1
|
Uribe RA. Genetic regulation of enteric nervous system development in zebrafish. Biochem Soc Trans 2024; 52:177-190. [PMID: 38174765 PMCID: PMC10903509 DOI: 10.1042/bst20230343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The enteric nervous system (ENS) is a complex series of interconnected neurons and glia that reside within and along the entire length of the gastrointestinal tract. ENS functions are vital to gut homeostasis and digestion, including local control of peristalsis, water balance, and intestinal cell barrier function. How the ENS develops during embryological development is a topic of great concern, as defects in ENS development can result in various diseases, the most common being Hirschsprung disease, in which variable regions of the infant gut lack ENS, with the distal colon most affected. Deciphering how the ENS forms from its progenitor cells, enteric neural crest cells, is an active area of research across various animal models. The vertebrate animal model, zebrafish, has been increasingly leveraged to understand early ENS formation, and over the past 20 years has contributed to our knowledge of the genetic regulation that underlies enteric development. In this review, I summarize our knowledge regarding the genetic regulation of zebrafish enteric neuronal development, and based on the most current literature, present a gene regulatory network inferred to underlie its construction. I also provide perspectives on areas for future zebrafish ENS research.
Collapse
Affiliation(s)
- Rosa A. Uribe
- Biosciences Department, Rice University, Houston, TX 77005, U.S.A
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, TX 77005, U.S.A
| |
Collapse
|
2
|
Zhang Z, Yang C, Wang Z, Guo L, Xu Y, Gao C, Sun Y, Zhang Z, Peng J, Hu M, Jan Lo L, Ma Z, Chen J. Wdr5-mediated H3K4me3 coordinately regulates cell differentiation, proliferation termination, and survival in digestive organogenesis. Cell Death Discov 2023; 9:227. [PMID: 37407577 DOI: 10.1038/s41420-023-01529-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Food digestion requires the cooperation of different digestive organs. The differentiation of digestive organs is crucial for larvae to start feeding. Therefore, during digestive organogenesis, cell identity and the tissue morphogenesis must be tightly coordinated but how this is accomplished is poorly understood. Here, we demonstrate that WD repeat domain 5 (Wdr5)-mediated H3K4 tri-methylation (H3K4me3) coordinately regulates cell differentiation, proliferation and apoptosis in zebrafish organogenesis of three major digestive organs including intestine, liver, and exocrine pancreas. During zebrafish digestive organogenesis, some of cells in these organ primordia usually undergo differentiation without apoptotic activity and gradually reduce their proliferation capacity. In contrast, cells in the three digestive organs of wdr5-/- mutant embryos retain progenitor-like status with high proliferation rates, and undergo apoptosis. Wdr5 is a core member of COMPASS complex to implement H3K4me3 and its expression is enriched in digestive organs from 2 days post-fertilization (dpf). Further analysis reveals that lack of differentiation gene expression is due to significant decreases of H3K4me3 around the transcriptional start sites of these genes; this histone modification also reduces the proliferation capacity in differentiated cells by increasing the expression of apc to promote the degradation of β-Catenin; in addition, H3K4me3 promotes the expression of anti-apoptotic genes such as xiap-like, which modulates p53 activity to guarantee differentiated cell survival. Thus, our findings have discovered a common molecular mechanism for cell fate determination in different digestive organs during organogenesis, and also provided insights to understand mechanistic basis of human diseases in these digestive organs.
Collapse
Affiliation(s)
- Zhe Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zixu Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liwei Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongpan Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenhai Zhang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Hu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Li Jan Lo
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhipeng Ma
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jun Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun Road East, Hangzhou, 310016, China.
| |
Collapse
|
3
|
Morgan KJ, Doggett K, Geng F, Mieruszynski S, Whitehead L, Smith KA, Hogan BM, Simons C, Baillie GJ, Molania R, Papenfuss AT, Hall TE, Ober EA, Stainier DYR, Gong Z, Heath JK. ahctf1 and kras mutations combine to amplify oncogenic stress and restrict liver overgrowth in a zebrafish model of hepatocellular carcinoma. eLife 2023; 12:73407. [PMID: 36648336 PMCID: PMC9897728 DOI: 10.7554/elife.73407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
The nucleoporin (NUP) ELYS, encoded by AHCTF1, is a large multifunctional protein with essential roles in nuclear pore assembly and mitosis. Using both larval and adult zebrafish models of hepatocellular carcinoma (HCC), in which the expression of an inducible mutant kras transgene (krasG12V) drives hepatocyte-specific hyperplasia and liver enlargement, we show that reducing ahctf1 gene dosage by 50% markedly decreases liver volume, while non-hyperplastic tissues are unaffected. We demonstrate that in the context of cancer, ahctf1 heterozygosity impairs nuclear pore formation, mitotic spindle assembly, and chromosome segregation, leading to DNA damage and activation of a Tp53-dependent transcriptional programme that induces cell death and cell cycle arrest. Heterozygous expression of both ahctf1 and ranbp2 (encoding a second nucleoporin), or treatment of heterozygous ahctf1 larvae with the nucleocytoplasmic transport inhibitor, Selinexor, completely blocks krasG12V-driven hepatocyte hyperplasia. Gene expression analysis of patient samples in the liver hepatocellular carcinoma (LIHC) dataset in The Cancer Genome Atlas shows that high expression of one or more of the transcripts encoding the 10 components of the NUP107-160 subcomplex, which includes AHCTF1, is positively correlated with worse overall survival. These results provide a strong and feasible rationale for the development of novel cancer therapeutics that target ELYS function and suggest potential avenues for effective combinatorial treatments.
Collapse
Affiliation(s)
- Kimberly J Morgan
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| | - Karen Doggett
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| | - Fansuo Geng
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| | - Stephen Mieruszynski
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| | - Lachlan Whitehead
- Department of Medical Biology, University of MelbourneParkvilleAustralia
- Centre for Dynamic Imaging, Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Kelly A Smith
- Department of Physiology, University of MelbourneParkvilleAustralia
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
| | - Benjamin M Hogan
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
- Peter MacCallum Cancer CentreMelbourneAustralia
| | - Cas Simons
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
- Murdoch Children's Research InstituteParkvilleAustralia
| | - Gregory J Baillie
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
| | - Ramyar Molania
- Department of Medical Biology, University of MelbourneParkvilleAustralia
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Anthony T Papenfuss
- Department of Medical Biology, University of MelbourneParkvilleAustralia
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Thomas E Hall
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
| | - Elke A Ober
- Danish Stem Cell Center, University of CopenhagenCopenhagenDenmark
| | - Didier YR Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Zhiyuan Gong
- Department of Biological Science, National University of SingaporeSingaporeSingapore
| | - Joan K Heath
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| |
Collapse
|
4
|
Abstract
Nuclear pore complexes are multiprotein channels that span the nuclear envelope, which connects the nucleus to the cytoplasm. In addition to their main role in the regulation of nucleocytoplasmic molecule exchange, it has become evident that nuclear pore complexes and their components also have multiple transport-independent functions. In recent years, an increasing number of studies have reported the involvement of nuclear pore complex components in embryogenesis, cell differentiation and tissue-specific processes. Here, we review the findings that highlight the dynamic nature of nuclear pore complexes and their roles in many cell type-specific functions during development and tissue homeostasis.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Maximiliano A D'Angelo
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Khan AU, Qu R, Ouyang J, Dai J. Role of Nucleoporins and Transport Receptors in Cell Differentiation. Front Physiol 2020; 11:239. [PMID: 32308628 PMCID: PMC7145948 DOI: 10.3389/fphys.2020.00239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Bidirectional molecular movements between the nucleus and cytoplasm take place through nuclear pore complexes (NPCs) embedded in the nuclear membrane. These macromolecular structures are composed of several nucleoporins, which form seven different subcomplexes based on their biochemical affinity. These nucleoporins are integral components of the complex, not only allowing passive transport but also interacting with importin, exportin, and other molecules that are required for transport of protein in various cellular processes. Transport of different proteins is carried out either dependently or independently on transport receptors. As well as facilitating nucleocytoplasmic transport, nucleoporins also play an important role in cell differentiation, possibly by their direct gene interaction. This review will cover the general role of nucleoporins (whether its dependent or independent) and nucleocytoplasmic transport receptors in cell differentiation.
