Oncogene 2016; 35:4990-9. [PMID: 26947016 PMCID: PMC5036162 DOI: 10.1038/onc.2016.29] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022]
Abstract
Aberrant T-cell factor (TCF) transcription is implicated in the majority of colorectal cancers (CRCs). TCF transcription induces epithelial–mesenchymal transition (EMT), promoting a tumor-initiating cell (TIC) phenotype characterized by increased proliferation, multidrug resistance (MDR), invasion and metastasis. The data presented herein characterize topoisomerase IIα (TopoIIα) as a required component of TCF transcription promoting EMT. Using chromatin immunoprecipitation (ChIP) and protein co-immunoprecipitation (co-IP) studies, we show that TopoIIα forms protein–protein interactions with β-catentin and TCF4 and interacts with Wnt response elements (WREs) and promoters of direct target genes of TCF transcription, including: MYC, vimentin, AXIN2 and LEF1. Moreover, both TopoIIα and TCF4 ChIP with the N-cadherin promoter, which is a new discovery indicating that TCF transcription may directly regulate N-cadherin expression. TopoIIα N-terminal ATP-competitive inhibitors, exemplified by the marine alkaloid neoamphimedine (neo), block TCF activity in vitro and in vivo. Neo effectively inhibits TopoIIα and TCF4 from binding WREs/promoter sites, whereas protein–protein interactions remain intact. Neo inhibition of TopoIIα-dependent TCF transcription also correlates with significant antitumor effects in vitro and in vivo, including the reversion of EMT, the loss of TIC-mediated clonogenic colony formation, and the loss of cell motility and invasion. Interestingly, non-ATP-competitive inhibitors of TopoIIα, etoposide and merbarone, were ineffective at preventing TopoIIα-dependent TCF transcription. Thus, we propose that TopoIIα participation in TCF transcription may convey a mechanism of MDR to conventional TopoIIα inhibitors. However, our results indicate that TopoIIα N-terminal ATP-binding sites remain conserved and available for drug targeting. This article defines a new strategy for targeted inhibition of TCF transcription that may lead to effective therapies for the treatment of CRC and potentially other Wnt-dependent cancers.
Collapse
Affiliation(s)
- Q Zhou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - A D Abraham
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - L Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - A Babalmorad
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Bagby
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J J Arcaroli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - R J Hansen
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - F A Valeriote
- Colorado State University, Flint Animal Cancer Center, Fort Collins, CO, USA
| | - D L Gustafson
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Schaack
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Josephine Ford Cancer Center, Henry Ford Health Systems, Detroit, MI, USA
| | - W A Messersmith
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - D V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
11
|
Kobayashi E, Satow R, Ono M, Masuda M, Honda K, Sakuma T, Kawai A, Morioka H, Toyama Y, Yamada T. MicroRNA expression and functional profiles of osteosarcoma. Oncology 2014; 86:94-103. [PMID: 24457375 DOI: 10.1159/000357408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/08/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Osteosarcoma (OS) is the most frequent primary malignant bone tumor in children and young adults. Although the introduction of combined neoadjuvant chemotherapy has significantly prolonged survival, the outcome for OS patients showing a poor response to chemotherapy is still unfavorable. In order to develop new therapeutic approaches, elucidation of the entire molecular pathway regulating OS cell proliferation would be desirable. METHODS MicroRNA (miRNA) are highly conserved noncoding RNA that play important roles in the development and progression of various other cancers. Using miRNA microarrays capable of detecting a known number of 933 miRNA, 108 miRNA were found to be commonly expressed in 24 samples of OS tissue and subjected to a cell proliferation assay. RESULTS We found that inhibition of 5 let-7 family miRNA (hsa-let-7a, b, f, g and i) significantly suppressed the proliferation of OS cells. Using a quantitative shotgun proteomics approach, we also found that the let-7 family miRNA regulated the expression of vimentin and serpin H1 proteins. CONCLUSIONS Our present results indicate the involvement of let-7 family miRNA in regulation of the cell proliferation as well as epithelial-mesenchymal transition of OS. Thus, let-7 family miRNA may potentially provide novel targets for the development of therapeutic strategies against OS.
