1
|
Wells RG. Liver fibrosis: Our evolving understanding. Clin Liver Dis (Hoboken) 2024; 23:e0243. [PMID: 38961878 PMCID: PMC11221862 DOI: 10.1097/cld.0000000000000243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 07/05/2024] Open
|
2
|
Garg A, Khan S, Luu N, Nicholas DJ, Day V, King AL, Fear J, Lalor PF, Newsome PN. TGFβ 1 priming enhances CXCR3-mediated mesenchymal stromal cell engraftment to the liver and enhances anti-inflammatory efficacy. J Cell Mol Med 2023; 27:864-878. [PMID: 36824012 PMCID: PMC10002976 DOI: 10.1111/jcmm.17698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/25/2023] Open
Abstract
The immunomodulatory characteristics of mesenchymal stromal cells (MSC) confers them with potential therapeutic value in the treatment of inflammatory/immune-mediated conditions. Previous studies have reported only modest beneficial effects in murine models of liver injury. In our study we explored the role of MSC priming to enhance their effectiveness. Herein we demonstrate that stimulation of human MSC with cytokine TGβ1 enhances their homing and engraftment to human and murine hepatic sinusoidal endothelium in vivo and in vitro, which was mediated by increased expression of CXCR3. Alongside improved hepatic homing there was also greater reduction in liver inflammation and necrosis, with no adverse effects, in the CCL4 murine model of liver injury treated with primed MSC. Priming of MSCs with TGFβ1 is a novel strategy to improve the anti-inflammatory efficacy of MSCs.
Collapse
Affiliation(s)
- Abhilok Garg
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sheeba Khan
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - N Luu
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Davies J Nicholas
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Victoria Day
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Andrew L King
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Janine Fear
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Patricia F Lalor
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Philip N Newsome
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
3
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
4
|
Smilde BJ, Botman E, de Vries TJ, de Vries R, Micha D, Schoenmaker T, Janssen JJWM, Eekhoff EMW. A Systematic Review of the Evidence of Hematopoietic Stem Cell Differentiation to Fibroblasts. Biomedicines 2022; 10:biomedicines10123063. [PMID: 36551819 PMCID: PMC9775738 DOI: 10.3390/biomedicines10123063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Fibroblasts have an important role in the maintenance of the extracellular matrix of connective tissues by producing and remodelling extracellular matrix proteins. They are indispensable for physiological processes, and as such also associate with many pathological conditions. In recent years, a number of studies have identified donor-derived fibroblasts in various tissues of bone marrow transplant recipients, while others could not replicate these findings. In this systematic review, we provide an overview of the current literature regarding the differentiation of hematopoietic stem cells into fibroblasts in various tissues. PubMed, Embase, and Web of Science (Core Collection) were systematically searched for original articles concerning fibroblast origin after hematopoietic stem cell transplantation in collaboration with a medical information specialist. Our search found 5421 studies, of which 151 were analysed for full-text analysis by two authors independently, resulting in the inclusion of 104 studies. Only studies in animals and humans, in which at least one marker was used for fibroblast identification, were included. The results were described per organ of fibroblast engraftment. We show that nearly all mouse and human organs show evidence of fibroblasts of hematopoietic stem cell transfer origin. Despite significant heterogeneity in the included studies, most demonstrate a significant presence of fibroblasts of hematopoietic lineage in non-hematopoietic tissues. This presence appears to increase after the occurrence of tissue damage.
Collapse
Affiliation(s)
- Bernard J. Smilde
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Movement Sciences, 1081 HV Amsterdam, The Netherlands
| | - Esmée Botman
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Movement Sciences, 1081 HV Amsterdam, The Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, 1081 LA Amsterdam, The Netherlands
| | - Ralph de Vries
- Medical Library, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, 1081 LA Amsterdam, The Netherlands
| | | | - Elisabeth M. W. Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Movement Sciences, 1081 HV Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-72-548-4444
| |
Collapse
|
5
|
Reinhardt JW, Breuer CK. Fibrocytes: A Critical Review and Practical Guide. Front Immunol 2021; 12:784401. [PMID: 34975874 PMCID: PMC8718395 DOI: 10.3389/fimmu.2021.784401] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
Fibrocytes are hematopoietic-derived cells that directly contribute to tissue fibrosis by producing collagen following injury, during disease, and with aging. The lack of a fibrocyte-specific marker has led to the use of multiple strategies for identifying these cells in vivo. This review will detail how past studies were performed, report their findings, and discuss their strengths and limitations. The motivation is to identify opportunities for further investigation and promote the adoption of best practices during future study design.
Collapse
Affiliation(s)
- James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
6
|
Moriya K, Nishimura N, Namisaki T, Takaya H, Sawada Y, Kawaratani H, Kaji K, Shimozato N, Sato S, Furukawa M, Douhara A, Akahane T, Mitoro A, Yamao J, Yoshiji H. Zinc Administration and Improved Serum Markers of Hepatic Fibrosis in Patients with Autoimmune Hepatitis. J Clin Med 2021; 10:2465. [PMID: 34199421 PMCID: PMC8199625 DOI: 10.3390/jcm10112465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
AIM The aim of the present study is to investigate the effect of long-term zinc supplementation, which is important for the activation of various enzymes that contribute to antioxidant and antifibrotic activities, on the improvement of serum fibrotic markers in patients with autoimmune hepatitis (AIH). METHODS A total of 38 patients with AIH under regular treatment at our hospital who provided their consent for being treated with polaprezinc (75 mg twice daily) were included and classified into 2 groups: the patients with zinc elevation (n = 27) and the patients without zinc elevation (n = 11). Serum biomarker of fibrosis, protein expression levels of matrix metalloproteinases (MMPs), and their inhibitors (TIMPs) were evaluated. RESULTS A significant difference was found between the variability of serum procollagen type Ⅲ and collagen type Ⅳ-7S between the 2 groups before and after zinc administration for more than 24 months (p = 0.043 and p = 0.049). In the patients with zinc elevation, no significant changes were found in collagenase (MMP-1 and MMP-13) before and after zinc administration, whereas a significant increase in the expression of gelatinase (MMP-2 and MMP-9) was found after administration (p = 0.021 and p = 0.005). As for the relative ratio of MMPs to TIMPs, only MMP-9 to TIMP-1 showed a significant increase (p = 0.004). CONCLUSIONS Long-term treatment with polaprezinc has been demonstrated to safely improve serum fibrosis indices through increases in MMP-2/-9 and MMP-9/TIMP-1 and is expected to be well combined with direct antifibrotic therapies such as molecularly targeted agents.
Collapse
Affiliation(s)
- Kei Moriya
- Department of Gastroenterology and Hepatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (N.N.); (T.N.); (H.T.); (Y.S.); (H.K.); (K.K.); (N.S.); (S.S.); (A.D.); (T.A.); (A.M.); (H.Y.)
| | - Norihisa Nishimura
- Department of Gastroenterology and Hepatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (N.N.); (T.N.); (H.T.); (Y.S.); (H.K.); (K.K.); (N.S.); (S.S.); (A.D.); (T.A.); (A.M.); (H.Y.)
| | - Tadashi Namisaki
- Department of Gastroenterology and Hepatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (N.N.); (T.N.); (H.T.); (Y.S.); (H.K.); (K.K.); (N.S.); (S.S.); (A.D.); (T.A.); (A.M.); (H.Y.)
| | - Hiroaki Takaya
- Department of Gastroenterology and Hepatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (N.N.); (T.N.); (H.T.); (Y.S.); (H.K.); (K.K.); (N.S.); (S.S.); (A.D.); (T.A.); (A.M.); (H.Y.)
| | - Yasuhiko Sawada
- Department of Gastroenterology and Hepatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (N.N.); (T.N.); (H.T.); (Y.S.); (H.K.); (K.K.); (N.S.); (S.S.); (A.D.); (T.A.); (A.M.); (H.Y.)
| | - Hideto Kawaratani
- Department of Gastroenterology and Hepatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (N.N.); (T.N.); (H.T.); (Y.S.); (H.K.); (K.K.); (N.S.); (S.S.); (A.D.); (T.A.); (A.M.); (H.Y.)
| | - Kosuke Kaji
- Department of Gastroenterology and Hepatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (N.N.); (T.N.); (H.T.); (Y.S.); (H.K.); (K.K.); (N.S.); (S.S.); (A.D.); (T.A.); (A.M.); (H.Y.)
| | - Naotaka Shimozato
- Department of Gastroenterology and Hepatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (N.N.); (T.N.); (H.T.); (Y.S.); (H.K.); (K.K.); (N.S.); (S.S.); (A.D.); (T.A.); (A.M.); (H.Y.)
| | - Shinya Sato
- Department of Gastroenterology and Hepatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (N.N.); (T.N.); (H.T.); (Y.S.); (H.K.); (K.K.); (N.S.); (S.S.); (A.D.); (T.A.); (A.M.); (H.Y.)
| | - Masanori Furukawa
- Department of Endoscopy, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (M.F.); (J.Y.)
| | - Akitoshi Douhara
- Department of Gastroenterology and Hepatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (N.N.); (T.N.); (H.T.); (Y.S.); (H.K.); (K.K.); (N.S.); (S.S.); (A.D.); (T.A.); (A.M.); (H.Y.)
| | - Takemi Akahane
- Department of Gastroenterology and Hepatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (N.N.); (T.N.); (H.T.); (Y.S.); (H.K.); (K.K.); (N.S.); (S.S.); (A.D.); (T.A.); (A.M.); (H.Y.)
| | - Akira Mitoro
- Department of Gastroenterology and Hepatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (N.N.); (T.N.); (H.T.); (Y.S.); (H.K.); (K.K.); (N.S.); (S.S.); (A.D.); (T.A.); (A.M.); (H.Y.)
| | - Junichi Yamao
- Department of Endoscopy, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (M.F.); (J.Y.)
| | - Hitoshi Yoshiji
- Department of Gastroenterology and Hepatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (N.N.); (T.N.); (H.T.); (Y.S.); (H.K.); (K.K.); (N.S.); (S.S.); (A.D.); (T.A.); (A.M.); (H.Y.)
| |
Collapse
|
7
|
Kurashima Y, Kigoshi T, Murasaki S, Arai F, Shimada K, Seki N, Kim YG, Hase K, Ohno H, Kawano K, Ashida H, Suzuki T, Morimoto M, Saito Y, Sasou A, Goda Y, Yuki Y, Inagaki Y, Iijima H, Suda W, Hattori M, Kiyono H. Pancreatic glycoprotein 2 is a first line of defense for mucosal protection in intestinal inflammation. Nat Commun 2021; 12:1067. [PMID: 33594081 PMCID: PMC7887276 DOI: 10.1038/s41467-021-21277-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Increases in adhesive and invasive commensal bacteria, such as Escherichia coli, and subsequent disruption of the epithelial barrier is implicated in the pathogenesis of inflammatory bowel disease (IBD). However, the protective systems against such barrier disruption are not fully understood. Here, we show that secretion of luminal glycoprotein 2 (GP2) from pancreatic acinar cells is induced in a TNF-dependent manner in mice with chemically induced colitis. Fecal GP2 concentration is also increased in Crohn's diease patients. Furthermore, pancreas-specific GP2-deficient colitis mice have more severe intestinal inflammation and a larger mucosal E. coli population than do intact mice, indicating that digestive-tract GP2 binds commensal E. coli, preventing epithelial attachment and penetration. Thus, the pancreas-intestinal barrier axis and pancreatic GP2 are important as a first line of defense against adhesive and invasive commensal bacteria during intestinal inflammation.