Collapse
|
6
|
Mehta SJK, Kumar V, Mishra RK. Drosophila ELYS regulates Dorsal dynamics during development. J Biol Chem 2020; 295:2421-2437. [PMID: 31941789 DOI: 10.1074/jbc.ra119.009451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/13/2020] [Indexed: 11/06/2022] Open
Abstract
Embryonic large molecule derived from yolk sac (ELYS) is a constituent protein of nuclear pores. It initiates assembly of nuclear pore complexes into functional nuclear pores toward the end of mitosis. Using cellular, molecular, and genetic tools, including fluorescence and Electron microscopy, quantitative PCR, and RNAi-mediated depletion, we report here that the ELYS ortholog (dElys) plays critical roles during Drosophila development. dElys localized to the nuclear rim in interphase cells, but during mitosis it was absent from kinetochores and enveloped chromatin. We observed that RNAi-mediated dElys depletion leads to aberrant development and, at the cellular level, to defects in the nuclear pore and nuclear lamina assembly. Further genetic analyses indicated that dElys depletion re-activates the Dorsal (NF-κB) pathway during late larval stages. Re-activated Dorsal caused untimely expression of the Dorsal target genes in the post-embryonic stages. We also demonstrate that activated Dorsal triggers apoptosis during later developmental stages by up-regulating the pro-apoptotic genes reaper and hid The apoptosis induced by Reaper and Hid was probably the underlying cause for developmental abnormalities observed upon dElys depletion. Moreover, we noted that dElys has conserved structural features, but contains a noncanonical AT-hook-like motif through which it strongly binds to DNA. Together, our results uncover a novel epistatic interaction that regulates Dorsal dynamics by dElys during development.
Collapse
Affiliation(s)
- Saurabh Jayesh Kumar Mehta
- Nups and SUMO Biology Group, Department of Biological Sciences, Academic Building 3, Indian Institute of Science Education and Research-Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh-462066, India
| | - Vimlesh Kumar
- Laboratory of Neurogenetics, Department of Biological Sciences, Academic Building 3, Indian Institute of Science Education and Research-Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh-462066, India
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, Academic Building 3, Indian Institute of Science Education and Research-Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh-462066, India.
| |
Collapse
|
7
|
Nucleoporin 62-Like Protein is Required for the Development of Pharyngeal Arches through Regulation of Wnt/β-Catenin Signaling and Apoptotic Homeostasis in Zebrafish. Cells 2019; 8:cells8091038. [PMID: 31492028 PMCID: PMC6770318 DOI: 10.3390/cells8091038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
We have previously observed the predominant expression of nucleoporin 62-like (Nup62l) mRNA in the pharyngeal region of zebrafish, which raises the question whether Nup62l has important implications in governing the morphogenesis of pharyngeal arches (PA) in zebrafish. Herein, we explored the functions of Nup62l in PA development. The disruption of Nup62l with a CRISPR/Cas9-dependent gene knockout approach led to defective PA, which was characterized by a thinned and shortened pharyngeal region and a significant loss of pharyngeal cartilages. During pharyngeal cartilage formation, prechondrogenic condensation and chondrogenic differentiation were disrupted in homozygous nup62l-mutants, while the specification and migration of cranial neural crest cells (CNCCs) were unaffected. Mechanistically, the impaired PA region of nup62l-mutants underwent extensive apoptosis, which was mainly dependent on activation of p53-dependent apoptotic pathway. Moreover, aberrant activation of a series of apoptotic pathways in nup62l-mutants is closely associated with the inactivation of Wnt/β-catenin signaling. Thus, these findings suggest that the regulation of Wnt/β-catenin activity by Nup62l is crucial for PA formation in zebrafish.
Collapse
|
8
|
Sokol AM, Uszczynska-Ratajczak B, Collins MM, Bazala M, Topf U, Lundegaard PR, Sugunan S, Guenther S, Kuenne C, Graumann J, Chan SSL, Stainier DYR, Chacinska A. Loss of the Mia40a oxidoreductase leads to hepato-pancreatic insufficiency in zebrafish. PLoS Genet 2018; 14:e1007743. [PMID: 30457989 PMCID: PMC6245507 DOI: 10.1371/journal.pgen.1007743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Development and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial biogenesis and function. Here, we describe a zebrafish mutant for the gene mia40a (chchd4a), the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate death at the larval stage. We generated a deep transcriptomic and proteomic resource that allowed us to identify abnormalities in the development and physiology of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of mitochondrial diseases. Mitochondrial pathologies which result from mutations in the nuclear DNA remain incurable and often lead to death. As mitochondria play various roles in cellular and tissue-specific contexts, the symptoms of mitochondrial pathologies can differ between patients. Thus, diagnosis and treatment of mitochondrial disorders remain challenging. To enhance this, the generation of new models that explore and define the consequences of mitochondria insufficiencies is of central importance. Here, we present a mia40a zebrafish mutant as a model for mitochondrial dysfunction, caused by an imbalance in mitochondrial protein biogenesis. This mutant shares characteristics with existing reports on mitochondria dysfunction, and has led us to identify novel phenotypes such as enlarged mitochondrial clusters in skeletal muscles. In addition, our transcriptomics and proteomics data contribute important findings to the existing knowledge on how faulty mitochondria impinge on vertebrate development in molecular, tissue and organ specific contexts.
Collapse
Affiliation(s)
- Anna M. Sokol
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail: (AMS); (AC)
| | | | - Michelle M. Collins
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michal Bazala
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ulrike Topf
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Pia R. Lundegaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sreedevi Sugunan
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Stefan Guenther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sherine S. L. Chan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- * E-mail: (AMS); (AC)
| |
Collapse
|
9
|
The functional versatility of the nuclear pore complex proteins. Semin Cell Dev Biol 2017; 68:2-9. [DOI: 10.1016/j.semcdb.2017.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022]
|
10
|
Abstract
Although the zebrafish was initially developed as a model system to study embryonic development, it has gained increasing attention as an advantageous system to investigate human diseases, including intestinal disorders. Zebrafish embryos develop rapidly, and their digestive system is fully functional and visible by 5days post fertilization. There is a large degree of homology between the intestine of zebrafish and higher vertebrate organisms in terms of its cellular composition and function as both a digestive and immune organ. Furthermore, molecular pathways regulating injury and immune responses are highly conserved. In this chapter, we provide an overview of studies addressing developmental and physiological processes relevant to human intestinal disease. These studies include those related to congenital disorders, host-microbiota interactions, inflammatory diseases, motility disorders, and intestinal cancer. We also highlight the utility of zebrafish to functionally validate candidate genes identified through mutational analyses and genome-wide association studies, and discuss methodologies to investigate the intestinal biology that are unique to zebrafish.