Collapse
Affiliation(s)
- Eisuke Kobayashi
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yamada T, Masuda M, Sawa M. Abstract A132: Development of a small-molecule inhibitor targeting the Wnt signaling pathway. Mol Cancer Ther 2013. [DOI: 10.1158/1535-7163.targ-13-a132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Wnt signaling is a major force driving colorectal carcinogenesis, but only a small number of druggable target molecules in the Wnt pathway have been found. Our recent series of proteomic studies has revealed that various classes of nuclear proteins participate in the β-catenin and T-cell factor-4 (TCF-4) complex and modulate the activity of Wnt signalling. Those included fusion/translocated in liposarcoma (FUS/TLS) (1), poly(ADP-ribose) polymerase-1 (PARP-1) (2), Ku70/Ku80 (3), DNA topoisomerase IIα (Topo IIα) (4), splicing factor-1 (SF1) (5), Ran (ras-related nuclear protein), RanBP2 (Ran binding protein-2), and RanGAP1 (Ran GTPase-activating protein-1) (6), Traf2- and Nck-interacting kinase (TNIK) (7). Among these proteins, TNIK protein kinase attracted our current interest because various small-molecule kinase inhibitors have been applied successfully to cancer treatment. TNIK was an activating kinase for TCF-4, and colorectal cancer cells are highly dependent upon the expression and catalytic activity of TNIK for proliferation (7). High-throughput screening of a kinase-focused compound library (>10,000 compounds) against recombinant TNIK identified a lead candidate that inhibited the kinase activity of TNIK with an IC50 value of 8.6 nM and the transcriptional activity of TCF-4. TNIK is a feasible drug target in the Wnt signaling pathway.
Citation Information: Mol Cancer Ther 2013;12(11 Suppl):A132.
Citation Format: Tesshi Yamada, Mari Masuda, Masaaki Sawa. Development of a small-molecule inhibitor targeting the Wnt signaling pathway. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr A132.
Collapse
Affiliation(s)
| | - Mari Masuda
- 1National Cancer Ctr. Research Inst., Tokyo, Japan
| | | |
Collapse
|
13
|
Preet R, Mohapatra P, Das D, Satapathy SR, Choudhuri T, Wyatt MD, Kundu CN. Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC. Carcinogenesis 2012; 34:277-86. [PMID: 23129580 DOI: 10.1093/carcin/bgs351] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We previously reported that quinacrine (QC) has anticancer activity against breast cancer cells. Here, we examine the mechanism of action of QC and its ability to inhibit Wnt-TCF signaling in two independent breast cancer cell lines. QC altered Wnt-TCF signaling components by increasing the levels of adenomatous polyposis coli (APC), DAB2, GSK-3β and axin and decreasing the levels of β-catenin, p-GSK3β (ser 9) and CK1. QC also reduced the activity of the Wnt transcription factor TCF/LEF and its downstream targets cyclin D1 and c-MYC. Using a luciferase-based Wnt-TCF transcription factor assay, it was shown that APC levels were inversely associated with TCF/LEF activity. Induction of apoptosis and DNA damage was observed after treatment with QC, which was associated with increased expression of APC. The effects induced by QC depend on APC because the inhibition of Wnt-TCF signaling by QC is lost in APC-knockdown cells, and consequently, the extent of apoptosis and DNA damage caused by QC is reduced compared with parental cells. Because we previously showed that QC inhibits topoisomerase, we examined the effect of another topoisomerase inhibitor, etoposide, on Wnt signaling. Interestingly, etoposide treatment also reduced TCF/LEF activity, β-catenin and cyclin D1 levels commensurate with induction of DNA damage and apoptosis. Lycopene, a plant-derived antioxidant, synergistically increased QC activity and inhibited Wnt-TCF signaling in cancer cells without affecting the MCF-10A normal breast cell line. Collectively, the data suggest that QC-mediated Wnt-TCF signal inhibition depends on APC and that the addition of lycopene synergistically increases QC anticancer activity.
