1
|
Song C, Chai Z, Chen S, Zhang H, Zhang X, Zhou Y. Intestinal mucus components and secretion mechanisms: what we do and do not know. Exp Mol Med 2023; 55:681-691. [PMID: 37009791 PMCID: PMC10167328 DOI: 10.1038/s12276-023-00960-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 04/04/2023] Open
Abstract
Damage to the colon mucus barrier, the first line of defense against microorganisms, is an important determinant of intestinal diseases such as inflammatory bowel disease and colorectal cancer, and disorder in extraintestinal organs. The mucus layer has attracted the attention of the scientific community in recent years, and with the discovery of new mucosal components, it has become increasingly clear that the mucosal barrier is a complex system composed of many components. Moreover, certain components are jointly involved in regulating the structure and function of the mucus barrier. Therefore, a comprehensive and systematic understanding of the functional components of the mucus layer is clearly warranted. In this review, we summarize the various functional components of the mucus layer identified thus far and describe their unique roles in shaping mucosal structure and function. Furthermore, we detail the mechanisms underlying mucus secretion, including baseline and stimulated secretion. In our opinion, baseline secretion can be categorized into spontaneous Ca2+ oscillation-mediated slow and continuous secretion and stimulated secretion, which is mediated by massive Ca2+ influx induced by exogenous stimuli. This review extends the current understanding of the intestinal mucus barrier, with an emphasis on host defense strategies based on fortification of the mucus layer.
Collapse
Affiliation(s)
- Chunyan Song
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Zhenglong Chai
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Si Chen
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Hui Zhang
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Xiaohong Zhang
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China.
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China.
| | - Yuping Zhou
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China.
| |
Collapse
|
2
|
Bartenschlager F, Klymiuk N, Gruber AD, Mundhenk L. Genomic, biochemical and expressional properties reveal strong conservation of the CLCA2 gene in birds and mammals. PeerJ 2022; 10:e14202. [PMID: 36389428 PMCID: PMC9651043 DOI: 10.7717/peerj.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Recent studies have revealed the dynamic and complex evolution of CLCA1 gene homologues in and between mammals and birds with a particularly high diversity in mammals. In contrast, CLCA2 has only been found as a single copy gene in mammals, to date. Furthermore, CLCA2 has only been investigated in few mammalian species but not in birds. Here, we established core genomic, protein biochemical and expressional properties of CLCA2 in several bird species and compared them with mammalian CLCA2. Chicken, turkey, quail and ostrich CLCA2 were compared to their mammalian orthologues using in silico, biochemical and expressional analyses. CLCA2 was found highly conserved not only at the level of genomic and exon architecture but also in terms of the canonical CLCA2 protein domain organization. The putatively prototypical galline CLCA2 (gCLCA2) was cloned and immunoblotting as well as immunofluorescence analyses of heterologously expressed gCLCA2 revealed protein cleavage, glycosylation patterns and anchoring in the plasma membrane similar to those of most mammalian CLCA2 orthologues. Immunohistochemistry found highly conserved CLCA2 expression in epidermal keratinocytes in all birds and mammals investigated. Our results suggest a highly conserved and likely evolutionarily indispensable role of CLCA2 in keratinocyte function. Its high degree of conservation on the genomic, biochemical and expressional levels stands in contrast to the dynamic structural complexities and proposed functional diversifications between mammalian and avian CLCA1 homologues, insinuating a significant degree of negative selection of CLCA2 orthologues among birds and mammals. Finally, and again in contrast to CLCA1, the high conservation of CLCA2 makes it a strong candidate for studying basic properties of the functionally still widely unresolved CLCA gene family.
Collapse
Affiliation(s)
- Florian Bartenschlager
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nikolai Klymiuk
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, Technische Universität München, Munich, Germany
- Center for Innovative Medical Models, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Achim D. Gruber
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Keeler SP, Yantis J, Gerovac BJ, Youkilis SL, Podgorny S, Mao D, Zhang Y, Whitworth KM, Redel B, Samuel MS, Wells KD, Prather RS, Holtzman MJ. Chloride channel accessory 1 gene deficiency causes selective loss of mucus production in a new pig model. Am J Physiol Lung Cell Mol Physiol 2022; 322:L842-L852. [PMID: 35438004 PMCID: PMC9142155 DOI: 10.1152/ajplung.00443.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 12/30/2022] Open
Abstract
Morbidity and mortality of respiratory diseases are linked to airway obstruction by mucus but there are still no specific, safe, and effective drugs to correct this phenotype. The need for better treatment requires a new understanding of the basis for mucus production. In that regard, studies of human airway epithelial cells in primary culture show that a mucin granule constituent known as chloride channel accessory 1 (CLCA1) is required for inducible expression of the inflammatory mucin MUC5AC in response to potent type 2 cytokines. However, it remained uncertain whether CLCLA1 is necessary for mucus production in vivo. Conventional approaches to functional biology using targeted gene knockout were difficult due to the functional redundancy of additional Clca genes in mice not found in humans. We reasoned that CLCA1 function might be better addressed in pigs that maintain the same four-member CLCA gene locus and the corresponding mucosal and submucosal populations of mucous cells found in humans. Here we develop to our knowledge the first CLCA1-gene-deficient (CLCA1-/-) pig and show that these animals exhibit loss of MUC5AC+ mucous cells throughout the airway mucosa of the lung without affecting comparable cells in the tracheal mucosa or MUC5B+ mucous cells in submucosal glands. Similarly, CLCA1-/- pigs exhibit loss of MUC5AC+ mucous cells in the intestinal mucosa without affecting MUC2+ mucous cells. These data establish CLCA1 function for controlling MUC5AC expression as a marker of mucus production and provide a new animal model to study mucus production at respiratory and intestinal sites.