Collapse
Affiliation(s)
- X Zhao
- University of Pennsylvania, Philadelphia, PA, United States
| | - M Pack
- University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Lobert VH, Mouradov D, Heath JK. Focusing the Spotlight on the Zebrafish Intestine to Illuminate Mechanisms of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:411-37. [PMID: 27165364 DOI: 10.1007/978-3-319-30654-4_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colorectal cancer, encompassing colon and rectal cancer, arises from the epithelial lining of the large bowel. It is most prevalent in Westernised societies and is increasing in frequency as the world becomes more industrialised. Unfortunately, metastatic colorectal cancer is not cured by chemotherapy and the annual number of deaths caused by colorectal cancer, currently 700,000, is expected to rise. Our understanding of the contribution that genetic mutations make to colorectal cancer, although incomplete, is reasonably well advanced. However, it has only recently become widely appreciated that in addition to the ongoing accumulation of genetic mutations, chronic inflammation also plays a critical role in the initiation and progression of this disease. While a robust and tractable genetic model of colorectal cancer in zebrafish, suitable for pre-clinical studies, is not yet available, the identification of genes required for the rapid proliferation of zebrafish intestinal epithelial cells during development has highlighted a number of essential genes that could be targeted to disable colorectal cancer cells. Moreover, appreciation of the utility of zebrafish to study intestinal inflammation is on the rise. In particular, zebrafish provide unique opportunities to investigate the impact of genetic and environmental factors on the integrity of intestinal epithelial barrier function. With currently available tools, the interplay between epigenetic regulators, intestinal injury, microbiota composition and innate immune cell mobilisation can be analysed in exquisite detail. This provides excellent opportunities to define critical events that could potentially be targeted therapeutically. Further into the future, the use of zebrafish larvae as hosts for xenografts of human colorectal cancer tissue, while still in its infancy, holds great promise that zebrafish could one day provide a practical, preclinical personalized medicine platform for the rapid assessment of the metastatic potential and drug-sensitivity of patient-derived cancers.
Collapse
Affiliation(s)
- Viola H Lobert
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379, Oslo, Norway
| | - Dmitri Mouradov
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Joan K Heath
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
12
|
Bielczyk-Maczyńska E, Lam Hung L, Ferreira L, Fleischmann T, Weis F, Fernández-Pevida A, Harvey SA, Wali N, Warren AJ, Barroso I, Stemple DL, Cvejic A. The Ribosome Biogenesis Protein Nol9 Is Essential for Definitive Hematopoiesis and Pancreas Morphogenesis in Zebrafish. PLoS Genet 2015; 11:e1005677. [PMID: 26624285 PMCID: PMC4666468 DOI: 10.1371/journal.pgen.1005677] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/26/2015] [Indexed: 12/27/2022] Open
Abstract
Ribosome biogenesis is a ubiquitous and essential process in cells. Defects in ribosome biogenesis and function result in a group of human disorders, collectively known as ribosomopathies. In this study, we describe a zebrafish mutant with a loss-of-function mutation in nol9, a gene that encodes a non-ribosomal protein involved in rRNA processing. nol9sa1022/sa1022 mutants have a defect in 28S rRNA processing. The nol9sa1022/sa1022 larvae display hypoplastic pancreas, liver and intestine and have decreased numbers of hematopoietic stem and progenitor cells (HSPCs), as well as definitive erythrocytes and lymphocytes. In addition, ultrastructural analysis revealed signs of pathological processes occurring in endothelial cells of the caudal vein, emphasizing the complexity of the phenotype observed in nol9sa1022/sa1022 larvae. We further show that both the pancreatic and hematopoietic deficiencies in nol9sa1022/sa1022 embryos were due to impaired cell proliferation of respective progenitor cells. Interestingly, genetic loss of Tp53 rescued the HSPCs but not the pancreatic defects. In contrast, activation of mRNA translation via the mTOR pathway by L-Leucine treatment did not revert the erythroid or pancreatic defects. Together, we present the nol9sa1022/sa1022 mutant, a novel zebrafish ribosomopathy model, which recapitulates key human disease characteristics. The use of this genetically tractable model will enhance our understanding of the tissue-specific mechanisms following impaired ribosome biogenesis in the context of an intact vertebrate.
Collapse
Affiliation(s)
- Ewa Bielczyk-Maczyńska
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
| | - Laure Lam Hung
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Lauren Ferreira
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Tobias Fleischmann
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Félix Weis
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Antonio Fernández-Pevida
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Steven A. Harvey
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Neha Wali
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Alan J. Warren
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Inês Barroso
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Derek L. Stemple
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Jiang F, Chen J, Ma X, Huang C, Zhu S, Wang F, Li L, Luo L, Ruan H, Huang H. Analysis of mutants from a genetic screening reveals the control of intestine and liver development by many common genes in zebrafish. Biochem Biophys Res Commun 2015; 460:838-44. [DOI: 10.1016/j.bbrc.2015.03.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 01/10/2023]
|
14
|
Cox AG, Goessling W. The lure of zebrafish in liver research: regulation of hepatic growth in development and regeneration. Curr Opin Genet Dev 2015; 32:153-61. [PMID: 25863341 DOI: 10.1016/j.gde.2015.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/23/2015] [Accepted: 03/05/2015] [Indexed: 12/18/2022]
Abstract
The liver is an essential organ that plays a pivotal role in metabolism, digestion and nutrient storage. Major efforts have been made to develop zebrafish (Danio rerio) as a model system to study the pathways regulating hepatic growth during liver development and regeneration. Zebrafish offer unique advantages over other vertebrates including in vivo imaging at cellular resolution and the capacity for large-scale chemical and genetic screens. Here, we review the cellular and molecular mechanisms that regulate hepatic growth during liver development in zebrafish. We also highlight emerging evidence that developmental pathways are reactivated following liver injury to facilitate regeneration. Finally, we discuss how zebrafish have transformed drug discovery efforts and enabled the identification of drugs that stimulate hepatic growth and provide hepatoprotection in pre-clinical models of liver injury, with the ultimate goal of identifying novel therapeutic approaches to treat liver disease.