Collapse
Affiliation(s)
- Yosuke Kurashima
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, University of California, San Diego, CA, USA.
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Takaaki Kigoshi
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatrics, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Sayuri Murasaki
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fujimi Arai
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kaoru Shimada
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Natsumi Seki
- Division of Biochemistry, Graduate School of Pharmacological Science, Keio University, Tokyo, Japan
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Koji Hase
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Biochemistry, Graduate School of Pharmacological Science, Keio University, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| | - Kazuya Kawano
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Hiroshi Ashida
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masako Morimoto
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yukari Saito
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ai Sasou
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuki Goda
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Yuki
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroshi Kiyono
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, University of California, San Diego, CA, USA.
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
8
|
Hsu MJ, Christ M, Christ B. Co-Culture of Human Mesenchymal Stromal Cells and Primary Mouse Hepatocytes. Methods Mol Biol 2021; 2269:151-165. [PMID: 33687678 DOI: 10.1007/978-1-0716-1225-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human mesenchymal stromal cells (MSC) are adult stem cells, which feature hepatotropism by supporting liver regeneration through amelioration of hepatic inflammation and lipid accumulation in a mouse model of non-alcoholic steatohepatitis (NASH), a more advanced stage of fatty liver. It remains open, how MSC impact on hepatocytic lipid metabolism. To study MSC actions on fatty liver mechanistically, we established an in vitro model of co-culture comprising MSC and isolated mouse hepatocytes at a ratio of 1:1. Lipid storage in hepatocytes was induced by the treatment with medium deficiency of methionine and choline (MCD). The protocol can be adapted for the use of other lipid storage-inducing agents such as palmitic acid and linoleic acid. This co-culture model allows to study, e.g., whether MSC act indirectly via MSC-born paracrine mechanisms or through direct physical interactions between cells beside others. The protocol allows us to detect the formation of extensions (filopodia) from MSC to contact the fatty hepatocytes or other MSC within 24 h of co-culture. These structures may represent tunneling nanotubes (TNT), allowing for long-range intercellular communication.
Collapse
Affiliation(s)
- Mei-Ju Hsu
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, Applied Molecular Hepatology Lab, University of Leipzig Medical Center, Leipzig, Germany
| | - Madlen Christ
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, Applied Molecular Hepatology Lab, University of Leipzig Medical Center, Leipzig, Germany
| | - Bruno Christ
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, Applied Molecular Hepatology Lab, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
9
|
Kawano H, Koyama K, Nishimura H, Toyoda Y, Kagawa K, Sato S, Naito N, Goto H, Inagaki Y, Nishioka Y. Development of improved method to identify and analyze lung fibrocytes with flow cytometry in a reporter mouse strain. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:120-127. [PMID: 33369271 PMCID: PMC7860606 DOI: 10.1002/iid3.361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/06/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Introduction Fibrocytes are emerging myeloid‐derived circulating cells that can migrate into damaged tissues and usually contribute to their repair. Key features of fibrocytes include the expression myeloid markers, production of extracellular matrix proteins, and secretion of various humoral factors that activate resident fibroblasts; they also have the potential to differentiate into fibroblasts. However, no specific surface markers have been identified to identify fibrocytes in vivo. One reason could be that the method used to detect fibrocytes requires intracellular collagen staining. Methods In the present study, to establish an improved method for the detection of lung fibrocytes and to analyze viable fibrocytes, we used collagen I(α)2‐green fluorescent protein (Col‐GFP) reporter mice, which had undergone the intratracheal instillation of bleomycin (BLM). Results Using flow cytometry to gate out cells with autofluorescence, we clearly found that CD45+ GFP+ cells resided in the lungs of Col‐GFP mice at a steady state and these cells increased after BLM injury, peaking at Day 14. These cells expressed not only known cell surface markers of fibrocytes, but also some novel markers, in addition to a low level of collagen I in comparison to CD45− GFP+ cells. Conclusion Our findings suggest that the improved method can be a useful for the detection of pure lung fibrocytes and allows us to further analyze the characteristics of viable fibrocytes.
Collapse
Affiliation(s)
- Hiroshi Kawano
- Department of Respiratory Medicine & Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kazuya Koyama
- Department of Respiratory Medicine & Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Haruka Nishimura
- Department of Respiratory Medicine & Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuko Toyoda
- Department of Respiratory Medicine & Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kozo Kagawa
- Department of Respiratory Medicine & Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Seidai Sato
- Department of Respiratory Medicine & Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Nobuhito Naito
- Department of Respiratory Medicine & Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hisatsugu Goto
- Department of Respiratory Medicine & Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yutaka Inagaki
- Department of Regenerative Medicine, Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine & Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
10
|
Matsumura S, Kurashima Y, Murasaki S, Morimoto M, Arai F, Saito Y, Katayama N, Kim D, Inagaki Y, Kudo T, Ernst PB, Shimizu T, Kiyono H. Stratified layer analysis reveals intrinsic leptin stimulates cryptal mesenchymal cells for controlling mucosal inflammation. Sci Rep 2020; 10:18351. [PMID: 33110098 PMCID: PMC7591933 DOI: 10.1038/s41598-020-75186-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal cells in the crypt play indispensable roles in the maintenance of intestinal epithelial homeostasis through their contribution to the preservation of stem cells. However, the acquisition properties of the production of stem cell niche factors by the mesenchymal cells have not been well elucidated, due to technical limitations regarding the isolation and subsequent molecular and cellular analyses of cryptal mesenchymal cells. To evaluate the function of mesenchymal cells located at the large intestinal crypt, we established a novel method through which cells are harvested according to the histologic layers of mouse colon, and we compared cellular properties between microenvironmental niches, the luminal mucosa and crypts. The gene expression pattern in the cryptal mesenchymal cells showed that receptors of the hormone/cytokine leptin were highly expressed, and we found a decrease in Wnt2b expression under conditions of leptin receptor deficiency, which also induced a delay in cryptal epithelial proliferation. Our novel stratified layer isolation strategies thus revealed new microenvironmental characteristics of colonic mesenchymal cells, including the intrinsic involvement of leptin in the control of mucosal homeostasis.
Collapse
Affiliation(s)
- Seiichi Matsumura
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan.,Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Pediatrics, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan. .,Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan. .,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan. .,Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA. .,Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, CA, 92093-0956, USA.
| | - Sayuri Murasaki
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Masako Morimoto
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Fujimi Arai
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yukari Saito
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Nana Katayama
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Dayoung Kim
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Takahiro Kudo
- Department of Pediatrics, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Peter B Ernst
- Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA.,Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, CA, 92093-0956, USA.,Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, CA, 92093-0956, USA
| | - Toshiaki Shimizu
- Department of Pediatrics, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroshi Kiyono
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA
| |
Collapse
|
11
|
Mitochondrial Transfer by Human Mesenchymal Stromal Cells Ameliorates Hepatocyte Lipid Load in a Mouse Model of NASH. Biomedicines 2020; 8:biomedicines8090350. [PMID: 32937969 PMCID: PMC7554948 DOI: 10.3390/biomedicines8090350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cell (MSC) transplantation ameliorated hepatic lipid load; tissue inflammation; and fibrosis in rodent animal models of non-alcoholic steatohepatitis (NASH) by as yet largely unknown mechanism(s). In a mouse model of NASH; we transplanted bone marrow-derived MSCs into the livers; which were analyzed one week thereafter. Combined metabolomic and proteomic data were applied to weighted gene correlation network analysis (WGCNA) and subsequent identification of key drivers. Livers were analyzed histologically and biochemically. The mechanisms of MSC action on hepatocyte lipid accumulation were studied in co-cultures of hepatocytes and MSCs by quantitative image analysis and immunocytochemistry. WGCNA and key driver analysis revealed that NASH caused the impairment of central carbon; amino acid; and lipid metabolism associated with mitochondrial and peroxisomal dysfunction; which was reversed by MSC treatment. MSC improved hepatic lipid metabolism and tissue homeostasis. In co-cultures of hepatocytes and MSCs; the decrease of lipid load was associated with the transfer of mitochondria from the MSCs to the hepatocytes via tunneling nanotubes (TNTs). Hence; MSCs may ameliorate lipid load and tissue perturbance by the donation of mitochondria to the hepatocytes. Thereby; they may provide oxidative capacity for lipid breakdown and thus promote recovery from NASH-induced metabolic impairment and tissue injury.
Collapse
|
12
|
Sumiyoshi H, Nakao S, Endo H, Yanagawa T, Nakano Y, Okamura Y, Kawaguchi AT, Inagaki Y. A Novel Composite Biomaterial Made of Jellyfish and Porcine Collagens Accelerates Dermal Wound Healing by Enhancing Reepithelization and Granulation Tissue Formation in Mice. Adv Wound Care (New Rochelle) 2020; 9:295-311. [PMID: 32286206 DOI: 10.1089/wound.2019.1014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background and Objective: Impaired dermal wound healing represents a major medical issue in today's aging populations. Granulation tissue formation in the dermis and reepithelization of the epidermis are both important and necessary for proper wound healing. Although a number of artificial dermal grafts have been used to treat full-thickness dermal loss in humans, they do not induce reepithelization of the wound, requiring subsequent epithelial transplantation. In the present study, we sought a novel biomaterial that accelerates the wound healing process. Approach: We prepared a composite biomaterial made of jellyfish and porcine collagens and developed a hybrid-type dermal graft that composed of the upper layer film and the lower layer sponge made of this composite biomaterial. Its effect on dermal wound healing was examined using a full-thickness excisional wound model. Structural properties of the dermal graft and histological features of the regenerating skin tissue were characterized by electron microscopic observation and immunohistological examination, respectively. Results: The composite biomaterial film stimulated migration of keratinocytes, leading to prompt reepithelization. The regenerating epithelium consisted of two distinct cell populations: keratin 5-positive basal keratinocytes and more differentiated cells expressing tight junction proteins such as claudin-1 and occludin. At the same time, the sponge made of the composite biomaterial possessed a significantly enlarged intrinsic space and enhanced infiltration of inflammatory cells and fibroblasts, accelerating granulation tissue formation. Innovation: This newly developed composite biomaterial may serve as a dermal graft that accelerates wound healing in various pathological conditions. Conclusion: We have developed a novel dermal graft composed of jellyfish and porcine collagens that remarkably accelerates the wound healing process.