Collapse
Affiliation(s)
- Shamus P Keeler
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer Yantis
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Benjamin J Gerovac
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel L Youkilis
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Stephanie Podgorny
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Dailing Mao
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yong Zhang
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kristin M Whitworth
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Bethany Redel
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Melissa S Samuel
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Kevin D Wells
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Randall S Prather
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Michael J Holtzman
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
4
|
Bartenschlager F, Klymiuk N, Weise C, Kuropka B, Gruber AD, Mundhenk L. Evolutionarily conserved properties of CLCA proteins 1, 3 and 4, as revealed by phylogenetic and biochemical studies in avian homologues. PLoS One 2022; 17:e0266937. [PMID: 35417490 PMCID: PMC9007345 DOI: 10.1371/journal.pone.0266937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/30/2022] [Indexed: 12/21/2022] Open
Abstract
Species-specific diversities are particular features of mammalian chloride channel regulator, calcium activated (CLCA) genes. In contrast to four complex gene clusters in mammals, only two CLCA genes appear to exist in chickens. CLCA2 is conserved in both, while only the galline CLCA1 (gCLCA1) displays close genetic distance to mammalian clusters 1, 3 and 4. In this study, sequence analyses and biochemical characterizations revealed that gCLCA1 as a putative avian prototype shares common protein domains and processing features with all mammalian CLCA homologues. It has a transmembrane (TM) domain in the carboxy terminal region and its mRNA and protein were detected in the alimentary canal, where the protein was localized in the apical membrane of enterocytes, similar to CLCA4. Both mammals and birds seem to have at least one TM domain containing CLCA protein with complex glycosylation in the apical membrane of enterocytes. However, some characteristic features of mammalian CLCA1 and 3 including entire protein secretion and expression in cell types other than enterocytes seem to be dispensable for chicken. Phylogenetic analyses including twelve bird species revealed that avian CLCA1 and mammalian CLCA3 form clades separate from a major branch containing mammalian CLCA1 and 4. Overall, our data suggest that gCLCA1 and mammalian CLCA clusters 1, 3 and 4 stem from a common ancestor which underwent complex gene diversification in mammals but not in birds.
Collapse
Affiliation(s)
- Florian Bartenschlager
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Nikolai Klymiuk
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, Technical University of Munich, Munich, Germany
- Center for Innovative Medical Models, Ludwig-Maximilians University Munich, Munich, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, Freie Universität Berlin, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Lars Mundhenk
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
5
|
Berry KN, Brett TJ. Structural and Biophysical Analysis of the CLCA1 VWA Domain Suggests Mode of TMEM16A Engagement. Cell Rep 2020; 30:1141-1151.e3. [PMID: 31995732 PMCID: PMC7050472 DOI: 10.1016/j.celrep.2019.12.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/14/2019] [Accepted: 12/16/2019] [Indexed: 01/09/2023] Open
Abstract
The secreted protein calcium-activated chloride channel regulator 1 (CLCA1) utilizes a von Willebrand factor type A (VWA) domain to bind to and potentiate the calcium-activated chloride channel TMEM16A. To gain insight into this unique potentiation mechanism, we determined the 2.0-Å crystal structure of human CLCA1 VWA bound to Ca2+. The structure reveals the metal-ion-dependent adhesion site (MIDAS) in a high-affinity "open" conformation, engaging in crystal contacts that likely mimic how CLCA1 engages TMEM16A. The CLCA1 VWA contains a disulfide bond between α3 and α4 in close proximity to the MIDAS that is invariant in the CLCA family and unique in VWA structures. Further biophysical studies indicate that CLCA1 VWA is preferably stabilized by Mg2+ over Ca2+ and that α6 atypically extends from the VWA core. Finally, an analysis of TMEM16A structures suggests residues likely to mediate interaction with CLCA1 VWA.
Collapse
Affiliation(s)
- Kayla N Berry
- Immunology Program and Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tom J Brett
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Calcium-activated chloride channel regulator 1 (CLCA1): More than a regulator of chloride transport and mucus production. World Allergy Organ J 2019; 12:100077. [PMID: 31871532 PMCID: PMC6909348 DOI: 10.1016/j.waojou.2019.100077] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/07/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
CLCA1 is a member of the CLCA (calcium-activated chloride channel regulator) family and plays an essential role in goblet cell mucus production from the respiratory tract epithelium. CLCA1 also regulates Ca2+-dependent Cl- transport that involves the channel protein transmembrane protein 16A (TMEM16A) and its accessary molecules. CLCA1 modulates epithelial cell chloride current and participates in the pathogenesis of mucus hypersecretory-associated respiratory and gastrointestinal diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, pneumonia, colon colitis, cystic fibrosis intestinal mucous disease, ulcerative colitis, and gastrointestinal parasitic infection. Most studies have been focused on the expression regulation of CLCA1 in human specimens. Limited studies used the CLCA1-deficient mice and CLCA1 blocking agents and yielded inconsistent conclusions regarding its role in these diseases. CLCA1 not only regulates mucin expression, but also participates in innate immune responses by binding to yet unidentified molecules on inflammatory cells for cytokine and chemokine production. CLCA1 also targets lymphatic endothelial cells and cancer cells by regulating lymphatic cell proliferation and lymphatic sinus growth in the lymphatic organs and controlling cancer cell differentiation, proliferation, and apoptosis, all which depend on the location of the lymphatic vessels, the type of cancers, the presence of Th2 cytokines, and possibly the availability and type of CLCA1-binding proteins. Here we summarize available studies related to these different activities of CLCA1 to assist our understanding of how this secreted modifier of calcium-activated chloride channels (CaCCs) affects mucus production and innate immunity during the pathogenesis of respiratory, gastrointestinal, and malignant diseases.
Collapse
Key Words
- AMCase, acidic mammalian chitinase
- BALF, bronchoalveolar lavage fluid
- Bpifa1, bactericidal/permeability-increasing protein (BPI) fold-containing family A member 1
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- CLCA1
- CLCA1, calcium-activated chloride channel regulator 1
- COPD, chronic obstructive pulmonary disease
- CXCL-1, C-X-C motif chemokine ligand 1
- CaCCs, calcium-activated chloride channels
- Cancer
- CeO2NPs, cerium dioxide nanoparticles
- DOG1, discovered on gastrointestinal stromal tumours-1
- DSS, dextran sodium sulfate
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- ERK, extracellular signal-regulated kinase
- EpOCs, epithelial organoid cultures
- FAK, focal adhesion kinase
- Gastrointestinal disease
- Gob-5, goblet cell protein-5
- HDMA, house dust mite allergen
- IAD, inflammatory airway diseases
- Innate immunity
- KCNMB1, potassium calcium-activated channel subfamily M regulatory beta subunit 1
- LFA-1, lymphocyte function-associated antigen 1.