Collapse
Affiliation(s)
- Andrew G Cox
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Wolfram Goessling
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Dana-Farber Cancer Institute, Boston, MA, United States; Harvard Stem Cell Institute, Cambridge, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| |
Collapse
|
15
|
Marjoram L, Bagnat M. Infection, Inflammation and Healing in Zebrafish: Intestinal Inflammation. CURRENT PATHOBIOLOGY REPORTS 2015; 3:147-153. [PMID: 26236567 PMCID: PMC4520400 DOI: 10.1007/s40139-015-0079-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inflammatory bowel diseases (IBD), which include Crohn’s disease and ulcerative colitis, contribute to significant morbidity and mortality globally. Despite an increase in incidence, IBD onset is still poorly understood. Mouse models of IBD recapitulate several aspects of human disease, but limited accessibility for live imaging and the lack of forward genetics highlight the need for new model systems for disease onset characterization. Zebrafish represent a powerful platform to model IBD using forward and reverse genetics, live imaging of transgenic lines and physiological assays. In this review, we address current models of IBD in zebrafish and newly developed reagents available for future studies.
Collapse
Affiliation(s)
- Lindsay Marjoram
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-4899,
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, Tel: 919-681-9268 ,
| |
Collapse
|
16
|
Talamas JA, Capelson M. Nuclear envelope and genome interactions in cell fate. Front Genet 2015; 6:95. [PMID: 25852741 PMCID: PMC4365743 DOI: 10.3389/fgene.2015.00095] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/22/2015] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate.
Collapse
Affiliation(s)
- Jessica A Talamas
- Program in Epigenetics, Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Maya Capelson
- Program in Epigenetics, Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
17
|
Nucleoporin 62-like protein activates canonical Wnt signaling through facilitating the nuclear import of β-catenin in zebrafish. Mol Cell Biol 2015; 35:1110-24. [PMID: 25605329 DOI: 10.1128/mcb.01181-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleoporin p62 (Nup62) localizes in the central channel of nuclear pore complexes (NPCs) and regulates nuclear pore permeability and nucleocytoplasmic transport. However, the developmental roles of Nup62 in vertebrates remain largely unclear. Zebrafish Nup62-like protein (Nup62l) is a homolog of mammalian Nup62. The nup62l gene is maternally expressed, but its transcripts are ubiquitously distributed during early embryogenesis and enriched in the head, pharynx, and intestine of developing embryos. Activation of the Wnt/β-catenin pathway positively modulates nup62l transcription, while Bmp signaling acts downstream of Wnt/β-catenin signaling to negatively regulate nup62l expression. Overexpression of nup62l dorsalized embryos and enhanced gastrula convergence and extension (CE) movements. In contrast, knockdown of Nup62l led to ventralized embryos, an impediment to CE movements, and defects in specification of midline organ progenitors. Mechanistically, Nup62l acts as an activator of Wnt/β-catenin signaling through interaction with and facilitation of nuclear import of β-catenin-1/2 in zebrafish. Thus, Nup62l regulates dorsoventral patterning, gastrula CE movements, and proper specification of midline organ precursors through mediating the nuclear import of β-catenins in zebrafish.
Collapse
|
18
|
Niu X, Hong J, Zheng X, Melville DB, Knapik EW, Meng A, Peng J. The nuclear pore complex function of Sec13 protein is required for cell survival during retinal development. J Biol Chem 2014; 289:11971-11985. [PMID: 24627485 DOI: 10.1074/jbc.m114.547190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sec13 is a dual function protein, being a core component of both the COPII coat, which mediates protein trafficking from the endoplasmic reticulum to the Golgi apparatus, and the nuclear pore complex (NPC), which facilitates nucleo-cytoplasmic traffic. Here, we present a genetic model to differentiate the roles of these two functions of Sec13 in vivo. We report that sec13(sq198) mutant embryos develop small eyes that exhibit disrupted retinal lamination and that the mutant retina contains an excessive number of apoptotic cells. Surprisingly, we found that loss of COPII function by oligonucleotide-mediated gene knockdown of sec31a and sec31b or brefeldin A treatment did not disrupt retinal lamination, although it did result in digestive organ defects similar to those seen in sec13(sq198), suggesting that the digestive organ defects observed in sec13(sq198) are due to loss of COPII function, whereas the retinal lamination defects are due to loss of the NPC function. We showed that the retinal cells of sec13(sq198) failed to form proper nuclear pores, leading to a nuclear accumulation of total mRNA and abnormal activation of the p53-dependent apoptosis pathway, causing the retinal defect in sec13(sq198). Furthermore, we found that a mutant lacking Nup107, a key NPC-specific component, phenocopied the retinal lamination phenotype as observed in sec13(sq198). Our results demonstrate a requirement for the nuclear pore function of Sec13 in development of the retina and provide the first genetic evidence to differentiate the contributions of the NPC and the COPII functions of Sec13 during organogenesis.
Collapse
Affiliation(s)
- Xubo Niu
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Hong
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Zheng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - David B Melville
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3370; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Ela W Knapik
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinrong Peng
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Asakawa H, Yang HJ, Yamamoto TG, Ohtsuki C, Chikashige Y, Sakata-Sogawa K, Tokunaga M, Iwamoto M, Hiraoka Y, Haraguchi T. Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe. Nucleus 2014; 5:149-62. [PMID: 24637836 PMCID: PMC4049921 DOI: 10.4161/nucl.28487] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The nuclear pore complex (NPC) is an enormous proteinaceous complex composed of multiple copies of about 30 different proteins called nucleoporins. In this study, we analyzed the composition of the NPC in the model organism Schizosaccharomyces pombe using strains in which individual nucleoporins were tagged with GFP. We identified 31 proteins as nucleoporins by their localization to the nuclear periphery. Gene disruption analysis in previous studies coupled with gene disruption analysis in the present study indicates that 15 of these nucleoporins are essential for vegetative cell growth and the other 16 nucleoporins are non-essential. Among the 16 non-essential nucleoporins, 11 are required for normal progression through meiosis and their disruption caused abnormal spore formation or poor spore viability. Based on fluorescence measurements of GFP-fused nucleoporins, we estimated the composition of the NPC in S. pombe and found that the organization of the S. pombe NPC is largely similar to that of other organisms; a single NPC was estimated as being 45.8–47.8 MDa in size. We also used fluorescence measurements of single NPCs and quantitative western blotting to analyze the composition of the Nup107-Nup160 subcomplex, which plays an indispensable role in NPC organization and function. Our analysis revealed low amounts of Nup107 and Nup131 and high amounts of Nup132 in the Nup107-Nup160 subcomplex, suggesting that the composition of this complex in S. pombe may differ from that in S. cerevisiae and humans. Comparative analysis of NPCs in various organisms will lead to a comprehensive understanding of the functional architecture of the NPC.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences; Osaka University; Suita, Japan
| | - Hui-Ju Yang
- Graduate School of Frontier Biosciences; Osaka University; Suita, Japan
| | - Takaharu G Yamamoto
- Advanced ICT Research Institute Kobe; National Institute of Information and Communications Technology; Kobe, Japan
| | - Chizuru Ohtsuki
- Graduate School of Frontier Biosciences; Osaka University; Suita, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe; National Institute of Information and Communications Technology; Kobe, Japan; Graduate School of Science; Osaka University; Toyonaka, Japan
| | - Kumiko Sakata-Sogawa
- Department of Biological Information; Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; Yokohama, Japan; RIKEN Center for Integrative Medical Sciences (IMS-RCAI); Yokohama, Japan
| | - Makio Tokunaga
- Department of Biological Information; Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; Yokohama, Japan; RIKEN Center for Integrative Medical Sciences (IMS-RCAI); Yokohama, Japan
| | - Masaaki Iwamoto
- Advanced ICT Research Institute Kobe; National Institute of Information and Communications Technology; Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences; Osaka University; Suita, Japan; Advanced ICT Research Institute Kobe; National Institute of Information and Communications Technology; Kobe, Japan; Graduate School of Science; Osaka University; Toyonaka, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences; Osaka University; Suita, Japan; Advanced ICT Research Institute Kobe; National Institute of Information and Communications Technology; Kobe, Japan; Graduate School of Science; Osaka University; Toyonaka, Japan
| |
Collapse
|
20
|
Colombi P, Webster BM, Fröhlich F, Lusk CP. The transmission of nuclear pore complexes to daughter cells requires a cytoplasmic pool of Nsp1. ACTA ACUST UNITED AC 2013; 203:215-32. [PMID: 24165936 PMCID: PMC3812967 DOI: 10.1083/jcb.201305115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nuclear pore complexes (NPCs) are essential protein assemblies that span the nuclear envelope and establish nuclear-cytoplasmic compartmentalization. We have investigated mechanisms that control NPC number in mother and daughter cells during the asymmetric division of budding yeast. By simultaneously tracking existing NPCs and newly synthesized NPC protomers (nups) through anaphase, we uncovered a pool of the central channel nup Nsp1 that is actively targeted to the bud in association with endoplasmic reticulum. Bud targeting required an intact actin cytoskeleton and the class V myosin, Myo2. Selective inhibition of cytoplasmic Nsp1 or inactivation of Myo2 reduced the inheritance of NPCs in daughter cells, leading to a daughter-specific loss of viability. Our data are consistent with a model in which Nsp1 releases a barrier that otherwise prevents NPC passage through the bud neck. It further supports the finding that NPC inheritance, not de novo NPC assembly, is primarily responsible for controlling NPC number in daughter cells.