Collapse
Affiliation(s)
- Ranjan Preet
- Cancer Biology Laboratory, Department of KIIT School of Biotechnology, Campus-11, KIIT University, Patia, Bhubaneswar, Orissa 751024, India
| | | | | | | | | | | | | |
Collapse
|
14
|
Fijneman RJA, de Wit M, Pourghiasian M, Piersma SR, Pham TV, Warmoes MO, Lavaei M, Piso C, Smit F, Delis-van Diemen PM, van Turenhout ST, Terhaar sive Droste JS, Mulder CJJ, Blankenstein MA, Robanus-Maandag EC, Smits R, Fodde R, van Hinsbergh VWM, Meijer GA, Jimenez CR. Proximal fluid proteome profiling of mouse colon tumors reveals biomarkers for early diagnosis of human colorectal cancer. Clin Cancer Res 2012; 18:2613-24. [PMID: 22351690 DOI: 10.1158/1078-0432.ccr-11-1937] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Early detection of colorectal cancer (CRC) and its precursor lesions is an effective approach to reduce CRC mortality rates. This study aimed to identify novel protein biomarkers for the early diagnosis of CRC. EXPERIMENTAL DESIGN Proximal fluids are a rich source of candidate biomarkers as they contain high concentrations of tissue-derived proteins. The FabplCre;Apc(15lox/+) mouse model represents early-stage development of human sporadic CRC. Proximal fluids were collected from normal colon and colon tumors and subjected to in-depth proteome profiling by tandem mass spectrometry. Carcinoembryonic antigen (CEA) and CHI3L1 human serum protein levels were determined by ELISA. RESULTS Of the 2,172 proteins identified, quantitative comparison revealed 192 proteins that were significantly (P < 0.05) and abundantly (>5-fold) more excreted by tumors than by controls. Further selection for biomarkers with highest specificity and sensitivity yielded 52 candidates, including S100A9, MCM4, and four other proteins that have been proposed as candidate biomarkers for human CRC screening or surveillance, supporting the validity of our approach. For CHI3L1, we verified that protein levels were significantly increased in sera from patients with adenomas and advanced adenomas compared with control individuals, in contrast to the CRC biomarker CEA. CONCLUSION These data show that proximal fluid proteome profiling with a mouse tumor model is a powerful approach to identify candidate biomarkers for early diagnosis of human cancer, exemplified by increased CHI3L1 protein levels in sera from patients with CRC precursor lesions.
Collapse
Affiliation(s)
- Remond J A Fijneman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Satow R, Shitashige M, Jigami T, Honda K, Ono M, Hirohashi S, Yamada T. Traf2- and Nck-interacting kinase is essential for canonical Wnt signaling in Xenopus axis formation. J Biol Chem 2010; 285:26289-94. [PMID: 20566648 DOI: 10.1074/jbc.m109.090597] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt signaling pathways play important roles in various stages of developmental events and several aspects of adult homeostasis. Aberrant activation of Wnt signaling has also been associated with several types of cancer. We have recently identified Traf2- and Nck-interacting kinase (TNIK) as a novel activator of Wnt signaling through a comprehensive proteomic approach in human colorectal cancer cell lines. TNIK is an activating kinase for T-cell factor-4 (TCF4) and essential for the beta-catenin-TCF4 transactivation and colorectal cancer growth. Here, we report the essential role of TNIK in Wnt signaling during Xenopus development. We found that Xenopus TNIK (XTNIK) was expressed maternally and that the functional knockdown of XTNIK by catalytically inactive XTNIK (K54R) or antisense morpholino oligonucleotides resulted in significant malformations with a complete loss of head and axis structures. XTNIK enhanced beta-catenin-induced axis duplication and the expression of beta-catenin-TCF target genes, whereas knockdown of XTNIK inhibited it. XTNIK was recruited to the promoter region of beta-catenin-TCF target genes in a beta-catenin-dependent manner. These results demonstrate that XTNIK is an essential factor for the transcriptional activity of the beta-catenin-TCF complex and dorsal axis determination in Xenopus embryos.