Collapse
Affiliation(s)
- Hideaki Sumiyoshi
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Sachie Nakao
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Hitoshi Endo
- Department of Preventive Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Takayo Yanagawa
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Yasuhiro Nakano
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Yosuke Okamura
- Course of Industrial Chemistry, Graduate School of Engineering, Tokai University, Hiratsuka, Japan
| | - Akira T. Kawaguchi
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
- Instutute of Medical Sciences, Tokai University, Isehara, Japan
| |
Collapse
|
13
|
Abstract
Purpose This review highlights the roles of fibrocytes—their origin, markers, regulation and functions—including contributions to corneal wound healing and fibrosis. Methods Literature review. Results Peripheral blood fibroblast-like cells, called fibrocytes, are primarily generated as mature collagen-producing cells in the bone marrow. They are likely derived from the myeloid lineage, although the exact precursor remains unknown. Fibrocytes are identified by a combination of expressed markers, such as simultaneous expression of CD34 or CD45 or CD11b and collagen type I or collagen type III. Fibrocytes migrate into the wound from the blood where they participate in pathogen clearance, tissue regeneration, wound closure and angiogenesis. Transforming growth factor beta 1 (TGF-β1) and adiponectin induce expression of α-smooth muscle actin and extracellular matrix proteins through activation of Smad3 and adenosine monophosphate-activated protein kinase pathways, respectively. Fibrocytes are important contributors to the cornea wound healing response and there are several mechanisms through which fibrocytes contribute to fibrosis in the cornea and other organs, such as their differentiation into myofibroblasts, production of matrix metalloproteinase, secretion of tissue inhibitor of metalloproteinase, and release of TGF-β1. In some tissues, fibrocytes may also contribute to the basement membrane regeneration and to the resolution of fibrosis. Conclusions New methods that block fibrocyte generation, fibrocyte migration, and their differentiation into myofibroblasts, as well as their production of matrix metalloproteinases, tissue inhibitor of metalloproteinase, and TGF-β1, have therapeutic potential to reduce the accumulation of collagens, maintain tissue integrity and retard or prevent the development of fibrosis.
Collapse
|
14
|
Asakawa M, Itoh M, Suganami T, Sakai T, Kanai S, Shirakawa I, Yuan X, Hatayama T, Shimada S, Akiyama Y, Fujiu K, Inagaki Y, Manabe I, Yamaoka S, Yamada T, Tanaka S, Ogawa Y. Upregulation of cancer-associated gene expression in activated fibroblasts in a mouse model of non-alcoholic steatohepatitis. Sci Rep 2019; 9:19601. [PMID: 31862949 PMCID: PMC6925281 DOI: 10.1038/s41598-019-56039-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH), characterized by chronic inflammation and fibrosis, is predicted to be the leading cause of cirrhosis and hepatocellular carcinoma (HCC) in the next decade. Although recent evidence suggests the importance of fibrosis as the strongest determinant of HCC development, the molecular mechanisms underlying NASH-induced carcinogenesis still remain unclear. Here we performed RNA sequencing analysis to compare gene expression profiles of activated fibroblasts prepared from two distinct liver fibrosis models: carbon tetrachloride–induced fibrosis as a model without obesity and HCC and genetically obese melanocortin 4 receptor–deficient (MC4R-KO) mice fed Western diet, which develop steatosis, NASH, and eventually HCC. Our data showed that activated fibroblasts exhibited distinct gene expression patterns in each etiology, and that the ‘pathways in cancer’ were selectively upregulated in the activated fibroblasts from MC4R-KO mice. The most upregulated gene in these pathways was fibroblast growth factor 9 (FGF9), which was induced by metabolic stress such as palmitate. FGF9 exerted anti-apoptotic and pro-migratory effects in fibroblasts and hepatoma cells in vitro and accelerated tumor growth in a subcutaneous xenograft model. This study reveals upregulation of cancer-associated gene expression in activated fibroblasts in NASH, which would contribute to the progression from NASH to HCC.
Collapse
Affiliation(s)
- Masahiro Asakawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiko Itoh
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan. .,Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan. .,Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takeru Sakai
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Kanai
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ibuki Shirakawa
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Xunmei Yuan
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomi Hatayama
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuhito Fujiu
- Department of Advanced Cardiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan. .,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Japan Agency for Medical Research and Development, CREST, Tokyo, Japan.
| |
Collapse
|
15
|
CD103 hi T reg cells constrain lung fibrosis induced by CD103 lo tissue-resident pathogenic CD4 T cells. Nat Immunol 2019; 20:1469-1480. [PMID: 31591568 DOI: 10.1038/s41590-019-0494-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/12/2019] [Indexed: 01/05/2023]
Abstract
Tissue-resident memory T cells (TRM cells) are crucial mediators of adaptive immunity in nonlymphoid tissues. However, the functional heterogeneity and pathogenic roles of CD4+ TRM cells that reside within chronic inflammatory lesions remain unknown. We found that CD69hiCD103lo CD4+ TRM cells produced effector cytokines and promoted the inflammation and fibrotic responses induced by chronic exposure to Aspergillus fumigatus. Simultaneously, immunosuppressive CD69hiCD103hiFoxp3+ CD4+ regulatory T cells were induced and constrained the ability of pathogenic CD103lo TRM cells to cause fibrosis. Thus, lung tissue-resident CD4+ T cells play crucial roles in the pathology of chronic lung inflammation, and CD103 expression defines pathogenic effector and immunosuppressive tissue-resident cell subpopulations in the inflamed lung.
Collapse
|
16
|
Gli signaling pathway modulates fibroblast activation and facilitates scar formation in pulmonary fibrosis. Biochem Biophys Res Commun 2019; 514:684-690. [DOI: 10.1016/j.bbrc.2019.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022]
|
17
|
Shichino S, Ueha S, Hashimoto S, Otsuji M, Abe J, Tsukui T, Deshimaru S, Nakajima T, Kosugi-Kanaya M, Shand FH, Inagaki Y, Shimano H, Matsushima K. Transcriptome network analysis identifies protective role of the LXR/SREBP-1c axis in murine pulmonary fibrosis. JCI Insight 2019; 4:122163. [PMID: 30626759 DOI: 10.1172/jci.insight.122163] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis (PF) is an intractable disorder with a poor prognosis. Although lung fibroblasts play a central role in PF, the key regulatory molecules involved in this process remain unknown. To address this issue, we performed a time-course transcriptome analysis on lung fibroblasts of bleomycin- and silica-treated murine lungs. We found gene modules whose expression kinetics were associated with the progression of PF and human idiopathic PF (IPF). Upstream analysis of a transcriptome network helped in identifying 55 hub transcription factors that were highly connected with PF-associated gene modules. Of these hubs, the expression of Srebf1 decreased in line with progression of PF and human IPF, suggesting its suppressive role in fibroblast activation. Consistently, adoptive transfer and genetic modification studies revealed that the hub transcription factor SREBP-1c suppressed PF-associated gene expression changes in lung fibroblasts and PF pathology in vivo. Moreover, therapeutic pharmacological activation of LXR, an SREBP-1c activator, suppressed the Srebf1-dependent activation of fibroblasts and progression of PF. Thus, SREBP-1c acts as a protective hub of lung fibroblast activation in PF. Collectively, the findings of the current study may prove to be valuable in the development of effective therapeutic strategies for PF.
Collapse
Affiliation(s)
- Shigeyuki Shichino
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Satoshi Ueha
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shinichi Hashimoto
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan.,Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Mikiya Otsuji
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Jun Abe
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Tatsuya Tsukui
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shungo Deshimaru
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Takuya Nakajima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mizuha Kosugi-Kanaya
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Francis Hw Shand
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Chiba, Japan
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
18
|
Souma K, Shichino S, Hashimoto S, Ueha S, Tsukui T, Nakajima T, Suzuki HI, Shand FHW, Inagaki Y, Nagase T, Matsushima K. Lung fibroblasts express a miR-19a-19b-20a sub-cluster to suppress TGF-β-associated fibroblast activation in murine pulmonary fibrosis. Sci Rep 2018; 8:16642. [PMID: 30413725 PMCID: PMC6226532 DOI: 10.1038/s41598-018-34839-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Lung fibroblasts play a pivotal role in pulmonary fibrosis, a devastating lung disease, by producing extracellular matrix. MicroRNAs (miRNAs) suppress numerous genes post-transcriptionally; however, the roles of miRNAs in activated fibroblasts in fibrotic lungs remain poorly understood. To elucidate these roles, we performed global miRNA-expression profiling of fibroblasts from bleomycin- and silica-induced fibrotic lungs and investigated the functions of miRNAs in activated lung fibroblasts. Clustering analysis of global miRNA-expression data identified miRNA signatures exhibiting increased expression during fibrosis progression. Among these signatures, we found that a miR-19a-19b-20a sub-cluster suppressed TGF-β-induced activation of fibroblasts in vitro. Moreover, to elucidate whether fibroblast-specific intervention against the sub-cluster modulates pathogenic activation of fibroblasts in fibrotic lungs, we intratracheally transferred the sub-cluster-overexpressing fibroblasts into bleomycin-treated lungs. Global transcriptome analysis of the intratracheally transferred fibroblasts revealed that the sub-cluster not only downregulated expression of TGF-β-associated pro-fibrotic genes, including Acta2, Col1a1, Ctgf, and Serpine1, but also upregulated expression of the anti-fibrotic genes Dcn, Igfbp5, and Mmp3 in activated lung fibroblasts. Collectively, these findings indicated that upregulation of the miR-19a-19b-20a sub-cluster expression in lung fibroblasts counteracted TGF-β-associated pathogenic activation of fibroblasts in murine pulmonary fibrosis.
Collapse
Affiliation(s)
- Kunihiko Souma
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Shichino
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shinichi Hashimoto
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan.,Department of integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Satoshi Ueha
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan.
| | - Tatsuya Tsukui
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuya Nakajima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Francis H W Shand
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
19
|
Yanagawa T, Sumiyoshi H, Higashi K, Nakao S, Higashiyama R, Fukumitsu H, Minakawa K, Chiba Y, Suzuki Y, Sumida K, Saito K, Kamiya A, Inagaki Y. Identification of a Novel Bone Marrow Cell-Derived Accelerator of Fibrotic Liver Regeneration Through Mobilization of Hepatic Progenitor Cells in Mice. Stem Cells 2018; 37:89-101. [PMID: 30270488 DOI: 10.1002/stem.2916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/21/2018] [Accepted: 09/01/2018] [Indexed: 12/14/2022]
Abstract
Granulocyte colony stimulating factor (G-CSF) has been reported to ameliorate impaired liver function in patients with advanced liver diseases through mobilization and proliferation of hepatic progenitor cells (HPCs). However, the underlying mechanisms remain unknown. We previously showed that G-CSF treatment increased the number of bone marrow (BM)-derived cells migrating to the fibrotic liver following repeated carbon tetrachloride (CCl4 ) injections into mice. In this study, we identified opioid growth factor receptor-like 1 (OGFRL1) as a novel BM cell-derived accelerator of fibrotic liver regeneration in response to G-CSF treatment. Endogenous Ogfrl1 was highly expressed in the hematopoietic organs such as the BM and spleen, whereas the liver contained a relatively small amount of Ogfrl1 mRNA. Among the peripheral blood cells, monocytes were the major sources of OGFRL1. Endogenous Ogfrl1 expression in both the peripheral blood monocytes and the liver was decreased following repeated CCl4 injections. An intrasplenic injection of cells overexpressing OGFRL1 into CCl4 -treated fibrotic mice increased the number of HPC and stimulated proliferation of hepatic parenchymal cells after partial resection of the fibrotic liver. Furthermore, overexpression of OGFRL1 in cultured HPC accelerated their differentiation as estimated by increased expression of liver-specific genes such as hepatocyte nuclear factor 4α, cytochrome P450, and fatty acid binding protein 1, although it did not affect the colony forming ability of HPC. These results indicate a critical role of OGFRL1 in the mobilization and differentiation of HPC in the fibrotic liver, and administration of OGFRL1-expressing cells may serve as a potential regenerative therapy for advanced liver fibrosis. Stem Cells 2019;37:89-101.