Collapse
Affiliation(s)
- Paolo Colombi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | | | | | |
Collapse
|
21
|
Autophagy induction is a Tor- and Tp53-independent cell survival response in a zebrafish model of disrupted ribosome biogenesis. PLoS Genet 2013; 9:e1003279. [PMID: 23408911 PMCID: PMC3567153 DOI: 10.1371/journal.pgen.1003279] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 12/12/2012] [Indexed: 12/27/2022] Open
Abstract
Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (ttis450), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In ttis450, the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in ttis450 larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in ttis450 larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death. Autophagy is an act of self-preservation whereby a cell responds to stressful conditions such as nutrient depletion and intense muscular activity by digesting its own cytoplasmic organelles and proteins to fuel its longer-term survival. An understanding of the wide spectrum of physiological stimuli that can trigger this beneficial cellular mechanism is only just starting to emerge. However, this process also has a negative side, since autophagy is exploited in certain pathological conditions, including cancer, to extend the lifespan of cells that would otherwise die. Our analysis of a new zebrafish mutant, titania (ttis450), with defective digestive organs and abnormal craniofacial structure, sheds further light on the physiological and pathological ramifications of autophagy. In (ttis450), an inherited mutation in a gene required for ribosome production provides a powerful stimulus to autophagy in affected tissues, allowing them to evade cell death. The phenotypic consequences of impaired ribosome biogenesis in our zebrafish model are reminiscent of some of the clinical features associated with a group of human syndromes known as ribosomopathies.
Collapse
|
22
|
Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol 2013; 13:687-99. [PMID: 23090414 DOI: 10.1038/nrm3461] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nuclear pore complexes (NPCs) are multiprotein aqueous channels that penetrate the nuclear envelope connecting the nucleus and the cytoplasm. NPCs consist of multiple copies of roughly 30 different proteins known as nucleoporins (NUPs). Due to their essential role in controlling nucleocytoplasmic transport, NPCs have traditionally been considered as structures of ubiquitous composition. The overall structure of the NPC is indeed conserved in all cells, but new evidence suggests that the protein composition of NPCs varies among cell types and tissues. Moreover, mutations in various nucleoporins result in tissue-specific diseases. These findings point towards a heterogeneity in NPC composition and function. This unexpected heterogeneity suggests that cells use a combination of different nucleoporins to assemble NPCs with distinct properties and specialized functions.
Collapse
|
23
|
Zheng X, Yang S, Han Y, Zhao X, Zhao L, Tian T, Tong J, Xu P, Xiong C, Meng A. Loss of zygotic NUP107 protein causes missing of pharyngeal skeleton and other tissue defects with impaired nuclear pore function in zebrafish embryos. J Biol Chem 2012; 287:38254-64. [PMID: 22965233 PMCID: PMC3488094 DOI: 10.1074/jbc.m112.408997] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/08/2012] [Indexed: 11/06/2022] Open
Abstract
The Nup107-160 multiprotein subcomplex is essential for the assembly of nuclear pore complexes. The developmental functions of individual constituents of this subcomplex in vertebrates remain elusive. In particular, it is unknown whether Nup107 plays an important role in development of vertebrate embryos. Zebrafish nup107 is maternally expressed and its zygotic expression becomes prominent in the head region and the intestine from 24 h postfertilization (hpf) onward. In this study, we generate a zebrafish mutant line, nup107(tsu068Gt), in which the nup107 locus is disrupted by an insertion of Tol2 transposon element in the first intron and as a result it fails to produce normal transcripts. Homozygous nup107(tsu068Gt) mutant embryos exhibit tissue-specific defects after 3 days postfertilization (dpf), including loss of the pharyngeal skeletons, degeneration of the intestine, absence of the swim bladder, and smaller eyes. These mutants die at 5-6 days. Extensive apoptosis occurs in the affected tissues, which is partially dependent on p53 apoptotic pathways. In cells of the defective tissues, FG-repeat nucleoporins are disturbed and nuclear pore number is reduced, leading to impaired translocation of mRNAs from the nucleus to the cytoplasm. Our findings shed new light on developmental function of Nup107 in vertebrates.
Collapse
Affiliation(s)
- Xiaofeng Zheng
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Shuyan Yang
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
- the Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanchao Han
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Xinyi Zhao
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Long Zhao
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Tian Tian
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Jingyuan Tong
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Pengfei Xu
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Cong Xiong
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
| | - Anming Meng
- From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China and
- the Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
24
|
Preserving the genome by regulating chromatin association with the nuclear envelope. Trends Cell Biol 2012; 22:465-73. [PMID: 22771046 DOI: 10.1016/j.tcb.2012.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 11/24/2022]
Abstract
The nuclear envelope compartmentalizes chromatin within eukaryotic cells and influences diverse cellular functions by controlling nucleocytoplasmic trafficking. Recent evidence has revealed the importance of interactions between chromatin and nuclear envelope components in the maintenance of genome integrity. Nuclear pore complexes (NPCs), traditionally regarded as transport gateways, have emerged as specialized hubs involved in organizing genome architecture, influencing DNA topology, and modulating DNA repair. Here, we review the interplay between the nuclear envelope, chromatin and DNA damage checkpoint pathways, and discuss the physiological and pathological implications of these associations.