- LFC, log2 fold change
- MUC5AC, mucin 5AC
- Mucin
- NFA, niflumic acid
- OVA, ovalbumin
- Respiratory diseases
- SPDEF, sterile alpha motif [SAM] domain-containing prostate-derived Ets transcription factor
- STAT6, signal transducer and activator of transcription 6
- TMEM16A, transmembrane protein 16A
- TNF-α, tumor necrosis factor-α
- VWA, von Willebrand factor type A
- WT, wild-type
- cAMP, cyclic adenosine monophosphate
- rIFABP, rat intestinal fatty acid binding protein promoter
- β4BMs, β4-binding motifs
Collapse
|
7
|
Rao MC. Physiology of Electrolyte Transport in the Gut: Implications for Disease. Compr Physiol 2019; 9:947-1023. [PMID: 31187895 DOI: 10.1002/cphy.c180011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We now have an increased understanding of the genetics, cell biology, and physiology of electrolyte transport processes in the mammalian intestine, due to the availability of sophisticated methodologies ranging from genome wide association studies to CRISPR-CAS technology, stem cell-derived organoids, 3D microscopy, electron cryomicroscopy, single cell RNA sequencing, transgenic methodologies, and tools to manipulate cellular processes at a molecular level. This knowledge has simultaneously underscored the complexity of biological systems and the interdependence of multiple regulatory systems. In addition to the plethora of mammalian neurohumoral factors and their cross talk, advances in pyrosequencing and metagenomic analyses have highlighted the relevance of the microbiome to intestinal regulation. This article provides an overview of our current understanding of electrolyte transport processes in the small and large intestine, their regulation in health and how dysregulation at multiple levels can result in disease. Intestinal electrolyte transport is a balance of ion secretory and ion absorptive processes, all exquisitely dependent on the basolateral Na+ /K+ ATPase; when this balance goes awry, it can result in diarrhea or in constipation. The key transporters involved in secretion are the apical membrane Cl- channels and the basolateral Na+ -K+ -2Cl- cotransporter, NKCC1 and K+ channels. Absorption chiefly involves apical membrane Na+ /H+ exchangers and Cl- /HCO3 - exchangers in the small intestine and proximal colon and Na+ channels in the distal colon. Key examples of our current understanding of infectious, inflammatory, and genetic diarrheal diseases and of constipation are provided. © 2019 American Physiological Society. Compr Physiol 9:947-1023, 2019.
Collapse
Affiliation(s)
- Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Nyström EEL, Birchenough GMH, van der Post S, Arike L, Gruber AD, Hansson GC, Johansson MEV. Calcium-activated Chloride Channel Regulator 1 (CLCA1) Controls Mucus Expansion in Colon by Proteolytic Activity. EBioMedicine 2018; 33:134-143. [PMID: 29885864 PMCID: PMC6085540 DOI: 10.1016/j.ebiom.2018.05.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
Many epithelial surfaces of the body are covered with protective mucus, and disrupted mucus homeostasis is coupled to diseases such as ulcerative colitis, helminth infection, cystic fibrosis, and chronic obstructive lung disease. However, little is known how a balanced mucus system is maintained. By investigating the involvement of proteases in colonic mucus dynamics we identified metalloprotease activity to be a key contributor to mucus expansion. The effect was mediated by calcium-activated chloride channel regulator 1 (CLCA1) as application of recombinant CLCA1 on intestinal mucus in freshly dissected tissue resulted in increased mucus thickness independently of ion and mucus secretion, but dependent on its metallohydrolase activity. Further, CLCA1 modulated mucus dynamics in both human and mouse, and knock-out of CLCA1 in mice was compensated for by cysteine proteases. Our results suggest that CLCA1 is involved in intestinal mucus homeostasis by facilitating processing and removal of mucus to prevent stagnation. In light of our findings, we suggest future studies to investigate if upregulation of CLCA1 in diseases associated with mucus accumulation could facilitate removal of mucus in an attempt to maintain homeostasis. Endogenous metalloprotease activity is important for intestinal mucus dynamics. CLCA1 acts as a metalloprotease in intestinal mucus and this function is independent of ion and mucus secretion. CLCA1 is involved in the transition from the inner to outer mucus layer in colon.
In this article we provide evidence that endogenous enzyme activity is important for normal processing of the intestinal mucus layer, which creates a protective barrier against the vast number of bacteria in the large intestine. CLCA1, a highly abundant intestinal mucus protein, seems to be a key contributor to mucus processing. This role for CLCA1 is different from what was previously described. As mucus clearance is of importance for several diseases, better understanding of mucus processing could be of great importance to develop new therapies.
Collapse
Affiliation(s)
- Elisabeth E L Nyström
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - George M H Birchenough
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Sjoerd van der Post
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Germany
| | - Gunnar C Hansson
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
9
|
Sharma A, Ramena G, Yin Y, Premkumar L, Elble RC. CLCA2 is a positive regulator of store-operated calcium entry and TMEM16A. PLoS One 2018; 13:e0196512. [PMID: 29758025 PMCID: PMC5951673 DOI: 10.1371/journal.pone.0196512] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/13/2018] [Indexed: 11/19/2022] Open
Abstract
The Chloride Channel Accessory (CLCA) protein family was first characterized as regulators of calcium-activated chloride channel (CaCC) currents (ICaCC), but the mechanism has not been fully established. We hypothesized that CLCAs might regulate ICaCC by modulating intracellular calcium levels. In cells stably expressing human CLCA2 or vector, we found by calcium imaging that CLCA2 moderately enhanced intracellular-store release but dramatically increased store-operated entry of calcium upon cytosolic depletion. Moreover, another family member, CLCA1, produced similar effects on intracellular calcium mobilization. Co-immunoprecipitation revealed that CLCA2 interacted with the plasma membrane store-operated calcium channel ORAI-1 and the ER calcium sensor STIM-1. The effect of CLCA2 on ICaCC was tested in HEK293 stably expressing calcium-activated chloride channel TMEM16A. Co-expression of CLCA2 nearly doubled ICaCC in response to a calcium ionophore. These results unveil a new mechanism by which CLCA family members activate ICaCC and suggest a broader role in calcium-dependent processes.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Grace Ramena
- Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Yufang Yin
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Louis Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Randolph C. Elble
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States of America
- * E-mail:
| |
Collapse
|
10
|
Sala-Rabanal M, Yurtsever Z, Berry KN, Nichols CG, Brett TJ. Modulation of TMEM16A channel activity by the von Willebrand factor type A (VWA) domain of the calcium-activated chloride channel regulator 1 (CLCA1). J Biol Chem 2017; 292:9164-9174. [PMID: 28420732 DOI: 10.1074/jbc.m117.788232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/18/2017] [Indexed: 11/06/2022] Open
Abstract
Calcium-activated chloride channels (CaCCs) are key players in transepithelial ion transport and fluid secretion, smooth muscle constriction, neuronal excitability, and cell proliferation. The CaCC regulator 1 (CLCA1) modulates the activity of the CaCC TMEM16A/Anoctamin 1 (ANO1) by directly engaging the channel at the cell surface, but the exact mechanism is unknown. Here we demonstrate that the von Willebrand factor type A (VWA) domain within the cleaved CLCA1 N-terminal fragment is necessary and sufficient for this interaction. TMEM16A protein levels on the cell surface were increased in HEK293T cells transfected with CLCA1 constructs containing the VWA domain, and TMEM16A-like currents were activated. Similar currents were evoked in cells exposed to secreted VWA domain alone, and these currents were significantly knocked down by TMEM16A siRNA. VWA-dependent TMEM16A modulation was not modified by the S357N mutation, a VWA domain polymorphism associated with more severe meconium ileus in cystic fibrosis patients. VWA-activated currents were significantly reduced in the absence of extracellular Mg2+, and mutation of residues within the conserved metal ion-dependent adhesion site motif impaired the ability of VWA to potentiate TMEM16A activity, suggesting that CLCA1-TMEM16A interactions are Mg2+- and metal ion-dependent adhesion site-dependent. Increase in TMEM16A activity occurred within minutes of exposure to CLCA1 or after a short treatment with nocodazole, consistent with the hypothesis that CLCA1 stabilizes TMEM16A at the cell surface by preventing its internalization. Our study hints at the therapeutic potential of the selective activation of TMEM16A by the CLCA1 VWA domain in loss-of-function chloride channelopathies such as cystic fibrosis.