Collapse
Affiliation(s)
- Takayo Yanagawa
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Hideaki Sumiyoshi
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kiyoshi Higashi
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd., Osaka, Japan
| | - Sachie Nakao
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Reiichi Higashiyama
- Department of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Hiroshi Fukumitsu
- Department of Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Kaori Minakawa
- Department of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yosuke Chiba
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
| | - Yuhei Suzuki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
| | - Kayo Sumida
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd., Osaka, Japan
| | - Koichi Saito
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd., Osaka, Japan
| | - Akihide Kamiya
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan.,Institute of Medical Sciences, Tokai University, Isehara, Japan
| |
Collapse
|
20
|
Hara M, Yokota K, Saito T, Kobayakawa K, Kijima K, Yoshizaki S, Okazaki K, Yoshida S, Matsumoto Y, Harimaya K, Nakashima Y, Okada S. Periostin Promotes Fibroblast Migration and Inhibits Muscle Repair After Skeletal Muscle Injury. J Bone Joint Surg Am 2018; 100:e108. [PMID: 30106825 DOI: 10.2106/jbjs.17.01230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Skeletal muscle injury (SMI) can cause physical disability due to insufficient recovery of the muscle. The development of muscle fibrosis after SMI has been widely regarded as a principal cause of this failure to recover. Periostin (Postn) exacerbates tissue fibrosis in various organs. We investigated whether Postn is involved in the pathophysiology after SMI. METHODS Partial laceration injuries of the gastrocnemius were created in wild-type (WT) and Postn knockout (Postn) mice. We examined the expression of the Postn gene before and after SMI. Regeneration and fibrosis of skeletal muscle were evaluated by histological analyses, and recovery of muscle strength was measured by physiological testing. Immunohistochemistry was used to examine the number and proliferative potential of infiltrating fibroblasts in injured muscle. A trans-well migration assay was used to assess the migration capability of fibroblasts. Control immunoglobulin G (IgG) or Postn-neutralizing antibody (Postn-nAb) was injected into injured muscle at 7 and 14 days after injury (dpi). We evaluated the effects of Postn-nAb on muscle repair after SMI. RESULTS The expression of Postn was dramatically upregulated after SMI. Compared with WT mice, Postn mice had improved muscle recovery and attenuated fibrosis as well as a significantly reduced number of infiltrating fibroblasts. The proliferative potential of these fibroblasts in WT and Postn mice was comparable at 14 dpi; however, the migration capability of fibroblasts was significantly enhanced in the presence of Postn (mean, 258%; 95% confidence interval, 183% to 334%). Moreover, the administration of Postn-nAb inhibited fibroblast infiltration and promoted muscle repair after SMI. CONCLUSIONS Postn exacerbates fibrotic scar formation through the promotion of fibroblast migration into injured muscle after SMI. Treatment with Postn-nAb is effective for attenuating fibrosis and improving muscle recovery after SMI. CLINICAL RELEVANCE Our findings may provide a potential therapeutic strategy to enhance muscle repair and functional recovery after SMI.
Collapse
Affiliation(s)
- Masamitsu Hara
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Yokota
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeyuki Saito
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazu Kobayakawa
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Kijima
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shingo Yoshizaki
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shigeo Yoshida
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Matsumoto
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsumi Harimaya
- Department of Orthopaedic Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yasuharu Nakashima
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Okada
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Zhao J, Okamoto Y, Asano Y, Ishimaru K, Aki S, Yoshioka K, Takuwa N, Wada T, Inagaki Y, Takahashi C, Nishiuchi T, Takuwa Y. Sphingosine-1-phosphate receptor-2 facilitates pulmonary fibrosis through potentiating IL-13 pathway in macrophages. PLoS One 2018; 13:e0197604. [PMID: 29782549 PMCID: PMC5962071 DOI: 10.1371/journal.pone.0197604] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 05/04/2018] [Indexed: 01/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a devastating disease with poor prognosis. The pathogenic role of the lysophospholipid mediator sphingosine-1-phosphate and its receptor S1PR2 in lung fibrosis is unknown. We show here that genetic deletion of S1pr2 strikingly attenuated lung fibrosis induced by repeated injections of bleomycin in mice. We observed by using S1pr2LacZ/+ mice that S1PR2 was expressed in alveolar macrophages, vascular endothelial cells and alveolar epithelial cells in the lung and that S1PR2-expressing cells accumulated in the fibrotic legions. Bone marrow chimera experiments suggested that S1PR2 in bone marrow–derived cells contributes to the development of lung fibrosis. Depletion of macrophages greatly attenuated lung fibrosis. Bleomycin administration stimulated the mRNA expression of the profibrotic cytokines IL-13 and IL-4 and the M2 markers including arginase 1, Fizz1/Retnla, Ccl17 and Ccl24 in cells collected from broncho-alveolar lavage fluids (BALF), and S1pr2 deletion markedly diminished the stimulated expression of these genes. BALF cells from bleomycin–administered wild-type mice showed a marked increase in phosphorylation of STAT6, a transcription factor which is activated downstream of IL-13, compared with saline–administered wild-type mice. Interestingly, in bleomycin–administered S1pr2-/- mice, STAT6 phosphorylation in BALF cells was substantially diminished compared with wild-type mice. Finally, pharmacological S1PR2 blockade in S1pr2+/+ mice alleviated bleomycin–induced lung fibrosis. Thus, S1PR2 facilitates lung fibrosis through the mechanisms involving augmentation of IL-13 expression and its signaling in BALF cells, and represents a novel target for treating lung fibrosis.
Collapse
MESH Headings
- Animals
- Bleomycin/toxicity
- Bronchoalveolar Lavage Fluid/chemistry
- Bronchoalveolar Lavage Fluid/cytology
- Disease Models, Animal
- Idiopathic Pulmonary Fibrosis/etiology
- Idiopathic Pulmonary Fibrosis/metabolism
- Idiopathic Pulmonary Fibrosis/pathology
- Interleukin-13/genetics
- Interleukin-13/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Lysosphingolipid/deficiency
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/metabolism
- STAT6 Transcription Factor/metabolism
- Signal Transduction
- Sphingosine-1-Phosphate Receptors
- Transplantation Chimera/genetics
- Transplantation Chimera/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Yasuo Okamoto
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Yuya Asano
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Kazuhiro Ishimaru
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Sho Aki
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Noriko Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
- Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, Ishikawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Ishikawa, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
22
|
Abstract
Activation of TGF-β1 initiates a program of temporary collagen accumulation important to wound repair in many organs. However, the outcome of temporary extracellular matrix strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity and mortality worldwide. To avoid this maladaptive outcome, TGF-β1 signaling is regulated at numerous levels and intimately connected to feedback signals that limit accumulation. Here, we examine the current understanding of the core functions of TGF-β1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis. Implicit in better understanding of these processes is the identification of therapeutic opportunities that will need to be further advanced to limit or reverse organ fibrosis.
Collapse
Affiliation(s)
- Kevin K Kim
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109
| | - Dean Sheppard
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| | - Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
23
|
Proceedings of the signature series event of the international society for cellular therapy: "Advancements in cellular therapies and regenerative medicine in digestive diseases," London, United Kingdom, May 3, 2017. Cytotherapy 2018; 20:461-476. [PMID: 29398624 DOI: 10.1016/j.jcyt.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022]
Abstract
A summary of the First Signature Series Event, "Advancements in Cellular Therapies and Regenerative Medicine for Digestive Diseases," held on May 3, 2017, in London, United Kingdom, is presented. Twelve speakers from three continents covered major topics in the areas of cellular therapy and regenerative medicine applied to liver and gastrointestinal medicine as well as to diabetes mellitus. Highlights from their presentations, together with an overview of the global impact of digestive diseases and a proposal for a shared online collection and data-monitoring platform tool, are included in this proceedings. Although growing evidence demonstrate the feasibility and safety of exploiting cell-based technologies for the treatment of digestive diseases, regulatory and methodological obstacles will need to be overcome before the successful implementation in the clinic of these novel attractive therapeutic strategies.
Collapse
|
24
|
Hisada M, Zhang X, Ota Y, Cameron AM, Burdick J, Gao B, Williams GM, Sun Z. Fibrosis in small syngeneic rat liver grafts because of damaged bone marrow stem cells from chronic alcohol consumption. Liver Transpl 2017; 23:1564-1576. [PMID: 28719075 DOI: 10.1002/lt.24820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
Abstract
A patient with liver failure due to chronic and acute alcohol abuse under consideration for an urgent liver transplant shortly after stopping alcohol may have residual abnormalities that threaten transplant success, particularly for a small graft. To address this, we studied a model in which reduced-size (50%) Lewis rat livers are transplanted into green fluorescence protein transgenic Lewis recipients after they are fed alcohol or a control diet for 5 weeks. Here we show that normal small Lewis grafts transplanted to alcohol-fed Lewis hosts developed fibrosis, whereas no fibrosis was observed in control-fed recipients. Host-derived CD133 + 8-hydroxy-2'-deoxyguanosine (8-OHdG) cells were significantly increased in livers recovered from both alcohol-fed and control recipients, but only alcohol-fed recipients demonstrated co-staining (a marker of oxidative DNA damage). α smooth muscle actin (α-SMA) staining, a marker for myofibroblasts, also co-localized with CD133 + cells only in the livers of alcohol-fed recipients. Immunostaining and polymerase chain reaction analysis confirmed that chronic alcohol consumption decreased the proportion of bone marrow stem cells (BMSCs) expressing CD133, c-Kit, and chemokine (C-X-C motif) receptor 4 markers and caused oxidative mitochondria DNA (mtDNA) damage. Culture of CD133 + cells from normal rats with medium containing 3% ethanol for 48 hours resulted in elevated mitochondrial 8-OHdG and mtDNA deletion, and ethanol exposure diminished CD133 expression but dramatically increased α-SMA expression. In conclusion, oxidative mtDNA damage and deletions occur in BMSCs of chronic alcohol-fed recipients, and these damaged cells mobilize to the small liver grafts and become myofibroblasts where they play a key role in the subsequent development of fibrosis. Liver Transplantation 23 1564-1576 2017 AASLD.
Collapse
Affiliation(s)
- Masayuki Hisada
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Xiuying Zhang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Pathology, Beijing Capital Medical University, Beijing, China
| | - Yoshihiro Ota
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - James Burdick
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | | | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
25
|
Pathophysiology of liver fibrosis and the methodological barriers to the development of anti-fibrogenic agents. Adv Drug Deliv Rev 2017; 121:3-8. [PMID: 28600202 DOI: 10.1016/j.addr.2017.05.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/09/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
Abstract
Liver fibrosis and cirrhosis resulting from long-standing liver damage represents a major health care burden worldwide. To date, there is no anti-fibrogenic agent available, making liver transplantation the only curative treatment for decompensated cirrhotic liver disease. Liver fibrosis can result from different underlying chronic liver disease, such as chronic viral infection, excessive alcohol consumption, fatty liver disease or autoimmune liver diseases. It is becoming increasingly recognised that as a result from different pathogenic mechanisms liver fibrosis must be considered as many different diseases for which individual treatment strategies need to be developed. Moreover, the pathogenic changes of both liver architecture and vascularisation in cirrhotic livers, as well as the lack of "true-to-life" in vitro models have impeded the development of an effective anti-fibrogenic drug. Thus, in order to identify an efficient anti-fibrogenic compound, novel in-vitro models mimicking the interplay between pro-fibrogenic cell populations, immune cells and, importantly, the extracellular matrix need to be developed.