Collapse
|
25
|
Niu X, Gao C, Jan Lo L, Luo Y, Meng C, Hong J, Hong W, Peng J. Sec13 safeguards the integrity of the endoplasmic reticulum and organogenesis of the digestive system in zebrafish. Dev Biol 2012; 367:197-207. [PMID: 22609279 DOI: 10.1016/j.ydbio.2012.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 04/12/2012] [Accepted: 05/04/2012] [Indexed: 12/31/2022]
Abstract
The Sec13-Sec31 heterotetramer serves as the outer coat in the COPII complex, which mediates protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus. Although it has been studied in depth in yeast and cultured cells, the role of COPII in organogenesis in a multicellular organism has not. We report here that a zebrafish sec13(sq198) mutant, which exhibits a phenotype of hypoplastic digestive organs, has a mutation in the sec13 gene. The mutant gene encodes a carboxyl-terminus-truncated Sec13 that loses its affinity to Sec31a, which leads to disintegration of the ER structure in various differentiated cells in sec13(sq198), including chondrocytes, intestinal epithelial cells and hepatocytes. Disruption of the ER structure activates an unfolded protein response that eventually causes the cells to undergo cell-cycle arrest and cell apoptosis, which arrest the growth of developing digestive organs in the mutant. Our data provide the first direct genetic evidence that COPII function is essential for the organogenesis of the digestive system.
Collapse
Affiliation(s)
- Xubo Niu
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jao LE, Appel B, Wente SR. A zebrafish model of lethal congenital contracture syndrome 1 reveals Gle1 function in spinal neural precursor survival and motor axon arborization. Development 2012; 139:1316-26. [PMID: 22357925 DOI: 10.1242/dev.074344] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In humans, GLE1 is mutated in lethal congenital contracture syndrome 1 (LCCS1) leading to prenatal death of all affected fetuses. Although the molecular roles of Gle1 in nuclear mRNA export and translation have been documented, no animal models for this disease have been reported. To elucidate the function of Gle1 in vertebrate development, we used the zebrafish (Danio rerio) model system. gle1 mRNA is maternally deposited and widely expressed. Altering Gle1 using an insertional mutant or antisense morpholinos results in multiple defects, including immobility, small eyes, diminished pharyngeal arches, curved body axis, edema, underdeveloped intestine and cell death in the central nervous system. These phenotypes parallel those observed in LCCS1 human fetuses. Gle1 depletion also results in reduction of motoneurons and aberrant arborization of motor axons. Unexpectedly, the motoneuron deficiency results from apoptosis of neural precursors, not of differentiated motoneurons. Mosaic analyses further indicate that Gle1 activity is required extrinsically in the environment for normal motor axon arborization. Importantly, the zebrafish phenotypes caused by Gle1 deficiency are only rescued by expressing wild-type human GLE1 and not by the disease-linked Fin(Major) mutant form of GLE1. Together, our studies provide the first functional characterization of Gle1 in vertebrate development and reveal its essential role in actively dividing cells. We propose that defective GLE1 function in human LCCS1 results in both neurogenic and non-neurogenic defects linked to the apoptosis of proliferative organ precursors.
Collapse
Affiliation(s)
- Li-En Jao
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | |
Collapse
|
27
|
D'Angelo MA, Gomez-Cavazos JS, Mei A, Lackner DH, Hetzer MW. A change in nuclear pore complex composition regulates cell differentiation. Dev Cell 2012; 22:446-58. [PMID: 22264802 DOI: 10.1016/j.devcel.2011.11.021] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/06/2011] [Accepted: 11/14/2011] [Indexed: 12/11/2022]
Abstract
Nuclear pore complexes (NPCs) are built from ∼30 different proteins called nucleoporins or Nups. Previous studies have shown that several Nups exhibit cell-type-specific expression and that mutations in NPC components result in tissue-specific diseases. Here we show that a specific change in NPC composition is required for both myogenic and neuronal differentiation. The transmembrane nucleoporin Nup210 is absent in proliferating myoblasts and embryonic stem cells (ESCs) but becomes expressed and incorporated into NPCs during cell differentiation. Preventing Nup210 production by RNAi blocks myogenesis and the differentiation of ESCs into neuroprogenitors. We found that the addition of Nup210 to NPCs does not affect nuclear transport but is required for the induction of genes that are essential for cell differentiation. Our results identify a single change in NPC composition as an essential step in cell differentiation and establish a role for Nup210 in gene expression regulation and cell fate determination.
Collapse
Affiliation(s)
- Maximiliano A D'Angelo
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
The enteric nervous system (ENS) is composed of neurons and glia that modulate many aspects of intestinal function. The ability to use both forward and reverse genetic approaches and to visualize development in living embryos and larvae has made zebrafish an attractive model in which to study mechanisms underlying ENS development. In this chapter, we review the recent work describing the development and organization of the zebrafish ENS and how this relates to intestinal motility. We also discuss the cellular, molecular, and genetic mechanisms that have been revealed by these studies and how they are providing new insights into human ENS diseases.
Collapse
Affiliation(s)
- Iain Shepherd
- Department of Biology, Emory University Rollins Research Building, Atlanta, Georgia, USA
| | | |
Collapse
|
29
|
Gao N, Davuluri G, Gong W, Seiler C, Furth EE, Kaestner K, Pack M, Pack M. The nuclear pore complex protein Elys is required for genome stability in mouse intestinal epithelial progenitor cells. Gastroenterology 2011; 140:1547-55.e10. [PMID: 21315719 PMCID: PMC3282118 DOI: 10.1053/j.gastro.2011.01.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 01/07/2011] [Accepted: 01/20/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Elys is a conserved protein that directs nuclear pore complex (NPC) assembly in mammalian cell lines and developing worms and zebrafish. Related studies in these systems indicate a role for Elys in DNA replication and repair. Intestinal epithelial progenitors of zebrafish elys mutants undergo apoptosis early in development. However, it is not known whether loss of Elys has a similar effect in the mammalian intestine or whether the NPC and DNA repair defects each contribute to the overall phenotype. METHODS We developed mice in which a conditional Elys allele was inactivated in the developing intestinal epithelium and during preimplantation development. Phenotypes of conditional mutant mice were determined using immunohistochemical analysis for nuclear pore proteins, electron microscopy, and immunoblot analysis of DNA replication and repair proteins. RESULTS Conditional inactivation of the Elys locus in the developing mouse intestinal epithelium led to a reversible delay in growth in juvenile mice that was associated with epithelial architecture distortion and crypt cell apoptosis. The phenotype was reduced in adult mutant mice, which were otherwise indistinguishable from wild-type mice. All mice had activated DNA damage responses but no evidence of NPC assembly defects. CONCLUSIONS In mice, Elys maintains genome stability in intestinal epithelial progenitor cells, independent of its role in NPC assembly in zebrafish.