Collapse
Affiliation(s)
- Monica Sala-Rabanal
- From the Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology and Physiology
| | - Zeynep Yurtsever
- Biochemistry Program.,Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine
| | - Kayla N Berry
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine.,Medical Scientist Training Program, and
| | - Colin G Nichols
- From the Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology and Physiology
| | - Tom J Brett
- From the Center for the Investigation of Membrane Excitability Diseases, .,Department of Cell Biology and Physiology.,Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
11
|
Romani L, Oikonomou V, Moretti S, Iannitti RG, D'Adamo MC, Villella VR, Pariano M, Sforna L, Borghi M, Bellet MM, Fallarino F, Pallotta MT, Servillo G, Ferrari E, Puccetti P, Kroemer G, Pessia M, Maiuri L, Goldstein AL, Garaci E. Thymosin α1 represents a potential potent single-molecule-based therapy for cystic fibrosis. Nat Med 2017; 23:590-600. [PMID: 28394330 PMCID: PMC5420451 DOI: 10.1038/nm.4305] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that compromise its chloride-channel activity. The most common mutation, p.Phe508del, results in the production of a misfolded CFTR protein, which has residual channel activity but is prematurely degraded. Because of the inherent complexity of the pathogenetic mechanisms involved in CF —which include impaired chloride permeability and persistent lung inflammation—a multidrug approach is required for efficacious CF therapy. To date, no individual, drug with pleiotropic beneficial effects for CF is available. Here we report on the ability of thymosin alpha 1 (Tα1)—a naturally occurring polypeptide with an excellent safety profile in the clinic when used as an adjuvant or an immunotherapeutic agent—to rectify the multiple tissue defects in CF mice as well as in cells from subjects with the p.Phe508del mutation. Tα1 displayed two combined properties that favorably opposed CF symptomatology; namely, it reduced inflammation and increased CFTR maturation, stability and activity. By virtue of this two-pronged action, Tα1 offers a strong potential to be an efficacious single molecule-based therapeutic agent in CF.
Collapse
Affiliation(s)
- Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Vasilis Oikonomou
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Silvia Moretti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Rossana G Iannitti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Maria Cristina D'Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Valeria R Villella
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigi Sforna
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Monica Borghi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Marina M Bellet
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Eleonora Ferrari
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Descartes, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Mauro Pessia
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Allan L Goldstein
- Department of Biochemistry and Molecular Medicine, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Enrico Garaci
- University San Raffaele and IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
12
|
Darrah R, Bederman I, Vitko M, Valerio DM, Drumm ML, Hodges CA. Growth deficits in cystic fibrosis mice begin in utero prior to IGF-1 reduction. PLoS One 2017; 12:e0175467. [PMID: 28384265 PMCID: PMC5383306 DOI: 10.1371/journal.pone.0175467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/27/2017] [Indexed: 12/16/2022] Open
Abstract
Growth deficits are common in cystic fibrosis (CF), but their cause is complex, with contributions from exocrine pancreatic insufficiency, pulmonary complications, gastrointestinal obstructions, and endocrine abnormalities. The CF mouse model displays similar growth impairment despite exocrine pancreatic function and in the absence of chronic pulmonary infection. The high incidence of intestinal obstruction in the CF mouse has been suggested to significantly contribute to the observed growth deficits. Previous studies by our group have shown that restoration of the cystic fibrosis transmembrane conductance regulator (CFTR) in the intestinal epithelium prevents intestinal obstruction but does not improve growth. In this study, we further investigate growth deficits in CF and gut-corrected CF mice by assessing insulin-like growth factor 1 (IGF-1). IGF-1 levels were significantly decreased in CF and gut-corrected CF adult mice compared to wildtype littermates and were highly correlated with weight. Interestingly, perinatal IGF-1 levels were not significantly different between CF and wildtype littermates, even though growth deficits in CF mice could be detected late in gestation. Since CFTR has been suggested to play a role in water and nutrient exchange in the placenta through its interaction with aquaporins, we analyzed placental aquaporin expression in late-gestation CF and control littermates. While significant differences were observed in Aquaporin 9 expression in CF placentas in late gestation, there was no evidence of placental fluid exchange differences between CF and control littermates. The results from this study indicate that decreased IGF-1 levels are highly correlated with growth in CF mice, independent of CF intestinal obstruction. However, the perinatal growth deficits that are observed in CF mice are not due to decreased IGF-1 levels or differences in placenta-mediated fluid exchange. Further investigation is necessary to understand the etiology of early growth deficits in CF, as growth has been shown to be a significant factor in disease outcomes.
Collapse
Affiliation(s)
- Rebecca Darrah
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ilya Bederman
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Megan Vitko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dana M. Valerio
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mitchell L. Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Craig A. Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
13
|
Erickson NA, Mundhenk L, Giovannini S, Glauben R, Heimesaat MM, Gruber AD. Role of goblet cell protein CLCA1 in murine DSS colitis. JOURNAL OF INFLAMMATION-LONDON 2016; 13:5. [PMID: 26855614 PMCID: PMC4743195 DOI: 10.1186/s12950-016-0113-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The secreted goblet cell protein CLCA1 (chloride channel regulator, calcium-activated-1) is, in addition to its established role in epithelial chloride conductance regulation, thought to act as a multifunctional signaling protein, including cellular differentiation pathways and induction of mucus production. Specifically, CLCA1 has recently been shown to modulate early immune responses by regulation of cytokines. Here, we analyze the role of CLCA1, which is highly expressed and secreted by colon goblet cells, in the course of murine dextran sodium sulfate-induced colitis. FINDINGS We compared Clca1-deficient and wild type mice under unchallenged and DSS-challenged conditions at various time points, including weight loss, colon weight-length-ratio and histological characterization of inflammation and regeneration. Expression levels of relevant cytokines, trefoil factor 3 and E-cadherin were assessed via quantitative PCR and cytometric bead arrays. Lack of CLCA1 was associated with a more than two-fold increased expression of Cxcl-1- and Il-17-mRNA during DSS colitis. However, no differences were found between Clca1-deficient and wild type mice under unchallenged or DSS-challenged conditions in terms of clinical findings, disease progression, colitis outcome, epithelial defects or regeneration. CONCLUSIONS CLCA1 is involved in the modulation of cytokine responses in the colon, albeit differently than what had been observed in the lungs. Obviously, the pathways involved depend on the type of challenge, time point or tissue environment.