Collapse
|
26
|
Matsuo Y, Saito T, Yamamoto A, Kohsaka H. Origins of fibroblasts in rheumatoid synovial tissues: Implications from organ fibrotic models. Mod Rheumatol 2017; 28:579-582. [PMID: 29067846 DOI: 10.1080/14397595.2017.1386837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fibroblasts play crucial roles in the pathogenesis of rheumatoid arthritis (RA). Accumulation of fibroblasts in the synovial tissues characterizes the pathology of RA. Understanding how fibroblasts accumulate could lead to discovery of new therapeutic targets in RA treatment, while current antirheumatic therapies still have problems in efficacy and safety. In this regard, several studies have revealed cellular origins of fibroblasts in fibrotic tissues in murine models of organ fibrosis. Some studies employed lineage tracing, which bring generally convincing results, using transgenic mice. They demonstrated that resident fibroblasts, pericytes, mesenchymal stem cells, epithelial cells, endothelial cells and bone-marrow-derived and circulating cells can be cellular origins of fibroblasts in organ fibrotic tissues. In this review, we summarize and discuss available evidence for the origins of fibroblasts accumulating in the arthritic synovial tissues and organ fibrotic tissues.
Collapse
Affiliation(s)
- Yusuke Matsuo
- a Department of Rheumatology, Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Tetsuya Saito
- a Department of Rheumatology, Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Akio Yamamoto
- a Department of Rheumatology, Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Hitoshi Kohsaka
- a Department of Rheumatology, Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| |
Collapse
|
27
|
Saito T, Hara M, Kumamaru H, Kobayakawa K, Yokota K, Kijima K, Yoshizaki S, Harimaya K, Matsumoto Y, Kawaguchi K, Hayashida M, Inagaki Y, Shiba K, Nakashima Y, Okada S. Macrophage Infiltration Is a Causative Factor for Ligamentum Flavum Hypertrophy through the Activation of Collagen Production in Fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2831-2840. [PMID: 28935572 DOI: 10.1016/j.ajpath.2017.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022]
Abstract
Ligamentum flavum (LF) hypertrophy causes lumbar spinal canal stenosis, leading to leg pain and disability in activities of daily living in elderly individuals. Although previous studies have been performed on LF hypertrophy, its pathomechanisms have not been fully elucidated. In this study, we demonstrated that infiltrating macrophages were a causative factor for LF hypertrophy. Induction of macrophages into the mouse LF by applying a microinjury resulted in LF hypertrophy along with collagen accumulation and fibroblasts proliferation at the injured site, which were very similar to the characteristics observed in the severely hypertrophied LF of human. However, we found that macrophage depletion by injecting clodronate-containing liposomes counteracted LF hypertrophy even with microinjury. For identification of fibroblasts in the LF, we used collagen type I α2 linked to green fluorescent protein transgenic mice and selectively isolated green fluorescent protein-positive fibroblasts from the microinjured LF using laser microdissection. A quantitative RT-PCR on laser microdissection samples revealed that the gene expression of collagen markedly increased in the fibroblasts at the injured site with infiltrating macrophages compared with the uninjured location. These results suggested that macrophage infiltration was crucial for LF hypertrophy by stimulating collagen production in fibroblasts, providing better understanding of the pathophysiology of LF hypertrophy.
Collapse
Affiliation(s)
- Takeyuki Saito
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamitsu Hara
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiromi Kumamaru
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Yokota
- Department of Orthopaedic Surgery, Spinal Injuries Center, Fukuoka, Japan
| | - Ken Kijima
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shingo Yoshizaki
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsumi Harimaya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Kawaguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsumasa Hayashida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan; Department of Regenerative Medicine, School of Medicine, Tokai University, Isehara, Japan
| | - Keiichiro Shiba
- Department of Orthopaedic Surgery, Spinal Injuries Center, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Okada
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
28
|
Ohkura SI, Usui S, Takashima SI, Takuwa N, Yoshioka K, Okamoto Y, Inagaki Y, Sugimoto N, Kitano T, Takamura M, Wada T, Kaneko S, Takuwa Y. Augmented sphingosine 1 phosphate receptor-1 signaling in cardiac fibroblasts induces cardiac hypertrophy and fibrosis through angiotensin II and interleukin-6. PLoS One 2017; 12:e0182329. [PMID: 28771545 PMCID: PMC5542600 DOI: 10.1371/journal.pone.0182329] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/17/2017] [Indexed: 01/19/2023] Open
Abstract
Background: Cardiac fibroblasts, together with cardiomyocytes, occupy the majority of cells in the myocardium and are involved in myocardial remodeling. The lysophospholipid mediator sphigosine-1-phosphate (S1P) regulates functions of cardiovascular cells through multiple receptors including S1PR1–S1PR3. S1PR1 but not other S1P receptors was upregulated in angiotensin II-induced hypertrophic hearts. Therefore, we investigated a role of S1PR1 in fibroblasts for cardiac remodeling by employing transgenic mice that overexpressed S1PR1 under the control of α-smooth muscle actin promoter. In S1PR1-transgenic mouse heart, fibroblasts and/or myofibroblasts were hyperplastic, and those cells as well as vascular smooth muscle cells overexpressed S1PR1. Transgenic mice developed bi-ventricular hypertrophy by 12-week-old and diffuse interstitial fibrosis by 24-week-old without hemodynamic stress. Cardiac remodeling in transgenic mice was associated with greater ERK phosphorylation, upregulation of fetal genes, and systolic dysfunction. Transgenic mouse heart showed increased mRNA expression of angiotensin-converting enzyme and interleukin-6 (IL-6). Isolated fibroblasts from transgenic mice exhibited enhanced generation of angiotensin II, which in turn stimulated IL-6 release. Either an AT1 blocker or angiotensin-converting enzyme inhibitor prevented development of cardiac hypertrophy and fibrosis, systolic dysfunction and increased IL-6 expression in transgenic mice. Finally, administration of anti-IL-6 antibody abolished an increase in tyrosine phosphorylation of STAT3, a major signaling molecule downstream of IL-6, in the transgenic mouse heart and prevented development of cardiac hypertrophy in transgenic mice. These results demonstrate a promoting role of S1PR1 in cardiac fibroblasts for cardiac remodeling, in which angiotensin II—AT1 and IL-6 are involved.
Collapse
Affiliation(s)
- Sei-ichiro Ohkura
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
- Department of System Biology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Soichiro Usui
- Department of System Biology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Shin-ichiro Takashima
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
- Department of System Biology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Noriko Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
- Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, Ishikawa, Japan
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Yasuo Okamoto
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Naotoshi Sugimoto
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Teppei Kitano
- Department of System Biology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Masayuki Takamura
- Department of System Biology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of System Biology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
29
|
Nakano Y, Nakao S, Sumiyoshi H, Mikami K, Tanno Y, Sueoka M, Kasahara D, Kimura H, Moro T, Kamiya A, Hozumi K, Inagaki Y. Identification of a novel alpha-fetoprotein-expressing cell population induced by the Jagged1/Notch2 signal in murine fibrotic liver. Hepatol Commun 2017; 1:215-229. [PMID: 29404455 PMCID: PMC5721449 DOI: 10.1002/hep4.1026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
The liver is well known to possess high regenerative capacity in response to partial resection or tissue injury. However, liver regeneration is often impaired in the case of advanced liver fibrosis/cirrhosis when mature hepatocytes can hardly self‐proliferate. Hepatic progenitor cells have been implicated as a source of hepatocytes in regeneration of the fibrotic liver. Although alpha‐fetoprotein (AFP) is known as a clinical marker of progenitor cell induction in injured/fibrotic adult liver, the origin and features of such AFP‐producing cells are not fully understood. Here, we demonstrate a unique and distinct AFP‐expressing cell population that is induced by the Jagged1/Notch2 signal in murine fibrotic liver. Following repeated carbon tetrachloride injections, a significant number of AFP‐positive cells with high proliferative ability were observed along the fibrous septa depending on the extent of liver fibrosis. These AFP‐positive cells exhibited features of immature hepatocytes that were stained positively for hepatocyte‐lineage markers, such as albumin and hepatocyte nuclear factor 4 alpha, and a stem/progenitor cell marker Sox9. A combination of immunohistological examination of fibrotic liver tissues and coculture experiments with primary hepatocytes and hepatic stellate cells indicated that increased Jagged1 expression in activated hepatic stellate cells stimulated Notch2 signaling and up‐regulated AFP expression in adjacent hepatocytes. The mobilization and proliferation of AFP‐positive cells in fibrotic liver were further enhanced after partial hepatectomy, which was significantly suppressed in Jagged1‐conditional knockout mice. Finally, forced expression of the intracellular domain of Notch2 in normal liver induced a small number of AFP‐expressing hepatocytes in vivo. Conclusion: Insight is provided into a novel pathophysiological role of Jagged1/Notch2 signaling in the induction of AFP‐positive cells in fibrotic liver through the interaction between hepatocytes and activated hepatic stellate cells. (Hepatology Communications 2017;1:215‐229)
Collapse
Affiliation(s)
- Yasuhiro Nakano
- Center for Matrix Biology and Medicine Graduate School of Medicine, Tokai University Isehara Japan.,Department of Regenerative Medicine, Tokai University School of Medicine Isehara Japan
| | - Sachie Nakao
- Center for Matrix Biology and Medicine Graduate School of Medicine, Tokai University Isehara Japan.,Department of Regenerative Medicine, Tokai University School of Medicine Isehara Japan
| | - Hideaki Sumiyoshi
- Center for Matrix Biology and Medicine Graduate School of Medicine, Tokai University Isehara Japan.,Department of Regenerative Medicine, Tokai University School of Medicine Isehara Japan
| | - Kenichiro Mikami
- Department of Regenerative Medicine, Tokai University School of Medicine Isehara Japan.,Present address: Present address for Kenichiro Mikami is Department of Gastroenterology and Hematology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yuri Tanno
- Department of Regenerative Medicine, Tokai University School of Medicine Isehara Japan
| | - Minako Sueoka
- Department of Regenerative Medicine, Tokai University School of Medicine Isehara Japan
| | - Daigo Kasahara
- Center for Matrix Biology and Medicine Graduate School of Medicine, Tokai University Isehara Japan.,Department of Mechanical Engineering Tokai University School of Engineering Hiratsuka Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering Tokai University School of Engineering Hiratsuka Japan
| | - Tadashi Moro
- Center for Matrix Biology and Medicine Graduate School of Medicine, Tokai University Isehara Japan.,Research Laboratory, Minophagen Pharmaceutical Co., Ltd Zama Japan
| | - Akihide Kamiya
- Center for Matrix Biology and Medicine Graduate School of Medicine, Tokai University Isehara Japan.,Department of Molecular Life Sciences, Tokai University School of Medicine Isehara Japan
| | - Katsuto Hozumi
- Center for Matrix Biology and Medicine Graduate School of Medicine, Tokai University Isehara Japan.,Department of Immunology Tokai University School of Medicine Isehara Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine Graduate School of Medicine, Tokai University Isehara Japan.,Department of Regenerative Medicine, Tokai University School of Medicine Isehara Japan.,Institute of Medical Sciences Tokai University Isehara Japan
| |
Collapse
|
30
|
Li IMH, Horwell AL, Chu G, de Crombrugghe B, Bou-Gharios G. Characterization of Mesenchymal-Fibroblast Cells Using the Col1a2 Promoter/Enhancer. Methods Mol Biol 2017; 1627:139-161. [PMID: 28836200 DOI: 10.1007/978-1-4939-7113-8_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Excessive deposition of extracellular matrix (ECM) is a common hallmark of fibrotic diseases in various organs. Chiefly among this ECM are collagen types I and III, secreted by local fibroblasts, and other mesenchymal cells recruited for repair purposes. In the last two decades, the search for a fibroblast-specific promoter/enhancer has intensified in order to control the regulation of ECM in these cells and limit the scarring of the fibrotic process. In our previous work, we characterized an enhancer region 17 kb upstream of the Col1a2 gene transcription start site. This enhancer in transgenic mice is expressed mainly in mesenchymal cells during development and in adults upon injury. When driving transgenes such as beta-galactosidase or luciferase, this construct acts as an informative reporter of collagen transcription and is predictive of collagen type I deposition. In this chapter, we provide detailed protocols for identifying similar enhancers and using the sequence to generate a construct for transfection and producing transgenic animals. We also provided information on the use of luminescence in transgenic mice, tissue processing, as well as using cre/lox system to obtain conditional gain and loss of function in mice.