Collapse
Affiliation(s)
- Reiko Satow
- Chemotherapy Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Shitashige M, Satow R, Jigami T, Aoki K, Honda K, Shibata T, Ono M, Hirohashi S, Yamada T. Traf2- and Nck-interacting kinase is essential for Wnt signaling and colorectal cancer growth. Cancer Res 2010; 70:5024-33. [PMID: 20530691 DOI: 10.1158/0008-5472.can-10-0306] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
T-cell factor-4 (TCF4) is a transcription factor essential for maintaining the undifferentiated status and self-renewal of intestinal epithelial cells. It has therefore been considered that constitutive activation of TCF4 by aberrant Wnt signaling is a major force driving colorectal carcinogenesis. We previously identified Traf2- and Nck-interacting kinase (TNIK) as one of the proteins that interact with TCF4 in colorectal cancer cells, but its functional significance has not been elucidated. Here, we report that TNIK is an activating kinase for TCF4 and essential for colorectal cancer growth. TNIK, but not its catalytically inactive mutant, phosphorylated the conserved serine 154 residue of TCF4. Small interfering RNA targeting TNIK inhibited the proliferation of colorectal cancer cells and the growth of tumors produced by injecting colorectal cancer cells s.c. into immunodeficient mice. The growth inhibition was abolished by restoring the catalytic domain of TNIK, thus confirming that its enzyme activity is essential for the maintenance of colorectal cancer growth. Several ATP-competing kinase inhibitors have been applied to cancer treatment and have shown significant activity. Our findings suggest TNIK as a feasible target for pharmacologic intervention to ablate aberrant Wnt signaling in colorectal cancer.
Collapse
Affiliation(s)
- Miki Shitashige
- Chemotherapy Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Satow R, Shitashige M, Kanai Y, Takeshita F, Ojima H, Jigami T, Honda K, Kosuge T, Ochiya T, Hirohashi S, Yamada T. Combined functional genome survey of therapeutic targets for hepatocellular carcinoma. Clin Cancer Res 2010; 16:2518-28. [PMID: 20388846 DOI: 10.1158/1078-0432.ccr-09-2214] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE The outcome of patients with advanced hepatocellular carcinoma (HCC) has remained unsatisfactory. Patients with HCC suffer from chronic hepatitis or liver cirrhosis, and their reserve liver function is often limited. EXPERIMENTAL DESIGN To develop new therapeutic agents that act specifically on HCC but interfere only minimally with residual liver function, we searched for genes that were upregulated in 20 cases of HCC [namely, discovery sets 1 (n = 10) and 2 (n = 10)] in comparison with corresponding nontumorous liver and a panel representing normal organs using high-density microarrays capable of detecting all exons in the human genome. RESULTS Eleven transcripts whose expression was significantly increased in HCC were subjected to siRNA-based secondary screening of genes required for HCC cell proliferation as well as quantitative reverse transcription-PCR analysis [validation sets 1 (n = 20) and 2 (n = 44)] and immunohistochemistry (n = 19). We finally extracted four genes, AKR1B10, HCAP-G, RRM2, and TPX2, as candidate therapeutic targets for HCC. siRNA-mediated knockdown of these candidate genes inhibited the proliferation of HCC cells and the growth of HCC xenografts transplanted into immunodeficient mice. CONCLUSIONS The four genes we identified were highly expressed in HCC, and HCC cells are highly dependent on these genes for proliferation. Although many important genes must have been overlooked, the selected genes were biologically relevant. The combination of genome-wide expression and functional screening described here is a rapid and comprehensive approach that could be applied in the identification of therapeutic targets in any type of human malignancy.