Collapse
Affiliation(s)
- Nan Gao
- Department of Genetics, University of Pennsylvania School of Medicine
| | - Gangarao Davuluri
- Department of Medicine, University of Pennsylvania School of Medicine
| | - Weilong Gong
- Department of Medicine, University of Pennsylvania School of Medicine
| | - Christoph Seiler
- Department of Medicine, University of Pennsylvania School of Medicine
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine
| | - Klaus Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine
| | - Michael Pack
- Department of Medicine, University of Pennsylvania School of Medicine,Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine,Corresponding Authors: Michael Pack, M.D., Department of Medicine, University of Pennsylvania School of Medicine; . Klaus Kaestner, Ph.D., Department of Genetics, University of Pennsylvania School of Medicine;
| | | |
Collapse
|
30
|
Capelson M, Doucet C, Hetzer MW. Nuclear pore complexes: guardians of the nuclear genome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 75:585-97. [PMID: 21502404 DOI: 10.1101/sqb.2010.75.059] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Eukaryotic cell function depends on the physical separation of nucleoplasmic and cytoplasmic components by the nuclear envelope (NE). Molecular communication between the two compartments involves active, signal-mediated trafficking, a function that is exclusively performed by nuclear pore complexes (NPCs). The individual NPC components and the mechanisms that are involved in nuclear trafficking are well documented and have become textbook knowledge. However, in addition to their roles as nuclear gatekeepers, NPC components-nucleoporins-have been shown to have critical roles in chromatin organization and gene regulation. These findings have sparked new enthusiasm to study the roles of this multiprotein complex in nuclear organization and explore novel functions that in some cases appear to go beyond a role in transport. Here, we discuss our present view of NPC biogenesis, which is tightly linked to proper cell cycle progression and cell differentiation. In addition, we summarize new data suggesting that NPCs represent dynamic hubs for the integration of gene regulation and nuclear transport processes.
Collapse
Affiliation(s)
- M Capelson
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, La Jolla, California 92037, USA
| | | | | |
Collapse
|
31
|
Marshall KE, Tomasini AJ, Makky K, N Kumar S, Mayer AN. Dynamic Lkb1-TORC1 signaling as a possible mechanism for regulating the endoderm-intestine transition. Dev Dyn 2011; 239:3000-12. [PMID: 20925120 DOI: 10.1002/dvdy.22437] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The intestinal epithelium arises from undifferentiated endoderm via a developmental program known as the endoderm-intestine transition (EIT). Previously we found that the target of rapamycin complex 1 (TORC1) regulates intestinal growth and differentiation during the EIT in zebrafish. Here we address a possible role for the tumor-suppressor kinase Lkb1 in regulating TORC1 in this context. We find that TORC1 activity is transiently upregulated during the EIT in both zebrafish and mouse. Concomitantly, Lkb1 becomes transiently localized to the nucleus, suggesting that these two phenomena may be linked. Morpholino-mediated knockdown of lkb1 stimulated intestinal growth via upregulation of TORC1, and also induced precocious intestine-specific gene expression in the zebrafish gut epithelium. Knockdown of tsc2, which acts downstream of lkb1, likewise induced early expression of intestine-specific genes. These data suggest that programmed localization of Lkb1 could represent a novel mechanism for regulating the EIT during intestinal development in vertebrates.
Collapse
Affiliation(s)
- Kathryn E Marshall
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
32
|
Oehlers SH, Flores MV, Okuda KS, Hall CJ, Crosier KE, Crosier PS. A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents. Dev Dyn 2010; 240:288-98. [DOI: 10.1002/dvdy.22519] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
33
|
Bagnat M, Navis A, Herbstreith S, Brand-Arzamendi K, Curado S, Gabriel S, Mostov K, Huisken J, Stainier DYR. Cse1l is a negative regulator of CFTR-dependent fluid secretion. Curr Biol 2010; 20:1840-5. [PMID: 20933420 DOI: 10.1016/j.cub.2010.09.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/05/2010] [Accepted: 09/02/2010] [Indexed: 01/26/2023]
Abstract
Transport of chloride through the cystic fibrosis transmembrane conductance regulator (CFTR) channel is a key step in regulating fluid secretion in vertebrates [1, 2]. Loss of CFTR function leads to cystic fibrosis [1, 3, 4], a disease that affects the lungs, pancreas, liver, intestine, and vas deferens. Conversely, uncontrolled activation of the channel leads to increased fluid secretion and plays a major role in several diseases and conditions including cholera [5, 6] and other secretory diarrheas [7] as well as polycystic kidney disease [8-10]. Understanding how CFTR activity is regulated in vivo has been limited by the lack of a genetic model. Here, we used a forward genetic approach in zebrafish to uncover CFTR regulators. We report the identification, isolation, and characterization of a mutation in the zebrafish cse1l gene that leads to the sudden and dramatic expansion of the gut tube. We show that this phenotype results from a rapid accumulation of fluid due to the uncontrolled activation of the CFTR channel. Analyses in zebrafish larvae and mammalian cells indicate that Cse1l is a negative regulator of CFTR-dependent fluid secretion. This work demonstrates the importance of fluid homeostasis in development and establishes the zebrafish as a much-needed model system to study CFTR regulation in vivo.
Collapse
Affiliation(s)
- Michel Bagnat
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fichtman B, Ramos C, Rasala B, Harel A, Forbes DJ. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis. Mol Biol Cell 2010; 21:4197-211. [PMID: 20926687 PMCID: PMC2993748 DOI: 10.1091/mbc.e10-04-0309] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.
Collapse
Affiliation(s)
- Boris Fichtman
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | | | | | | | | |
Collapse
|
35
|
Cerveny KL, Cavodeassi F, Turner KJ, de Jong-Curtain TA, Heath JK, Wilson SW. The zebrafish flotte lotte mutant reveals that the local retinal environment promotes the differentiation of proliferating precursors emerging from their stem cell niche. Development 2010; 137:2107-15. [PMID: 20504962 DOI: 10.1242/dev.047753] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is currently unclear how intrinsic and extrinsic mechanisms cooperate to control the progression from self-renewing to neurogenic divisions in retinal precursor cells. Here, we use the zebrafish flotte lotte (flo) mutant, which carries a mutation in the elys (ahctf1) gene, to study the relationship between cell cycle progression and neuronal differentiation by investigating how proliferating progenitor cells transition towards differentiation in a retinal stem cell niche termed the ciliary marginal zone (CMZ). In zebrafish embryos without Elys, CMZ cells retain the capacity to proliferate but lose the ability to enter their final neurogenic divisions to differentiate as neurons. However, mosaic retinae composed of wild-type and flo cells show that despite inherent cell cycle defects, flo mutant cells progress from proliferation to differentiation when in the vicinity of wild-type retinal neurons. We propose that the differentiated retinal environment limits the proliferation of precursors emerging from the CMZ in a manner that explains the spatial organisation of cells in the CMZ and ensures that proliferative retinal progenitors are driven towards differentiation.
Collapse
Affiliation(s)
- Kara L Cerveny
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E6BT, UK
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The zebrafish is a powerful vertebrate system with great advantages for both forward and reverse genetic screens and as a model for human disease conditions. Light microscopy has been used extensively to study zebrafish development but less frequently have these studies been combined with ultrastructural information. Zebrafish embryos are ideal for electron microscopy (EM) with a single transverse section containing many different cell types and tissues. However, conventional methods of EM do not provide optimal preservation of all tissues and are usually incompatible with immunolabelling and visualisation of expressed fluorescently tagged proteins. Here we examine methods that overcome these problems. We summarise a range of methods, applicable to the ultrastructural analysis of zebrafish embryos, including methods for fast freezing and processing of zebrafish embryos. These methods preserve antigenicity, ultrastructure and GFP fluorescence even after embedding in resin. In addition, they are compatible with electron tomography. These methods provide a new set of research tools that provide an additional level of information, complementing current methods for study of this widely used model system.