Collapse
Affiliation(s)
- Nancy A Erickson
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| | - Samoa Giovannini
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| | - Rainer Glauben
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Garystrasse 5, 14195 Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| |
Collapse
|
14
|
Karo-Atar D, Bordowitz A, Wand O, Pasmanik-Chor M, Fernandez IE, Itan M, Frenkel R, Herbert DR, Finkelman FD, Eickelberg O, Munitz A. A protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair. Mucosal Immunol 2016; 9:240-53. [PMID: 26153764 PMCID: PMC4703942 DOI: 10.1038/mi.2015.56] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/14/2015] [Indexed: 02/04/2023]
Abstract
Molecular mechanisms that regulate lung repair vs. progressive scarring in pulmonary fibrosis remain elusive. Interleukin (IL)-4 and IL-13 are pro-fibrotic cytokines that share common receptor chains including IL-13 receptor (R) α1 and are key pharmacological targets in fibrotic diseases. However, the roles of IL-13Rα1 in mediating lung injury/repair are unclear. We report dysregulated levels of IL-13 receptors in the lungs of bleomycin-treated mice and to some extent in idiopathic pulmonary fibrosis patients. Transcriptional profiling demonstrated an epithelial cell-associated gene signature that was homeostatically dependent on IL-13Rα1 expression. IL-13Rα1 regulated a striking array of genes in the lung following bleomycin administration and Il13ra1 deficiency resulted in exacerbated bleomycin-induced disease. Increased pathology in bleomycin-treated Il13ra1(-/-) mice was due to IL-13Rα1 expression in structural and hematopoietic cells but not due to increased responsiveness to IL-17, IL-4, IL-13, increased IL-13Rα2 or type 1 IL-4R signaling. These data highlight underappreciated protective roles for IL-13Rα1 in lung injury and homeostasis.
Collapse
Affiliation(s)
- D Karo-Atar
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - A Bordowitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - O Wand
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - M Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - I E Fernandez
- Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - M Itan
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - R Frenkel
- Department of Math, Physics and Computer Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - D R Herbert
- Division of Experimental Medicine, University of California, San Francisco, California, USA
| | - F D Finkelman
- Division of Allergy, Immunology and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA,Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - O Eickelberg
- Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - A Munitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel,()
| |
Collapse
|
15
|
Plog S, Klymiuk N, Binder S, Van Hook MJ, Thoreson WB, Gruber AD, Mundhenk L. Naturally Occurring Deletion Mutants of the Pig-Specific, Intestinal Crypt Epithelial Cell Protein CLCA4b without Apparent Phenotype. PLoS One 2015; 10:e0140050. [PMID: 26474299 PMCID: PMC4608703 DOI: 10.1371/journal.pone.0140050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/21/2015] [Indexed: 11/19/2022] Open
Abstract
The human CLCA4 (chloride channel regulator, calcium-activated) modulates the intestinal phenotype of cystic fibrosis (CF) patients via an as yet unknown pathway. With the generation of new porcine CF models, species-specific differences between human modifiers of CF and their porcine orthologs are considered critical for the translation of experimental data. Specifically, the porcine ortholog to the human CF modulator gene CLCA4 has recently been shown to be duplicated into two separate genes, CLCA4a and CLCA4b. Here, we characterize the duplication product, CLCA4b, in terms of its genomic structure, tissue and cellular expression patterns as well as its in vitro electrophysiological properties. The CLCA4b gene is a pig-specific duplication product of the CLCA4 ancestor and its protein is exclusively expressed in small and large intestinal crypt epithelial cells, a niche specifically occupied by no other porcine CLCA family member. Surprisingly, a unique deleterious mutation of the CLCA4b gene is spread among modern and ancient breeds in the pig population, but this mutation did not result in an apparent phenotype in homozygously affected animals. Electrophysiologically, neither the products of the wild type nor of the mutated CLCA4b genes were able to evoke a calcium-activated anion conductance, a consensus feature of other CLCA proteins. The apparently pig-specific duplication of the CLCA4 gene with unique expression of the CLCA4b protein variant in intestinal crypt epithelial cells where the porcine CFTR is also present raises the question of whether it may modulate the porcine CF phenotype. Moreover, the naturally occurring null variant of CLCA4b will be valuable for the understanding of CLCA protein function and their relevance in modulating the CF phenotype.
Collapse
Affiliation(s)
- Stephanie Plog
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität, Munich, Oberschleissheim, Germany
| | - Stefanie Binder
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Matthew J. Van Hook
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Wallace B. Thoreson
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Achim D. Gruber
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
16
|
Erickson NA, Nyström EEL, Mundhenk L, Arike L, Glauben R, Heimesaat MM, Fischer A, Bereswill S, Birchenough GMH, Gruber AD, Johansson MEV. The Goblet Cell Protein Clca1 (Alias mClca3 or Gob-5) Is Not Required for Intestinal Mucus Synthesis, Structure and Barrier Function in Naive or DSS-Challenged Mice. PLoS One 2015; 10:e0131991. [PMID: 26162072 PMCID: PMC4498832 DOI: 10.1371/journal.pone.0131991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/09/2015] [Indexed: 12/15/2022] Open
Abstract
The secreted, goblet cell-derived protein Clca1 (chloride channel regulator, calcium-activated-1) has been linked to diseases with mucus overproduction, including asthma and cystic fibrosis. In the intestine Clca1 is found in the mucus with an abundance and expression pattern similar to Muc2, the major structural mucus component. We hypothesized that Clca1 is required for the synthesis, structure or barrier function of intestinal mucus and therefore compared wild type and Clca1-deficient mice under naive and at various time points of DSS (dextran sodium sulfate)-challenged conditions. The mucus phenotype in Clca1-deficient compared to wild type mice was systematically characterized by assessment of the mucus protein composition using proteomics, immunofluorescence and expression analysis of selected mucin genes on mRNA level. Mucus barrier integrity was assessed in-vivo by analysis of bacterial penetration into the mucus and translocation into sentinel organs combined analysis of the fecal microbiota and ex-vivo by assessment of mucus penetrability using beads. All of these assays revealed no relevant differences between wild type and Clca1-deficient mice under steady state or DSS-challenged conditions in mouse colon. Clca1 is not required for mucus synthesis, structure and barrier function in the murine colon.