Collapse
Affiliation(s)
- Ian M H Li
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Amy L Horwell
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Grace Chu
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | | - George Bou-Gharios
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| |
Collapse
|
31
|
Abstract
Mesothelial cells (MCs) cover the surface of visceral organs and the parietal walls of cavities, and they synthesize lubricating fluids to create a slippery surface that facilitates movement between organs without friction. Recent studies have indicated that MCs play active roles in liver development, fibrosis, and regeneration. During liver development, the mesoderm produces MCs that form a single epithelial layer of the mesothelium. MCs exhibit an intermediate phenotype between epithelial cells and mesenchymal cells. Lineage tracing studies have indicated that during liver development, MCs act as mesenchymal progenitor cells that produce hepatic stellate cells, fibroblasts around blood vessels, and smooth muscle cells. Upon liver injury, MCs migrate inward from the liver surface and produce hepatic stellate cells or myofibroblast depending on the etiology, suggesting that MCs are the source of myofibroblasts in capsular fibrosis. Similar to the activation of hepatic stellate cells, transforming growth factor β induces the conversion of MCs into myofibroblasts. Further elucidation of the biological and molecular changes involved in MC activation and fibrogenesis will contribute to the development of novel approaches for the prevention and therapy of liver fibrosis.
Collapse
Affiliation(s)
- Ingrid Lua
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kinji Asahina
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Haldar D, Henderson NC, Hirschfield G, Newsome PN. Mesenchymal stromal cells and liver fibrosis: a complicated relationship. FASEB J 2016; 30:3905-3928. [DOI: 10.1096/fj.201600433r] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Debashis Haldar
- National Institute for Health ResearchBirmingham Liver Biomedical Research Unit and Centre for Liver Research University of Birmingham Birmingham United Kingdom
- Liver UnitUniversity Hospital Birmingham National Health Service (NHS) Foundation Trust Birmingham United Kingdom
| | - Neil C. Henderson
- Medical Research Council (MRC) Centre for Inflammation ResearchQueens Medical Research Institute University of Edinburgh Edinburgh United Kingdom
| | - Gideon Hirschfield
- National Institute for Health ResearchBirmingham Liver Biomedical Research Unit and Centre for Liver Research University of Birmingham Birmingham United Kingdom
- Liver UnitUniversity Hospital Birmingham National Health Service (NHS) Foundation Trust Birmingham United Kingdom
| | - Philip N. Newsome
- National Institute for Health ResearchBirmingham Liver Biomedical Research Unit and Centre for Liver Research University of Birmingham Birmingham United Kingdom
- Liver UnitUniversity Hospital Birmingham National Health Service (NHS) Foundation Trust Birmingham United Kingdom
| |
Collapse
|
33
|
Swonger JM, Liu JS, Ivey MJ, Tallquist MD. Genetic tools for identifying and manipulating fibroblasts in the mouse. Differentiation 2016; 92:66-83. [PMID: 27342817 PMCID: PMC5079827 DOI: 10.1016/j.diff.2016.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/18/2023]
Abstract
The use of mouse genetic tools to track and manipulate fibroblasts has provided invaluable in vivo information regarding the activities of these cells. Recently, many new mouse strains have been described for the specific purpose of studying fibroblast behavior. Colorimetric reporter mice and lines expressing Cre are available for the study of fibroblasts in the organs prone to fibrosis, including heart, kidney, liver, lung, and skeletal muscle. In this review we summarize the current state of the models that have been used to define tissue resident fibroblast populations. While these complex genetic reagents provide unique insights into the process of fibrosis, they also require a thorough understanding of the caveats and limitations. Here, we discuss the specificity and efficiency of the available genetic models and briefly describe how they have been used to document the mechanisms of fibrosis.
Collapse
Affiliation(s)
- Jessica M Swonger
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Jocelyn S Liu
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Malina J Ivey
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Michelle D Tallquist
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
34
|
Rieder F, Bettenworth D, Imai J, Inagaki Y. Intestinal Fibrosis and Liver Fibrosis: Consequences of Chronic Inflammation or Independent Pathophysiology? Inflamm Intest Dis 2016; 1:41-49. [PMID: 29922656 DOI: 10.1159/000445135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
Abstract
Background Intestinal fibrosis and liver fibrosis represent a significant burden for our patients and health-care systems. Despite the severe clinical problem and the observation that fibrosis is reversible, no specific antifibrotic therapies exist. Summary In this review, using an 'East-West' scientific collaboration, we summarize the current knowledge on principal mechanisms shared by intestinal fibrosis and liver fibrosis. We furthermore discuss inflammation as the cause of fibrogenesis in both entities, depict unique features of intestinal and hepatic fibrosis, and provide a future outlook on the development of antifibrotic therapies. Key Messages A collaborative effort in the field of fibrosis, covering multiple organ systems, will have the highest chance of leading to the development of a successful antifibrotic intervention.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland, Ohio, USA.,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | - Jin Imai
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Gastroenterology, Tokai University School of Medicine, Isehara, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
35
|
Park AM, Kanai K, Itoh T, Sato T, Tsukui T, Inagaki Y, Selman M, Matsushima K, Yoshie O. Heat Shock Protein 27 Plays a Pivotal Role in Myofibroblast Differentiation and in the Development of Bleomycin-Induced Pulmonary Fibrosis. PLoS One 2016; 11:e0148998. [PMID: 26859835 PMCID: PMC4747463 DOI: 10.1371/journal.pone.0148998] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a member of the small molecular weight HSP family. Upon treatment with transforming growth factor β1 (TGF-β1), we observed upregulation of HSP27 along with that of α-smooth muscle actin (α-SMA), a marker of myofibroblast differentiation, in cultured human and mouse lung fibroblasts. Furthermore, by using siRNA knockdown, we demonstrated that HSP27 was involved in cell survival and upregulation of fibronectin, osteopontin (OPN) and type 1 collagen, all functional markers of myofibroblast differentiation, in TGF-β1-treated MRC-5 cells. In lung tissues of bleomycin-treated mice, HSP27 was strongly upregulated and substantially co-localized with α-SMA, OPN and type I collagen but not with proSP-C (a marker of type II alveolar epithelial cells), E-cadherin (a marker of epithelial cells) or F4/80 (a marker of macrophages). A similar co-localization of HSP27 and α-SMA was observed in lung tissues of patients with idiopathic pulmonary fibrosis. Furthermore, airway delivery of HSP27 siRNA effectively suppressed bleomycin-induced pulmonary fibrosis in mice. Collectively, our findings indicate that HSP27 is critically involved in myofibroblast differentiation of lung fibroblasts and may be a promising therapeutic target for lung fibrotic diseases.
Collapse
Affiliation(s)
- Ah-Mee Park
- Department of Microbiology and Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kyosuke Kanai
- Department of Microbiology and Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tatsuki Itoh
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Takao Sato
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tatsuya Tsukui
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yutaka Inagaki
- Department of Regenerative Medicine, Tokai University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias, México DF, Mexico
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Osamu Yoshie
- Department of Microbiology and Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- * E-mail:
| |
Collapse
|
36
|
Liang S, Kisseleva T, Brenner DA. The Role of NADPH Oxidases (NOXs) in Liver Fibrosis and the Activation of Myofibroblasts. Front Physiol 2016; 7:17. [PMID: 26869935 PMCID: PMC4735448 DOI: 10.3389/fphys.2016.00017] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/12/2016] [Indexed: 12/18/2022] Open
Abstract
Chronic liver injury, resulted from different etiologies (e.g., virus infection, alcohol abuse, nonalcoholic steatohepatitis (NASH) and cholestasis) can lead to liver fibrosis characterized by the excess accumulation of extracellular matrix (ECM) proteins (e.g., type I collagen). Hepatic myofibroblasts that are activated upon liver injury are the key producers of ECM proteins, contributing to both the initiation and progression of liver fibrosis. Hepatic stellate cells (HSCs) and to a lesser extent, portal fibroblast, are believed to be the precursor cells that give rise to hepatic myofibroblasts in response to liver injury. Although, much progress has been made toward dissecting the lineage origin of myofibroblasts, how these cells are activated and become functional producers of ECM proteins remains incompletely understood. Activation of myofibroblasts is a complex process that involves the interactions between parenchymal and non-parenchymal cells, which drives the phenotypic change of HSCs from a quiescent stage to a myofibroblastic and active phenotype. Accumulating evidence has suggested a critical role of NADPH oxidase (NOX), a multi-component complex that catalyzes reactions from molecular oxygen to reactive oxygen species (ROS), in the activation process of hepatic myofibroblasts. NOX isoforms, including NOX1, NOX2 and NOX4, and NOX-derived ROS, have all been implicated to regulate HSC activation and hepatocyte apoptosis, both of which are essential steps for initiating liver fibrosis. This review highlights the importance of NOX isoforms in hepatic myofibroblast activation and the progression of liver fibrosis, and also discusses the therapeutic potential of targeting NOXs for liver fibrosis and associated hepatic diseases.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Surgery, University of California, San DiegoLa Jolla, CA, USA; Department of Medicine, University of California, San DiegoLa Jolla, CA, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego La Jolla, CA, USA
| | - David A Brenner
- Department of Medicine, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
37
|
Matsuo Y, Mizoguchi F, Saito T, Kawahata K, Ueha S, Matsushima K, Inagaki Y, Miyasaka N, Kohsaka H. Local fibroblast proliferation but not influx is responsible for synovial hyperplasia in a murine model of rheumatoid arthritis. Biochem Biophys Res Commun 2016; 470:504-509. [DOI: 10.1016/j.bbrc.2016.01.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/19/2016] [Indexed: 11/29/2022]
|
38
|
Taura K, Iwaisako K, Hatano E, Uemoto S. Controversies over the Epithelial-to-Mesenchymal Transition in Liver Fibrosis. J Clin Med 2016; 5:jcm5010009. [PMID: 26784242 PMCID: PMC4730134 DOI: 10.3390/jcm5010009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/03/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis is a universal consequence of chronic liver diseases. It is accompanied by activation of collagen-producing myofibroblasts, resulting in excessive deposition of extracellular matrix. The origin of myofibroblasts in the fibrotic liver has not been completely resolved and remains a matter of debate. Recently, the epithelial-to-mesenchymal transition (EMT) was proposed as one of the mechanisms that give rise to collagen-producing myofibroblasts in liver fibrosis. However, subsequent studies contradicted this hypothesis, and the EMT theory has become one of the most controversial and debatable issues in the field of liver fibrosis research. This review will summarize the existing literature on EMT in liver fibrosis and will analyze the causes for the contradictory results to draw a reasonable conclusion based on current knowledge in the field.