Collapse
|
37
|
Hetzer MW, Wente SR. Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes. Dev Cell 2009; 17:606-16. [PMID: 19922866 DOI: 10.1016/j.devcel.2009.10.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over the last decade, the nuclear envelope (NE) has emerged as a key component in the organization and function of the nuclear genome. As many as 100 different proteins are thought to specifically localize to this double membrane that separates the cytoplasm and the nucleoplasm of eukaryotic cells. Selective portals through the NE are formed at sites where the inner and outer nuclear membranes are fused, and the coincident assembly of approximately 30 proteins into nuclear pore complexes occurs. These nuclear pore complexes are essential for the control of nucleocytoplasmic exchange. Many of the NE and nuclear pore proteins are thought to play crucial roles in gene regulation and thus are increasingly linked to human diseases.
Collapse
Affiliation(s)
- Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | |
Collapse
|
38
|
Tabone T, Mather DE, Hayden MJ. Temperature switch PCR (TSP): Robust assay design for reliable amplification and genotyping of SNPs. BMC Genomics 2009; 10:580. [PMID: 19958555 PMCID: PMC2795770 DOI: 10.1186/1471-2164-10-580] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 12/03/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many research and diagnostic applications rely upon the assay of individual single nucleotide polymorphisms (SNPs). Thus, methods to improve the speed and efficiency for single-marker SNP genotyping are highly desirable. Here, we describe the method of temperature-switch PCR (TSP), a biphasic four-primer PCR system with a universal primer design that permits amplification of the target locus in the first phase of thermal cycling before switching to the detection of the alleles. TSP can simplify assay design for a range of commonly used single-marker SNP genotyping methods, and reduce the requirement for individual assay optimization and operator expertise in the deployment of SNP assays. RESULTS We demonstrate the utility of TSP for the rapid construction of robust and convenient endpoint SNP genotyping assays based on allele-specific PCR and high resolution melt analysis by generating a total of 11,232 data points. The TSP assays were performed under standardised reaction conditions, requiring minimal optimization of individual assays. High genotyping accuracy was verified by 100% concordance of TSP genotypes in a blinded study with an independent genotyping method. CONCLUSION Theoretically, TSP can be directly incorporated into the design of assays for most current single-marker SNP genotyping methods. TSP provides several technological advances for single-marker SNP genotyping including simplified assay design and development, increased assay specificity and genotyping accuracy, and opportunities for assay automation. By reducing the requirement for operator expertise, TSP provides opportunities to deploy a wider range of single-marker SNP genotyping methods in the laboratory. TSP has broad applications and can be deployed in any animal and plant species.
Collapse
Affiliation(s)
- Tania Tabone
- Molecular Plant Breeding Co-operative Research Centre and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Diane E Mather
- Molecular Plant Breeding Co-operative Research Centre and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Matthew J Hayden
- Molecular Plant Breeding Co-operative Research Centre and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Department of Primary Industries Victoria, Victorian AgriBiosciences Centre, La Trobe R&D Park, Bundoora, VIC 3083, Australia
| |
Collapse
|
39
|
Lau CK, Delmar VA, Chan RC, Phung Q, Bernis C, Fichtman B, Rasala BA, Forbes DJ. Transportin regulates major mitotic assembly events: from spindle to nuclear pore assembly. Mol Biol Cell 2009; 20:4043-58. [PMID: 19641022 DOI: 10.1091/mbc.e09-02-0152] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mitosis in higher eukaryotes is marked by the sequential assembly of two massive structures: the mitotic spindle and the nucleus. Nuclear assembly itself requires the precise formation of both nuclear membranes and nuclear pore complexes. Previously, importin alpha/beta and RanGTP were shown to act as dueling regulators to ensure that these assembly processes occur only in the vicinity of the mitotic chromosomes. We now find that the distantly related karyopherin, transportin, negatively regulates nuclear envelope fusion and nuclear pore assembly in Xenopus egg extracts. We show that transportin-and importin beta-initiate their regulation as early as the first known step of nuclear pore assembly: recruitment of the critical pore-targeting nucleoporin ELYS/MEL-28 to chromatin. Indeed, each karyopherin can interact directly with ELYS. We further define the nucleoporin subunit targets for transportin and importin beta and find them to be largely the same: ELYS, the Nup107/160 complex, Nup53, and the FG nucleoporins. Equally importantly, we find that transportin negatively regulates mitotic spindle assembly. These negative regulatory events are counteracted by RanGTP. We conclude that the interplay of the two negative regulators, transportin and importin beta, along with the positive regulator RanGTP, allows precise choreography of multiple cell cycle assembly events.
Collapse
Affiliation(s)
- Corine K Lau
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Capelson M, Hetzer MW. The role of nuclear pores in gene regulation, development and disease. EMBO Rep 2009; 10:697-705. [PMID: 19543230 DOI: 10.1038/embor.2009.147] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 05/27/2009] [Indexed: 12/31/2022] Open
Abstract
Nuclear-pore complexes (NPCs) are large protein channels that span the nuclear envelope (NE), which is a double membrane that encloses the nuclear genome of eukaryotes. Each of the typically 2,000-4,000 pores in the NE of vertebrate cells is composed of multiple copies of 30 different proteins known as nucleoporins. The evolutionarily conserved NPC proteins have the well-characterized function of mediating the transport of molecules between the nucleoplasm and the cytoplasm. Mutations in nucleoporins are often linked to specific developmental defects and disease, and the resulting phenotypes are usually interpreted as the consequences of perturbed nuclear transport activity. However, recent evidence suggests that NPCs have additional functions in chromatin organization and gene regulation, some of which might be independent of nuclear transport. Here, we review the transport-dependent and transport-independent roles of NPCs in the regulation of nuclear function and gene expression.
Collapse
Affiliation(s)
- Maya Capelson
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, La Jolla, California 92037, USA
| | | |
Collapse
|
41
|
Burzynski G, Shepherd IT, Enomoto H. Genetic model system studies of the development of the enteric nervous system, gut motility and Hirschsprung's disease. Neurogastroenterol Motil 2009; 21:113-27. [PMID: 19215589 PMCID: PMC4041618 DOI: 10.1111/j.1365-2982.2008.01256.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The enteric nervous system (ENS) is the largest and most complicated subdivision of the peripheral nervous system. Its action is necessary to regulate many of the functions of the gastrointestinal tract including its motility. Whilst the ENS has been studied extensively by developmental biologists, neuroscientists and physiologists for several decades it has only been since the early 1990s that the molecular and genetic basis of ENS development has begun to emerge. Central to this understanding has been the use of genetic model organisms. In this article, we will discuss recent advances that have been achieved using both mouse and zebrafish model genetic systems that have led to new insights into ENS development and the genetic basis of Hirschsprung's disease.
Collapse
Affiliation(s)
- G Burzynski
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|