Collapse
Affiliation(s)
- Reiko Satow
- Chemotherapy Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kobayashi E, Masuda M, Nakayama R, Ichikawa H, Satow R, Shitashige M, Honda K, Yamaguchi U, Shoji A, Tochigi N, Morioka H, Toyama Y, Hirohashi S, Kawai A, Yamada T. Reduced argininosuccinate synthetase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma. Mol Cancer Ther 2010; 9:535-44. [PMID: 20159990 DOI: 10.1158/1535-7163.mct-09-0774] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pulmonary metastasis is the most significant prognostic determinant for osteosarcoma, but methods for its prediction and treatment have not been established. Using oligonucleotide microarrays, we compared the global gene expression of biopsy samples between seven osteosarcoma patients who developed pulmonary metastasis within 4 years after neoadjuvant chemotherapy and curative resection, and 12 patients who did not relapse. We identified argininosuccinate synthetase (ASS) as a gene differentially expressed with the highest statistical significance (Welch's t test, P = 2.2 x 10(-5)). Immunohistochemical analysis of an independent cohort of 62 osteosarcoma cases confirmed that reduced expression of ASS protein was significantly correlated with the development of pulmonary metastasis after surgery (log-rank test, P < 0.05). Cox regression analysis revealed that ASS was the sole significant predictive factor (P = 0.039; hazard ratio, 0.319; 95% confidence interval, 0.108-0.945). ASS is one of the enzymes required for the production of a nonessential amino acid, arginine. We showed that osteosarcoma cells lacking ASS expression were auxotrophic for arginine and underwent G(0)-G(1) arrest in arginine-free medium, suggesting that an arginine deprivation therapy could be effective in patients with osteosarcoma. Recently, phase I and II clinical trials in patients with melanoma and hepatocellular carcinoma have shown the safety and efficacy of plasma arginine depletion by stabilized arginine deiminase. Our data indicate that in patients with osteosarcoma, reduced expression of ASS is not only a novel predictive biomarker for the development of metastasis, but also a potential target for pharmacologic intervention.
Collapse
Affiliation(s)
- Eisuke Kobayashi
- Chemotherapy Division, National Cancer Centre Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Negishi A, Masuda M, Ono M, Honda K, Shitashige M, Satow R, Sakuma T, Kuwabara H, Nakanishi Y, Kanai Y, Omura K, Hirohashi S, Yamada T. Quantitative proteomics using formalin-fixed paraffin-embedded tissues of oral squamous cell carcinoma. Cancer Sci 2009; 100:1605-11. [PMID: 19522851 PMCID: PMC11158863 DOI: 10.1111/j.1349-7006.2009.01227.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 11/28/2022] Open
Abstract
Clinical proteomics using a large archive of formalin-fixed paraffin-embedded (FFPE) tissue blocks has long been a challenge. Recently, a method for extracting proteins from FFPE tissue in the form of tryptic peptides was developed. Here we report the application of a highly sensitive mass spectrometry (MS)-based quantitative proteome method to a small amount of samples obtained by laser microdissection from FFPE tissues. Cancerous and adjacent normal epithelia were microdissected from FFPE tissue blocks of 10 squamous cell carcinomas of the tongue. Proteins were extracted in the form of tryptic peptides and analyzed by 2-dimensional image-converted analysis of liquid chromatography and mass spectrometry (2DICAL), a label-free quantitative proteomics method developed in our laboratory. From a total of 25 018 peaks we selected 72 mass peaks whose expression differed significantly between cancer and normal tissues (P < 0.001, paired t-test). The expression of transglutaminase 3 (TGM3) was significantly down-regulated in cancer and correlated with loss of histological differentiation. Hypermethylation of TGM3 gene CpG islands was observed in 12 oral squamous cell carcinoma (OSCC) cell lines with reduced TGM3 expression. These results suggest that epigenetic silencing of TGM3 plays certain roles in the process of oral carcinogenesis. The method for quantitative proteomic analysis of FFPE tissue described here offers new opportunities to identify disease-specific biomarkers and therapeutic targets using widely available archival samples with corresponding detailed pathological and clinical records.