Collapse
Affiliation(s)
- Kojiro Taura
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Keiko Iwaisako
- Department of Target Therapy Oncology Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Etsuro Hatano
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Shinji Uemoto
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| |
Collapse
|
39
|
Intratracheal Cell Transfer Demonstrates the Profibrotic Potential of Resident Fibroblasts in Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2939-48. [DOI: 10.1016/j.ajpath.2015.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 11/24/2022]
|
40
|
Reduced supply of monocyte-derived macrophages leads to a transition from nodular to diffuse lesions and tissue cell activation in silica-induced pulmonary fibrosis in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2923-38. [PMID: 26456580 DOI: 10.1016/j.ajpath.2015.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/16/2015] [Accepted: 07/09/2015] [Indexed: 01/15/2023]
Abstract
Pulmonary fibrosis (PF) is an intractable disorder with a poor prognosis. Lung macrophages have been reported to regulate both progression and remission of bleomycin-induced diffuse PF. However, it remains unclear how macrophages contribute to silica-induced progressive nodular PF and the associated tissue cell responses in vivo. We found that lack of monocyte-derived macrophages results in the formation of diffuse PF after silica instillation. We found that the proportion and the number of monocyte-derived macrophages were persistently higher in silica-induced progressive PF compared with bleomycin-induced PF. Surprisingly, in Ccr2(-/-) mice, in which monocyte-derived macrophage infiltration is impaired, silica administration induced diffuse PF with loose nodule formation and greater activation of tissue cells. In the diffuse lesions, the distribution of epithelial cells, distribution of myofibroblasts, and architecture of the basement membrane were disrupted. Consistent with the development of diffuse lesions, genes that were differentially expressed in CD45(-) tissue cells from the lung of wild-type and Ccr2(-/-) mice were highly enriched in human diffuse, progressive PF. In gene ontology network analyses, many of these genes were associated with tissue remodeling and included genes not previously associated with PF, such as Mmp14, Thbs2, and Fgfr4. Overall, these results indicate that monocyte-derived macrophages prevent transition from nodular to diffuse silica-induced PF, potentially by regulating tissue cell responses.
Collapse
|
41
|
Azevedo CM, Solano de Freitas Souza B, Andrade de Oliveira S, Paredes BD, Barreto ES, Neto HA, Ribeiro dos Santos R, Pereira Soares MB. Bone marrow-derived cells migrate to the liver and contribute to the generation of different cell types in chronic Schistosoma mansoni infection. Exp Parasitol 2015; 159:29-36. [PMID: 26297681 DOI: 10.1016/j.exppara.2015.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/10/2015] [Accepted: 08/16/2015] [Indexed: 12/12/2022]
Abstract
The main pathogenic event caused by Schistosoma mansoni infection is characterized by a granulomatous inflammatory reaction around parasite eggs and fibrosis in the liver. We have previously shown that transplantation of bone marrow cells (BMC) promotes a reduction in liver fibrosis in chronically S. mansoni-infected mice. Here we investigated the presence and phenotype of bone marrow-derived cells in livers of S. mansoni-infected mice. During the chronic phase of infection, C57BL/6 mice had an increased number of circulating mesenchymal stem cells and endothelial progenitor cells in the peripheral blood when compared to uninfected controls. In order to investigate the fate of BMC in the liver, we generated bone marrow chimeric mice by transplanting BMC from transgenic green fluorescent protein (GFP) mice into lethally irradiated wild-type C57BL/6 mice. S. mansoni-infected chimeric mice did not demonstrate increased mortality and developed similar liver histopathological features, when compared to wild-type S. mansoni-infected mice. GFP(+) bone marrow-derived cells were found in the liver parenchyma, particularly in periportal regions. CD45(+)GFP(+) cells were found in the granulomas. Flow cytometry analysis of digested liver tissue characterized GFP(+) cells as lymphocytes, myeloid cells and stem cells. GFP(+) cells were also found in areas of collagen deposition, although rare GFP(+) cells expressed the myofibroblast cell marker α-SMA. Additionally GFP(+) endothelial cells (co-stained with von Willebrand factor) were frequently observed, while BMC-derived hepatocytes (GFP(+) albumin(+) cells) were sparsely found in the liver of chimeric mice chronically infected with S. mansoni. In conclusion, BMC are recruited to the liver during chronic experimental infection with S. mansoni and contribute to the generation of different cell types involved, not only in disease pathogenesis, but possibly in liver regeneration and repair.
Collapse
Affiliation(s)
- Carine Machado Azevedo
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Candeal, 40296-710, Salvador, BA, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Av. São Rafael, 2152, São Marcos, 41253-190, Salvador, BA, Brazil
| | - Bruno Solano de Freitas Souza
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Candeal, 40296-710, Salvador, BA, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Av. São Rafael, 2152, São Marcos, 41253-190, Salvador, BA, Brazil
| | - Sheilla Andrade de Oliveira
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50.740-465, Recife, PE, Brazil
| | - Bruno Diaz Paredes
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Av. São Rafael, 2152, São Marcos, 41253-190, Salvador, BA, Brazil
| | - Elton Sá Barreto
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Candeal, 40296-710, Salvador, BA, Brazil
| | - Hélio Almeida Neto
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Candeal, 40296-710, Salvador, BA, Brazil
| | - Ricardo Ribeiro dos Santos
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Av. São Rafael, 2152, São Marcos, 41253-190, Salvador, BA, Brazil
| | - Milena Botelho Pereira Soares
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Candeal, 40296-710, Salvador, BA, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Av. São Rafael, 2152, São Marcos, 41253-190, Salvador, BA, Brazil.
| |
Collapse
|
42
|
Wang Z, Jinnin M, Kobayashi Y, Kudo H, Inoue K, Nakayama W, Honda N, Makino K, Kajihara I, Makino T, Fukushima S, Inagaki Y, Ihn H. Mice overexpressing integrin αv in fibroblasts exhibit dermal thinning of the skin. J Dermatol Sci 2015; 79:268-78. [PMID: 26117269 DOI: 10.1016/j.jdermsci.2015.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/26/2015] [Accepted: 06/17/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Integrins, especially αv integrin (ITGAV), are thought to play central roles in tissue fibrosis and the pathogenesis of scleroderma. So far, skin phenotype of tissue-specific transgenic mice of ITGAV have not been investigated. OBJECTIVE To investigate the role of ITGAV in the skin fibrosis, we engineered transgenic mice that overexpress ITGAV in the fibroblasts under the control of the COL1A2 enhancer promoter. METHODS Protein or RNA expression was evaluated by real-time PCR, immunohistochemistry, immunoblotting and immunoprecipitation. RESULTS Dermal thickness and Masson's trichrome staining were decreased in ITGAV transgenic (Tg) mice compared with wild-type (WT) mice. Protein and mRNA levels of COL1A2, COL3A1, CTGF and integrin β3 were down-regulated in the skin of Tg mice. In addition, the cell proliferation of cultured dermal fibroblasts obtained from Tg mice skin was decreased compared to those of WT mice. FAK phosphorylation was reduced in fibroblasts cultured from Tg mice skin in comparison to WT mice fibroblasts. Integrin β3 siRNA inhibited FAK phosphorylation levels, while FAK inhibitor reduced the expression of collagens and CTGF in mice dermal fibroblasts. CONCLUSIONS The down-regulation of collagen or CTGF by decreased integrin β3 and FAK phosphorylation may cause the dermal thinning in Tg mice. Lower CTGF may also result in reduced growth of Tg mice fibroblasts. Our hypothesis is that the balance between α and β chain of integrins positively or negatively control collagen expression and dermal thickness. This study gave a new insight in the treatment of tissue fibrosis and scleroderma by balancing integrin expression.
Collapse
Affiliation(s)
- Zhongzhi Wang
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Masatoshi Jinnin
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Yuki Kobayashi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Hideo Kudo
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Kuniko Inoue
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Wakana Nakayama
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Noritoshi Honda
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Katsunari Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Ikko Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Takamitsu Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimo-kasuya, Isehara, Kanagawa 259-1193, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| |
Collapse
|
43
|
FTY720, a sphingosine-1 phosphate receptor modulator, improves liver fibrosis in a mouse model by impairing the motility of bone marrow-derived mesenchymal stem cells. Inflammation 2015; 37:1326-36. [PMID: 24682874 DOI: 10.1007/s10753-014-9877-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
FTY720 is a novel immunosuppressant that modulates sphingosine 1-phosphate (S1P) receptors for the treatment of several diseases. Several hallmarks of liver fibrosis are influenced by S1P, and the interference of S1P signaling by treatment with FTY720 results in beneficial effects in various animal models of fibrosis. However, whether these treatment strategies suppress liver fibrosis progression is incompletely understood. Here, we investigated the effects and mechanisms by which FTY720 improves liver fibrosis in the carbon tetrachloride (CCl4)-induced mouse model. FTY720 treatment significantly attenuated the expression of fibrotic markers in the injured liver of both wild-type and SCID-beige mice. The migration of bone marrow-derived mesenchymal stem cells (BMSCs) to circulation, and subsequently the injured liver, was suppressed by FTY720. Furthermore, in vitro, phosphorylated-FTY720 blocked the migration of BMSCs mediated by S1P. Thus, FTY720 is an effective therapy for liver fibrosis via the suppression of BMSC migration in the CCl4-induced mouse model.