Collapse
Affiliation(s)
- Nancy A. Erickson
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | | | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Liisa Arike
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Rainer Glauben
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology—Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Achim D. Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Malin E. V. Johansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
17
|
Sala-Rabanal M, Yurtsever Z, Nichols CG, Brett TJ. Secreted CLCA1 modulates TMEM16A to activate Ca(2+)-dependent chloride currents in human cells. eLife 2015; 4. [PMID: 25781344 PMCID: PMC4360653 DOI: 10.7554/elife.05875] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/12/2015] [Indexed: 12/22/2022] Open
Abstract
Calcium-activated chloride channel regulator 1 (CLCA1) activates calcium-dependent chloride currents; neither the target, nor mechanism, is known. We demonstrate that secreted CLCA1 activates calcium-dependent chloride currents in HEK293T cells in a paracrine fashion, and endogenous TMEM16A/Anoctamin1 conducts the currents. Exposure to exogenous CLCA1 increases cell surface levels of TMEM16A and cellular binding experiments indicate CLCA1 engages TMEM16A on the surface of these cells. Altogether, our data suggest that CLCA1 stabilizes TMEM16A on the cell surface, thus increasing surface expression, which results in increased calcium-dependent chloride currents. Our results identify the first Cl− channel target of the CLCA family of proteins and establish CLCA1 as the first secreted direct modifier of TMEM16A activity, delineating a unique mechanism to increase currents. These results suggest cooperative roles for CLCA and TMEM16 proteins in influencing the physiology of multiple tissues, and the pathology of multiple diseases, including asthma, COPD, cystic fibrosis, and certain cancers. DOI:http://dx.doi.org/10.7554/eLife.05875.001 Many biological processes that are important for our health involve the movement of ions into, and out of, our cells. For example, the flow of chloride ions out of cells controls the production of the sticky mucus that lines our windpipe and other airways. This mucus helps trap pollution and other foreign particles before they reach our lungs, and thus protects the lungs from harm. However in some diseases—such as cystic fibrosis and asthma—excessive amounts of thick mucus are produced; this can lead to breathing difficulties and an increased risk of infection. Proteins belonging to the CLCA protein family were first thought to act as channels that allow chloride ions to flow through cell membranes. Later studies then revealed that these proteins are not channels; instead they trigger the movement of chloride ions across cell membranes by activating other channel proteins. However, the identity of these channel proteins was unknown, and it was unclear how CLCA proteins might activate these channels. Sala-Rabanal, Yurtsever et al. have now shown that a member of the CLCA protein family, called CLCA1, is released from human cells and causes nearby cells to release chloride ions when the channel detects calcium ions. The movement of chloride ions triggered by CLCA1 looked very similar to the way chloride ions flow through a channel protein called TMEM16A, and so Sala-Rabanal, Yurtsever et al. asked whether these two proteins interact. TMEM16A was discovered several years ago, but remains the only calcium-dependent chloride channel known in mammals. Sala-Rabanal, Yurtsever et al. showed that adding CLCA1 to cells caused more TMEM16A channels to appear in the cell surface membrane and thereby increased the flow of chloride ions. The CLCA protein also physically interacted with the chloride channel in the membrane to stabilize it; no other protein has been shown to regulate ion channels in this way before. The findings of Sala-Rabanal, Yurtsever et al. provide a much clearer understanding of how the CLCA protein and the chloride channel work. Both of these proteins are known to contribute to excess mucus production in airway diseases; and both have been linked to cardiovascular diseases and certain cancers. These new findings may therefore also help researchers to target these proteins and develop treatments for these diseases. DOI:http://dx.doi.org/10.7554/eLife.05875.002
Collapse
Affiliation(s)
- Monica Sala-Rabanal
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, United States
| | - Zeynep Yurtsever
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, United States
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, United States
| | - Tom J Brett
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, United States
| |
Collapse
|
18
|
Abstract
The clinical manifestations of cystic fibrosis (CF) result from dysfunction of the cystic fibrosis transmembrane regulator protein (CFTR). The majority of people with CF have a limited life span as a consequence of CFTR dysfunction in the respiratory tract. However, CFTR dysfunction in the gastrointestinal (GI) tract occurs earlier in ontogeny and is present in all patients, regardless of genotype. The same pathophysiologic triad of obstruction, infection, and inflammation that causes disease in the airways also causes disease in the intestines. This article describes the effects of CFTR dysfunction on the intestinal tissues and the intraluminal environment. Mouse models of CF have greatly advanced our understanding of the GI manifestations of CF, which can be directly applied to understanding CF disease in humans.
Collapse
Affiliation(s)
- Robert C De Lisle
- Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160
| | | |
Collapse
|
19
|
Yurtsever Z, Sala-Rabanal M, Randolph DT, Scheaffer SM, Roswit WT, Alevy YG, Patel AC, Heier RF, Romero AG, Nichols CG, Holtzman MJ, Brett TJ. Self-cleavage of human CLCA1 protein by a novel internal metalloprotease domain controls calcium-activated chloride channel activation. J Biol Chem 2012; 287:42138-49. [PMID: 23112050 DOI: 10.1074/jbc.m112.410282] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.
Collapse
Affiliation(s)
- Zeynep Yurtsever
- Biochemistry Program, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Synthesis of porcine pCLCA2 protein during late differentiation of keratinocytes of epidermis and hair follicle inner root sheath. Cell Tissue Res 2012; 350:445-53. [PMID: 22968961 DOI: 10.1007/s00441-012-1482-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 07/12/2012] [Indexed: 10/27/2022]
Abstract
Despite the discovery of the widely expressed CLCA (chloride channel regulators, calcium-activated) proteins more than 15 years ago, their seemingly diverse functions are still poorly understood. With the recent generation of porcine animal models for cystic fibrosis (CF), members of the porcine CLCA family are becoming of interest as possible modulators of the disease in the pig. Here, we characterize pCLCA2, the porcine ortholog of the human hCLCA2 and the murine mCLCA5, which are the only CLCA members expressed in the skin. Immunohistochemical studies with a specific antibody against pCLCA2 have revealed a highly restricted pCLCA2 protein expression in the skin. The protein is strictly co-localized with filaggrin and trichohyalin in the granular layer of the epidermis and the inner root sheath of the hair follicles, respectively. No differences have been observed between the expression patterns of wild-type pigs and CF transmembrane conductance regulator(-/-) pigs. We speculate that pCLCA2 plays an as yet undefined role in the structural integrity of the skin or, possibly, in specialized functions of the epidermis, including barrier or defense mechanisms.