Collapse
MESH Headings
- Blotting, Western
- Carcinoma, Squamous Cell/chemistry
- Carcinoma, Squamous Cell/pathology
- Chromatography, Liquid
- DNA Methylation
- Epigenesis, Genetic
- Female
- Formaldehyde/chemistry
- Gene Silencing
- Humans
- Immunoblotting
- Immunoenzyme Techniques
- Male
- Microdissection
- Middle Aged
- Neoplasm Proteins/analysis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Paraffin Embedding
- Proteome/analysis
- Proteomics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tissue Fixation
- Tongue Neoplasms/chemistry
- Tongue Neoplasms/pathology
- Transglutaminases/genetics
- Transglutaminases/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ayako Negishi
- Chemotherapy Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ono M, Matsubara J, Honda K, Sakuma T, Hashiguchi T, Nose H, Nakamori S, Okusaka T, Kosuge T, Sata N, Nagai H, Ioka T, Tanaka S, Tsuchida A, Aoki T, Shimahara M, Yasunami Y, Itoi T, Moriyasu F, Negishi A, Kuwabara H, Shoji A, Hirohashi S, Yamada T. Prolyl 4-hydroxylation of alpha-fibrinogen: a novel protein modification revealed by plasma proteomics. J Biol Chem 2009; 284:29041-9. [PMID: 19696023 DOI: 10.1074/jbc.m109.041749] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma proteome analysis requires sufficient power to compare numerous samples and detect changes in protein modification, because the protein content of human samples varies significantly among individuals, and many plasma proteins undergo changes in the bloodstream. A label-free proteomics platform developed in our laboratory, termed "Two-Dimensional Image Converted Analysis of Liquid chromatography and mass spectrometry (2DICAL)," is capable of these tasks. Here, we describe successful detection of novel prolyl hydroxylation of alpha-fibrinogen using 2DICAL, based on comparison of plasma samples of 38 pancreatic cancer patients and 39 healthy subjects. Using a newly generated monoclonal antibody 11A5, we confirmed the increase in prolyl-hydroxylated alpha-fibrinogen plasma levels and identified prolyl 4-hydroxylase A1 as a key enzyme for the modification. Competitive enzyme-linked immunosorbent assay of 685 blood samples revealed dynamic changes in prolyl-hydroxylated alpha-fibrinogen plasma level depending on clinical status. Prolyl-hydroxylated alpha-fibrinogen is presumably controlled by multiple biological mechanisms, which remain to be clarified in future studies.
Collapse
Affiliation(s)
- Masaya Ono
- Chemotherapy Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
DNA topoisomerases are enzymes that disentangle the topological problems that arise in double-stranded DNA. Many of these can be solved by the generation of either single or double strand breaks. However, where there is a clear requirement to alter DNA topology by introducing transient double strand breaks, only DNA topoisomerase II (TOP2) can carry out this reaction. Extensive biochemical and structural studies have provided detailed models of how TOP2 alters DNA structure, and recent molecular studies have greatly expanded knowledge of the biological contexts in which TOP2 functions, such as DNA replication, transcription and chromosome segregation -- processes that are essential for preventing tumorigenesis.
Collapse
Affiliation(s)
- John L Nitiss
- Molecular Pharmacology Department, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
22
|
Topoisomerase II alpha is required for embryonic development and liver regeneration in zebrafish. Mol Cell Biol 2009; 29:3746-53. [PMID: 19380487 DOI: 10.1128/mcb.01684-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Topoisomerases solve the topological problems encountered by DNA throughout the lifetime of a cell. Topoisomerase II alpha, which is highly conserved among eukaryotes, untangles replicated chromosomes during mitosis and is absolutely required for cell viability. A homozygous lethal mutant, can4, was identified in a screen to identify genes important for cell proliferation in zebrafish by utilizing an antibody against a mitosis-specific marker, phospho-histone H3. Mutant embryos have a decrease in the number of proliferating cells and display increases in DNA content and apoptosis, as well as mitotic spindle defects. Positional cloning revealed that the genetic defect underlying these phenotypes was the result of a mutation in the zebrafish topoisomerase II alpha (top2a) gene. top2a was found to be required for decatenation but not for condensation in embryonic mitoses. In addition to being required for development, top2a was found to be a haploinsufficient regulator of adult liver regrowth in zebrafish. Regeneration analysis of other adult tissues, including fins, revealed no heterozygous phenotype. Our results confirm a conserved role for TOP2A in vertebrates as well as a dose-sensitive requirement for top2a in adults.