Collapse
|
44
|
Xu J, Cong M, Park TJ, Scholten D, Brenner DA, Kisseleva T. Contribution of bone marrow-derived fibrocytes to liver fibrosis. Hepatobiliary Surg Nutr 2015; 4:34-47. [PMID: 25713803 DOI: 10.3978/j.issn.2304-3881.2015.01.01] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/26/2014] [Indexed: 12/17/2022]
Abstract
Since the discovery of fibrocytes in 1994 by Dr. Bucala and colleagues, these bone marrow (BM)-derived collagen Type I producing CD45(+) cells remain the most fascinating cells of the hematopoietic system. Despite recent reports on the emerging contribution of fibrocytes to fibrosis of parenchymal and non-parenchymal organs and tissues, fibrocytes remain the most understudied pro-fibrogenic cellular population. In the past years fibrocytes were implicated in the pathogenesis of liver, skin, lung, and kidney fibrosis by giving rise to collagen type I producing cells/myofibroblasts. Hence, the role of fibrocytes in fibrosis is not well defined since different studies often contain controversial results on the number of fibrocytes recruited to the site of injury versus the number of fibrocyte-derived myofibroblasts in the same fibrotic organ. Furthermore, many studies were based on the in vitro characterization of fibrocytes formed after outgrowth of BM and/or peripheral blood cultures. Therefore, the fibrocyte function(s) still remain(s) lack of understanding, mostly due to (I) the lack of mouse models that can provide complimentary in vivo real-time and cell fate mapping studies of the dynamic differentiation of fibrocytes and their progeny into collagen type I producing cells (and/or possibly, other cell types of the hematopoietic system); (II) the complexity of hematopoietic cell differentiation pathways in response to various stimuli; (III) the high plasticity of hematopoietic cells. Here we summarize the current understanding of the role of CD45(+) collagen type I(+) BM-derived cells in the pathogenesis of liver injury. Based on data obtained from various organs undergoing fibrogenesis or other type of chronic injury, here we also discuss the most recent evidence supporting the critical role of fibrocytes in the mediation of pro-fibrogenic and/or pro-inflammatory responses.
Collapse
Affiliation(s)
- Jun Xu
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Cong
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tae Jun Park
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Scholten
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - David A Brenner
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
45
|
Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis. Nat Commun 2014; 5:4982. [PMID: 25236782 DOI: 10.1038/ncomms5982] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022] Open
Abstract
In obesity, a paracrine loop between adipocytes and macrophages augments chronic inflammation of adipose tissue, thereby inducing systemic insulin resistance and ectopic lipid accumulation. Obese adipose tissue contains a unique histological structure termed crown-like structure (CLS), where adipocyte-macrophage crosstalk is known to occur in close proximity. Here we show that Macrophage-inducible C-type lectin (Mincle), a pathogen sensor for Mycobacterium tuberculosis, is localized to macrophages in CLS, the number of which correlates with the extent of interstitial fibrosis. Mincle induces obesity-induced adipose tissue fibrosis, thereby leading to steatosis and insulin resistance in liver. We further show that Mincle in macrophages is crucial for CLS formation, expression of fibrosis-related genes and myofibroblast activation. This study indicates that Mincle, when activated by an endogenous ligand released from dying adipocytes, is involved in adipose tissue remodelling, thereby suggesting that sustained interactions between adipocytes and macrophages within CLS could be a therapeutic target for obesity-induced ectopic lipid accumulation.
Collapse
|
46
|
Siani A, Tirelli N. Myofibroblast differentiation: main features, biomedical relevance, and the role of reactive oxygen species. Antioxid Redox Signal 2014; 21:768-85. [PMID: 24279926 DOI: 10.1089/ars.2013.5724] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Myofibroblasts are prototypical fibrotic cells, which are involved in a number of more or less pathological conditions, from foreign body reactions to scarring, from liver, kidney, or lung fibrosis to neoplastic phenomena. The differentiation of precursor cells (not only of fibroblastic nature) is characterized by a complex interplay between soluble factors (growth factors such as transforming growth factor β1, reactive oxygen species [ROS]) and material properties (matrix stiffness). RECENT ADVANCES The last 15 years have seen very significant advances in the identification of appropriate differentiation markers, in the understanding of the differentiation mechanism, and above all, the involvement of ROS as causative and persistence factors. CRITICAL ISSUES The specific mechanisms of action of ROS remain largely unknown, although evidence suggests that both intracellular and extracellular phenomena play a role. FUTURE DIRECTIONS Approaches based on antioxidant (ROS-scavenging) principles and on the potentiation of nitric oxide signaling hold much promise in view of a pharmacological therapy of fibrotic phenomena. However, how to make the active principles available at the target sites is yet a largely neglected issue.
Collapse
Affiliation(s)
- Alessandro Siani
- 1 School of Pharmacy and Pharmaceutical Sciences, University of Manchester , Manchester, United Kingdom
| | | |
Collapse
|
47
|
Xu J, Liu X, Koyama Y, Wang P, Lan T, Kim IG, Kim IH, Ma HY, Kisseleva T. The types of hepatic myofibroblasts contributing to liver fibrosis of different etiologies. Front Pharmacol 2014; 5:167. [PMID: 25100997 PMCID: PMC4105921 DOI: 10.3389/fphar.2014.00167] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/25/2014] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis results from dysregulation of normal wound healing, inflammation, activation of myofibroblasts, and deposition of extracellular matrix (ECM). Chronic liver injury causes death of hepatocytes and formation of apoptotic bodies, which in turn, release factors that recruit inflammatory cells (neutrophils, monocytes, macrophages, and lymphocytes) to the injured liver. Hepatic macrophages (Kupffer cells) produce TGFβ1 and other inflammatory cytokines that activate Collagen Type I producing myofibroblasts, which are not present in the normal liver. Secretion of TGFβ1 and activation of myofibroblasts play a critical role in the pathogenesis of liver fibrosis of different etiologies. Although the composition of fibrogenic myofibroblasts varies dependent on etiology of liver injury, liver resident hepatic stellate cells and portal fibroblasts are the major source of myofibroblasts in fibrotic liver in both experimental models of liver fibrosis and in patients with liver disease. Several studies have demonstrated that hepatic fibrosis can reverse upon cessation of liver injury. Regression of liver fibrosis is accompanied by the disappearance of fibrogenic myofibroblasts followed by resorption of the fibrous scar. Myofibroblasts either apoptose or inactivate into a quiescent-like state (e.g., stop collagen production and partially restore expression of lipogenic genes). Resolution of liver fibrosis is associated with recruitment of macrophages that secrete matrix-degrading enzymes (matrix metalloproteinase, collagenases) and are responsible for fibrosis resolution. However, prolonged/repeated liver injury may cause irreversible crosslinking of ECM and formation of uncleavable collagen fibers. Advanced fibrosis progresses to cirrhosis and hepatocellular carcinoma. The current review will summarize the role and contribution of different cell types to populations of fibrogenic myofibroblasts in fibrotic liver.
Collapse
Affiliation(s)
- Jun Xu
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Xiao Liu
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Yukinori Koyama
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Ping Wang
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Tian Lan
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - In-Gyu Kim
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - In H Kim
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Hsiao-Yen Ma
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Tatiana Kisseleva
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| |
Collapse
|
48
|
Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 2014; 4:2823. [PMID: 24264436 PMCID: PMC4059406 DOI: 10.1038/ncomms3823] [Citation(s) in RCA: 961] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023] Open
Abstract
Although organ fibrosis causes significant morbidity and mortality in chronic diseases, the lack of detailed knowledge about specific cellular contributors mediating fibrogenesis hampers the design of effective antifibrotic therapies. Different cellular sources, including tissue-resident and bone marrow-derived fibroblasts, pericytes and epithelial cells, have been suggested to give rise to myofibroblasts, but their relative contributions remain controversial, with profound differences between organs and different diseases. Here we employ a novel Cre-transgenic mouse that marks 99% of hepatic stellate cells (HSCs), a liver-specific pericyte population, to demonstrate that HSCs give rise to 82-96% of myofibroblasts in models of toxic, cholestatic and fatty liver disease. Moreover, we exclude that HSCs function as facultative epithelial progenitor cells in the injured liver. On the basis these findings, HSCs should be considered the primary cellular target for antifibrotic therapies across all types of liver disease.
Collapse
|
49
|
Abe J, Shichino S, Ueha S, Hashimoto SI, Tomura M, Inagaki Y, Stein JV, Matsushima K. Lymph node stromal cells negatively regulate antigen-specific CD4+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2014; 193:1636-44. [PMID: 25024385 DOI: 10.4049/jimmunol.1302946] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lymph node (LN) stromal cells (LNSCs) form the functional structure of LNs and play an important role in lymphocyte survival and the maintenance of immune tolerance. Despite their broad spectrum of function, little is known about LNSC responses during microbial infection. In this study, we demonstrate that LNSC subsets display distinct kinetics following vaccinia virus infection. In particular, compared with the expansion of other LNSC subsets and the total LN cell population, the expansion of fibroblastic reticular cells (FRCs) was delayed and sustained by noncirculating progenitor cells. Notably, newly generated FRCs were preferentially located in perivascular areas. Viral clearance in reactive LNs preceded the onset of FRC expansion, raising the possibility that viral infection in LNs may have a negative impact on the differentiation of FRCs. We also found that MHC class II expression was upregulated in all LNSC subsets until day 10 postinfection. Genetic ablation of radioresistant stromal cell-mediated Ag presentation resulted in slower contraction of Ag-specific CD4(+) T cells. We propose that activated LNSCs acquire enhanced Ag-presentation capacity, serving as an extrinsic brake system for CD4(+) T cell responses. Disrupted function and homeostasis of LNSCs may contribute to immune deregulation in the context of chronic viral infection, autoimmunity, and graft-versus-host disease.
Collapse
Affiliation(s)
- Jun Abe
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Japan Science and Technology Agency, Tokyo 102-8666, Japan; Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Shigeyuki Shichino
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Japan Science and Technology Agency, Tokyo 102-8666, Japan
| | - Satoshi Ueha
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Japan Science and Technology Agency, Tokyo 102-8666, Japan
| | - Shin-ichi Hashimoto
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Japan Science and Technology Agency, Tokyo 102-8666, Japan; Division of Nephrology, Department of Laboratory Medicine, Kanazawa University, Ishikawa 920-1192, Japan
| | - Michio Tomura
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; and
| | - Yutaka Inagaki
- Japan Science and Technology Agency, Tokyo 102-8666, Japan; Center for Matrix Biology and Medicine, Graduate School of Medicine, Institute of Medical Sciences, Tokai University, Kanagawa 259-1143, Japan
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Japan Science and Technology Agency, Tokyo 102-8666, Japan;
| |
Collapse
|
50
|
Abstract
Liver disease is a rising cause of mortality and morbidity, and treatment options remain limited. Liver transplantation is curative but limited by donor organ availability, operative risk and long-term complications. The contribution of bone marrow (BM)-derived stem cells to tissue regeneration has been recognised and there is considerable interest in the potential benefits of BM stem cells in patients with liver disease. In chronic liver disease, deposition of fibrous scar tissue inhibits hepatocyte proliferation and leads to portal hypertension. Although initial reports had suggested transdifferentiation of stem cells into hepatocytes, the beneficial effects of BM stem cells are more likely derived from the ability to breakdown scar tissue and stimulate hepatocyte proliferation. Studies in animal models have yielded promising results, although the exact mechanisms and cell type responsible have yet to be determined. Small-scale clinical studies have quickly followed and, although primarily designed to examine safety and feasibility of this approach, have reported improvements in liver function in treated patients. Well-designed, controlled studies are required to fully determine the benefits of BM stem cell therapy.
Collapse
Affiliation(s)
- Andrew King
- NIHR Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, UK
| | | |
Collapse
|