Collapse
|
21
|
Henderson LB, Doshi VK, Blackman SM, Naughton KM, Pace RG, Moskovitz J, Knowles MR, Durie PR, Drumm ML, Cutting GR. Variation in MSRA modifies risk of neonatal intestinal obstruction in cystic fibrosis. PLoS Genet 2012; 8:e1002580. [PMID: 22438829 PMCID: PMC3305406 DOI: 10.1371/journal.pgen.1002580] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 01/19/2012] [Indexed: 12/23/2022] Open
Abstract
Meconium ileus (MI), a life-threatening intestinal obstruction due to meconium with abnormal protein content, occurs in approximately 15 percent of neonates with cystic fibrosis (CF). Analysis of twins with CF demonstrates that MI is a highly heritable trait, indicating that genetic modifiers are largely responsible for this complication. Here, we performed regional family-based association analysis of a locus that had previously been linked to MI and found that SNP haplotypes 5' to and within the MSRA gene were associated with MI (P = 1.99 × 10(-5) to 1.08 × 10(-6); Bonferroni P = 0.057 to 3.1 × 10(-3)). The haplotype with the lowest P value showed association with MI in an independent sample of 1,335 unrelated CF patients (OR = 0.72, 95% CI [0.53-0.98], P = 0.04). Intestinal obstruction at the time of weaning was decreased in CF mice with Msra null alleles compared to those with wild-type Msra resulting in significant improvement in survival (P = 1.2 × 10(-4)). Similar levels of goblet cell hyperplasia were observed in the ilea of the Cftr(-/-) and Cftr(-/-)Msra(-/-) mice. Modulation of MSRA, an antioxidant shown to preserve the activity of enzymes, may influence proteolysis in the developing intestine of the CF fetus, thereby altering the incidence of obstruction in the newborn period. Identification of MSRA as a modifier of MI provides new insight into the biologic mechanism of neonatal intestinal obstruction caused by loss of CFTR function.
Collapse
Affiliation(s)
- Lindsay B. Henderson
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Vishal K. Doshi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Scott M. Blackman
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kathleen M. Naughton
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rhonda G. Pace
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jackob Moskovitz
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, United States of America
| | - Michael R. Knowles
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Peter R. Durie
- Division of Gastroenterology, Hepatology, and Nutrition, Hospital for Sick Children, Toronto, Canada
- Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Mitchell L. Drumm
- Departments of Pediatrics and Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Garry R. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Plog S, Grötzsch T, Klymiuk N, Kobalz U, Gruber AD, Mundhenk L. The porcine chloride channel calcium-activated family member pCLCA4a mirrors lung expression of the human hCLCA4. J Histochem Cytochem 2012; 60:45-56. [PMID: 22205680 PMCID: PMC3283134 DOI: 10.1369/0022155411426455] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/17/2011] [Indexed: 11/22/2022] Open
Abstract
Pig models of cystic fibrosis (CF) have recently been established that are expected to mimic the human disease closer than mouse models do. The human CLCA (originally named chloride channels, calcium-activated) member hCLCA4 is considered a potential modifier of disease severity in CF, but its murine ortholog, mCLCA6, is not expressed in the mouse lung. Here, we have characterized the genomic structure, protein processing, and tissue expression patterns of the porcine ortholog to hCLCA4, pCLCA4a. The genomic structure and cellular protein processing of pCLCA4a were found to closely mirror those of hCLCA4 and mCLCA6. Similar to human lung, pCLCA4a mRNA was strongly expressed in porcine lungs, and the pCLCA4a protein was immunohistochemically detected on the apical membranes of tracheal and bronchial epithelial cells. This stands in sharp contrast to mouse mCLCA6, which has been detected exclusively in intestinal epithelia but not the murine lung. The results may add to the understanding of species-specific differences in the CF phenotype and support the notion that the CF pig model may be more suitable than murine models to study the role of hCLCA4.
Collapse
Affiliation(s)
- Stephanie Plog
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
23
|
van der Doef HPJ, Kokke FTM, van der Ent CK, Houwen RHJ. Intestinal obstruction syndromes in cystic fibrosis: meconium ileus, distal intestinal obstruction syndrome, and constipation. Curr Gastroenterol Rep 2011; 13:265-70. [PMID: 21384135 PMCID: PMC3085752 DOI: 10.1007/s11894-011-0185-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Meconium ileus at birth, distal intestinal obstruction syndrome (DIOS), and constipation are an interrelated group of intestinal obstruction syndromes with a variable severity of obstruction that occurs in cystic fibrosis patients. Long-term follow-up studies show that today meconium ileus is not a risk factor for impaired nutritional status, pulmonary function, or survival. DIOS and constipation are frequently seen in cystic fibrosis patients, especially later in life; genetic, dietary, and other associations have been explored. Diagnosis of DIOS is based on suggestive symptoms, with a right lower quadrant mass confirmed on abdominal radiography, whereas symptoms of constipation are milder and of longer standing. In DIOS, early aggressive laxative treatment with oral laxatives (polyethylene glycol) or intestinal lavage with balanced osmotic electrolyte solution and rehydration is required, which now makes the need for surgical interventions rare. Constipation can generally be well controlled with polyethylene glycol maintenance treatment.