Collapse
|
23
|
Coss A, Tosetto M, Fox EJ, Sapetto-Rebow B, Gorman S, Kennedy BN, Lloyd AT, Hyland JM, O'Donoghue DP, Sheahan K, Leahy DT, Mulcahy HE, O'Sullivan JN. Increased topoisomerase IIalpha expression in colorectal cancer is associated with advanced disease and chemotherapeutic resistance via inhibition of apoptosis. Cancer Lett 2008; 276:228-38. [PMID: 19111388 DOI: 10.1016/j.canlet.2008.11.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/10/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
Topoisomerase IIalpha is a nuclear enzyme that regulates the tertiary structure of DNA. The influence of topoisomerase IIalpha gene (TOP2A) or protein alterations on disease progression and treatment response in colorectal cancer (CRC) is unknown. The study investigated the clinical relevance of topoisomerase IIalpha in CRC using in vivo and in vitro models. Differentially expressed genes in early and late-stage CRC were identified by array comparative genomic hybridization (CGH). Cellular location of gene amplifications was determined by fluorescence in situ hybridization (FISH). Topoisomerase IIalpha levels, proliferation index, and HER2 expression were examined in 228 colorectal tumors by immunohistochemistry. Overexpression of topoisomerase IIalpha in vitro was achieved by liposome-based transfection. Cell growth inhibition and apoptosis were quantified using the crystal violet assay and flow cytometry, respectively, in response to drug treatment. Amplification of TOP2A was identified in 3 (7.7%) tumors using array CGH and confirmed using FISH. At the protein level, topoisomerase IIalpha staining was observed in 157 (69%) tumors, and both staining and intensity levels were associated with an aggressive tumor phenotype (p values 0.04 and 0.005, respectively). Using logistic regression analysis, topoisomerase IIalpha remained significantly associated with advanced tumor stage when corrected for tumor proliferation (p=0.007) and differentiation (p=0.001). No association was identified between topoisomerase IIalpha and HER2. In vitro, overexpression of topoisomerase IIalpha was associated with resistance to irinotecan (p=0.001) and etoposide chemotherapy (p=0.03), an effect mediated by inhibition of apoptosis. Topoisomerase IIalpha overexpression is significantly associated with alterations in tumor behavior and response to drug treatment in CRC. Our results suggest that gene amplification may represent an important mechanism underlying these changes.
Collapse
Affiliation(s)
- Alan Coss
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang Y, Azuma Y, Moore D, Osheroff N, Neufeld KL. Interaction between tumor suppressor adenomatous polyposis coli and topoisomerase IIalpha: implication for the G2/M transition. Mol Biol Cell 2008; 19:4076-85. [PMID: 18632987 DOI: 10.1091/mbc.e07-12-1296] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor adenomatous polyposis coli (APC) is implicated in regulating multiple stages of the cell cycle. APC participation in G1/S is attributed to its recognized role in Wnt signaling. APC function in the G2/M transition is less well established. To identify novel protein partners of APC that regulate the G2/M transition, APC was immunoprecipitated from colon cell lysates and associated proteins were analyzed by matrix-assisted laser desorption ionization/time of flight (MALDI-TOF). Topoisomerase IIalpha (topo IIalpha) was identified as a potential binding partner of APC. Topo IIalpha is a critical regulator of G2/M transition. Evidence supporting an interaction between endogenous APC and topo IIalpha was obtained by coimmunoprecipitation, colocalization, and Förster resonance energy transfer (FRET). The 15-amino acid repeat region of APC (M2-APC) interacted with topo IIalpha when expressed as a green fluorescent protein (GFP)-fusion protein in vivo. Although lacking defined nuclear localization signals (NLS) M2-APC predominantly localized to the nucleus. Furthermore, cells expressing M2-APC displayed condensed or fragmented nuclei, and they were arrested in the G2 phase of the cell cycle. Although M2-APC contains a beta-catenin binding domain, biochemical studies failed to implicate beta-catenin in the observed phenotype. Finally, purified recombinant M2-APC enhanced topo IIalpha activity in vitro. Together, these data support a novel role for APC in the G2/M transition, potentially through association with topo IIalpha.