Collapse
Affiliation(s)
- Hubert P J van der Doef
- Department of Pediatric Gastroenterology [KE.04.133.1], University Medical Center Utrecht, Postbox 85090, 3508 AB Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Abstract
In the past three decades, scientists have had immense success in identifying genes and their variants that contribute to an array of diseases. While the identification of such genetic variants has informed our knowledge of the etiologic bases of diseases, there continues to be a substantial gap in our understanding of the factors that modify disease severity. Monogenic diseases provide an opportunity to identify modifiers as they have uniform etiology, detailed phenotyping of affected individuals, and familial clustering. Cystic fibrosis (CF) is among the more common life-shortening recessive disorders that displays wide variability in clinical features and survival. Considerable progress has been made in elucidating the contribution of genetic and nongenetic factors to CF. Allelic variation in CFTR, the gene responsible for CF, correlates with some aspects of the disease. However, lung function, neonatal intestinal obstruction, diabetes, and anthropometry display strong genetic control independent of CFTR, and candidate gene studies have revealed genetic modifiers underlying these traits. The application of genome-wide techniques holds great promise for the identification of novel genetic variants responsible for the heritable features and complications of CF. Since the genetic modifiers are known to alter the course of disease, their protein products become immediate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Garry R Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Canale-Zambrano JC, Auger ML, Haston CK. Toll-like receptor-4 genotype influences the survival of cystic fibrosis mice. Am J Physiol Gastrointest Liver Physiol 2010; 299:G381-90. [PMID: 20522639 DOI: 10.1152/ajpgi.00003.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Toll-like receptor (Tlr) 4 is a lipopolysaccharide (LPS) receptor that contributes to the regulation of intestinal cell homeostasis, a condition that is altered in the intestines of cystic fibrosis mice. Herein, we assessed whether Tlr4 genotype influences cystic fibrosis intestinal disease by producing and phenotyping 12-wk (adult)- and 4-day (neonate)-old mice derived from BALB cystic fibrosis transmembrane conductance regulator, Cftr(+/tm1Unc) and C.C3-Tlr4(Lps-d)/J (Tlr4(-/-)), progenitors. Intestinal disease was assayed through mouse survival, crypt-villus axis (CVA) length, cell proliferation, bacterial load, bacterial classification, inflammatory cell infiltrate, and mucus content measures. Of the 77 Cftr(-/-) (CF) mice produced, only one Cftr/Tlr4 double-mutant mouse lived to the age of 12 wk while the majority of the remainder succumbed at approximately 4 days of age. The survival of CF Tlr4(+/-) mice exceeded that of both CF Tlr4(+/+) and Cftr/Tlr4 double-mutant mice. Adult CF mice presented increased Tlr4 expression, CVA length, crypt cell proliferation, and bacterial load relative to non-CF mice, but no differences were detected in Tlr4(+/-) compared with Tlr4(+/+) CF mice. The double-mutant neonates did not differ from Tlr4(+/+) or Tlr4(+/-) CF mice by intestinal CVA length or bacterial load, but fewer Tlr4(+/-) CF neonates presented with luminal mucus obstruction in the distal ileum, and the intestinal mast cell increase of CF mice was not evident in double-mutant neonates. We conclude that Tlr4 deficiency reduces the survival, but does not alter the intestinal phenotypes, of extended CVA or increased bacterial load in BALB CF mice.
Collapse
|
26
|
Association of the CLCA1 p.S357N variant with meconium ileus in European patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 2010; 50:347-9. [PMID: 20179644 DOI: 10.1097/mpg.0b013e3181afce6c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In Cftr-/- mice that mostly die because of intestinal obstruction, intestinal expression of Clca3 is decreased, whereas upregulation of Clca3 results in amelioration of intestinal disease. The aim of the study was to investigate whether the p.S357N variant in CLCA1, the human orthologue of Clca3, acts as a modifier gene in a cohort of 682 European patients with cystic fibrosis (CF)-99 patients with meconium ileus. The 357SS genotype was significantly overrepresented in both patients with meconium ileus and also with a severe CFTR genotype (P = 0.009) and in p.F508del homozygotes (P = 0.002). This suggests that CLCA1 has similar important functions in CF-related intestinal obstruction in humans as in Cftr-/- mice.
Collapse
|
27
|
Patel AC, Brett TJ, Holtzman MJ. The role of CLCA proteins in inflammatory airway disease. Annu Rev Physiol 2009; 71:425-49. [PMID: 18954282 DOI: 10.1146/annurev.physiol.010908.163253] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) exhibit stereotyped traits that are variably expressed in each person. In experimental mouse models of chronic lung disease, these individual disease traits can be genetically segregated and thereby linked to distinct determinants. Functional genomic analysis indicates that at least one of these traits, mucous cell metaplasia, depends on members of the calcium-activated chloride channel (CLCA) gene family. Here we review advances in the biochemistry of the CLCA family and the evidence of a role for CLCA family members in the development of mucous cell metaplasia and possibly airway hyperreactivity in experimental models and in humans. On the basis of this information, we develop the model that CLCA proteins are not integral membrane proteins with ion channel function but instead are secreted signaling molecules that specifically regulate airway target cells in healthy and disease conditions.
Collapse
Affiliation(s)
- Anand C Patel
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
28
|
Plog S, Mundhenk L, Klymiuk N, Gruber AD. Genomic, tissue expression, and protein characterization of pCLCA1, a putative modulator of cystic fibrosis in the pig. J Histochem Cytochem 2009; 57:1169-81. [PMID: 19755716 DOI: 10.1369/jhc.2009.954594] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have identified members of the CLCA (chloride channels, calcium-activated) gene family as potential modulators of the cystic fibrosis (CF) phenotype, but differences between the human and murine CLCA genes and proteins may limit the use of murine CF models. Recently established pig models of CF are expected to mimic the human disease more closely than the available mouse models do. Here, we characterized the porcine CLCA gene locus, analyzed the expression pattern and protein processing of pCLCA1, and compared it to its human ortholog, hCLCA1. The porcine CLCA gene family is located on chromosome 4q25, with a broad synteny with the human and murine clca gene loci, except for a pig-specific gene duplication of pCLCA4. Using pCLCA1-specific antibodies, the protein was immunohistochemically localized in mucin-producing cells, including goblet cells and mucinous glands in the respiratory and alimentary tracts. Similar to hCLCA1, biochemical characterization of pCLCA1 identified a secreted soluble protein that could serve as an extracellular signaling molecule or functional constituent of the protective mucous layers. The results suggest that pCLCA1 shares essential characteristics of hCLCA1, supporting the pig model as a promising tool for studying the modulating role of pCLCA1 in the complex pathology of CF.
Collapse
Affiliation(s)
- Stephanie Plog
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
29
|
Bothe MK, Braun J, Mundhenk L, Gruber AD. Murine mCLCA6 is an integral apical membrane protein of non-goblet cell enterocytes and co-localizes with the cystic fibrosis transmembrane conductance regulator. J Histochem Cytochem 2008; 56:495-509. [PMID: 18285349 DOI: 10.1369/jhc.2008.950592] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CLCA family of proteins consists of a growing number of structurally and functionally diverse members with distinct expression patterns in different tissues. Several CLCA homologs have been implicated in diseases with secretory dysfunctions in the respiratory and intestinal tracts. Here we present biochemical protein characterization and details on the cellular and subcellular expression pattern of the murine mCLCA6 using specific antibodies directed against the amino- and carboxy-terminal cleavage products of mCLCA6. Computational and biochemical characterizations revealed protein processing and structural elements shared with hCLCA2 including anchorage in the apical cell membrane by a transmembrane domain in the carboxy-terminal subunit. A systematic light- and electron-microscopic immunolocalization found mCLCA6 to be associated with the microvilli of non-goblet cell enterocytes in the murine small and large intestine but in no other tissues. The expression pattern was confirmed by quantitative RT-PCR following laser-capture microdissection of relevant tissues. Confocal laser scanning microscopy colocalized the mCLCA6 protein with the cystic fibrosis transmembrane conductance regulator CFTR at the apical surface of colonic crypt cells. Together with previously published functional data, the results support a direct or indirect role of mCLCA6 in transepithelial anion conductance in the mouse intestine.
Collapse
Affiliation(s)
- Melanie K Bothe
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| | | | | | | |
Collapse
|