Collapse
Affiliation(s)
- Yang Wang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | |
Collapse
|
25
|
Shitashige M, Satow R, Honda K, Ono M, Hirohashi S, Yamada T. Regulation of Wnt signaling by the nuclear pore complex. Gastroenterology 2008; 134:1961-71, 1971.e1-4. [PMID: 18439914 DOI: 10.1053/j.gastro.2008.03.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/26/2008] [Accepted: 03/07/2008] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS The function of beta-catenin as a transcriptional coactivator of T-cell factor-4 (TCF-4) is crucial for colorectal carcinogenesis. However, beta-catenin has no nuclear localization signal, and the mechanisms by which beta-catenin is imported into the nucleus and forms a complex with the TCF-4 nuclear protein are poorly understood. METHODS Proteins of 2 colorectal cancer cell lines, HCT-116 and DLD1, were immunoprecipitated with anti-TCF-4 antibody and analyzed directly by nanoflow liquid chromatography and mass spectrometry. The functional significance of nuclear pore complex (NPC) proteins in Wnt signaling was evaluated by in vitro and in vivo sumoylation, luciferase reporter, and colony formation assays. RESULTS TCF-4 interacted with a large variety of NPC proteins including ras-related nuclear protein (Ran), Ran binding protein-2 (RanBP2), and Ran GTPase-activating protein-1 (RanGAP1). The NPC protein RanBP2 functioned as the small ubiquitin-related modifier (SUMO) E3 ligase of TCF-4, and sumoylation of TCF-4 enhanced the interaction between TCF-4 and beta-catenin. The overexpression of NPC proteins increased the nuclear import of the TCF-4 and beta-catenin proteins and enhanced the transcriptional activity. NPC proteins increased the growth of colorectal cancer cells, whereas sentrin-specific protease-2 inhibited it. CONCLUSIONS Through a comprehensive proteomics approach, we revealed that NPC functions as a novel regulator of Wnt signaling and is possibly involved in colorectal carcinogenesis. A new drug targeting the interactions of TCF-4 with NPC proteins as well as their sumoylation activity might be effective for suppressing aberrant Wnt signaling and the proliferation of colorectal cancer cells.
Collapse
Affiliation(s)
- Miki Shitashige
- Chemotherapy Division and Cancer Proteomics Project, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Shitashige M, Hirohashi S, Yamada T. Wnt signaling inside the nucleus. Cancer Sci 2008; 99:631-7. [PMID: 18177486 PMCID: PMC11158179 DOI: 10.1111/j.1349-7006.2007.00716.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 11/21/2007] [Accepted: 11/25/2007] [Indexed: 12/31/2022] Open
Abstract
Accumulation of the beta-catenin protein and transactivation of a certain set of T-cell factor (TCF)-4 target genes by accumulated beta-catenin have been considered crucial in colorectal carcinogenesis. In the present review, we summarize nuclear proteins that interact with, and regulate, the beta-catenin and TCF and lymphoid enhancer factor (LEF) transcriptional complexes. Our recent series of proteomic studies has also revealed that various classes of nuclear proteins participate in the beta-catenin-TCF-4 complex and modulate its transcriptional activity. Furthermore, the protein composition of the TCF-4-containing nuclear complex is not fixed, but is regulated dynamically by endogenous programs associated with intestinal epithelial cell differentiation and exogenous stimuli. Restoration of the loss-of-function mutation of the adenomatous polyposis coli (APC) gene in colorectal cancer cells does not seem to be a realistic approach with currently available medical technologies, and only signaling molecules downstream of the APC gene product can be considered as targets of pharmacological intervention. Nuclear proteins associated with the beta-catenin-TCF-4 complex may include feasible targets for molecular therapy against colorectal cancer. Recently, an inhibitor of the interaction between CREB-binding protein and beta-catenin was shown to efficiently shut down the transcriptional activity of TCF-4 and induce apoptosis of colorectal cancer cells. We also summarize current strategies in the development of drugs against Wnt signaling.
Collapse
Affiliation(s)
- Miki Shitashige
- Chemotherapy Division and Cancer Proteomics Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuoh-ku, Tokyo 104-0045, Japan
| | | | | |
Collapse
|