1
|
Zhang CY, Zhang R, Zhang L, Wang ZM, Sun HZ, Cui ZG, Zheng HC. Regenerating gene 4 promotes chemoresistance of colorectal cancer by affecting lipid droplet synthesis and assembly. World J Gastroenterol 2023; 29:5104-5124. [PMID: 37744296 PMCID: PMC10514755 DOI: 10.3748/wjg.v29.i35.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Regenerating gene 4 (REG4) has been proved to be carcinogenic in some cancers, but its manifestation and possible carcinogenic mechanisms in colorectal cancer (CRC) have not yet been elucidated. Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism. AIM To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance. METHODS We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC. The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells. We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells. Finally, we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells. RESULTS Compared to normal mucosa, REG4 mRNA expression was high in CRC (P < 0.05) but protein expression was low. An inverse correlation existed between lymph node and distant metastases, tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression (P < 0.05), but vice versa for REG4 protein expression. REG4-related genes included: Chemokine activity; taste receptors; protein-DNA and DNA packing complexes; nucleosomes and chromatin; generation of second messenger molecules; programmed cell death signals; epigenetic regulation and DNA methylation; transcription repression and activation by DNA binding; insulin signaling pathway; sugar metabolism and transfer; and neurotransmitter receptors (P < 0.05). REG4 exposure or overexpression promoted proliferation, antiapoptosis, migration, and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway. REG4 was involved in chemoresistance not through de novo lipogenesis, but lipid droplet assembly. REG4 inhibited the transcription of acetyl-CoA carboxylase 1 (ACC1) and ATP-citrate lyase (ACLY) by disassociating the complex formation of anti-acetyl (AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY. CONCLUSION REG4 may be involved in chemoresistance through lipid droplet assembly. REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.
Collapse
Affiliation(s)
- Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Shenyang 110042, Liaoning Province, China
| | - Li Zhang
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Zi-Mo Wang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Hong-Zhi Sun
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui 910-1193, Japan
| | - Hua-Chuan Zheng
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
2
|
Wu S, Tian C, Tu Z, Guo J, Xu F, Qin W, Chang H, Wang Z, Hu T, Sun X, Ning H, Li Y, Gou W, Hou W. Protective effect of total flavonoids of Engelhardia roxburghiana Wall. leaves against radiation-induced intestinal injury in mice and its mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116428. [PMID: 36997130 DOI: 10.1016/j.jep.2023.116428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/05/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Irradiation-induced intestinal injury (RIII) often occurs during radiotherapy in patients, which would result in abdominal pain, diarrhea, nausea, vomiting, and even death. Engelhardia roxburghiana Wall. leaves, a traditional Chinese herb, has unique anti-inflammatory, anti-tumor, antioxidant, and analgesic effects, is used to treat damp-heat diarrhea, hernia, and abdominal pain, and has the potential to protect against RIII. AIM OF THE STUDY To explore the protective effects of the total flavonoids of Engelhardia roxburghiana Wall. leaves (TFERL) on RIII and provide some reference for the application of Engelhardia roxburghiana Wall. leaves in the field of radiation protection. MATERIALS AND METHODS The effect of TFERL on the survival rate of mice was observed after a lethal radiation dose (7.2 Gy) by ionizing radiation (IR). To better observe the protective effects of the TFERL on RIII, a mice model of RIII induced by IR (13 Gy) was established. Small intestinal crypts, villi, intestinal stem cells (ISC) and the proliferation of ISC were observed by haematoxylin and eosin (H&E) and immunohistochemistry (IHC). Quantitative real-time PCR (qRT-PCR) was used to detect the expression of genes related to intestinal integrity. Superoxide dismutase (SOD), reduced glutathione (GSH), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the serum of mice were assessed. In vitro, cell models of RIII induced by IR (2, 4, 6, 8 Gy) were established. Normal human intestinal epithelial cells HIEC-6 cells were treated with TFERL/Vehicle, and the radiation protective effect of TFERL on HIEC-6 cells was detected by clone formation assay. DNA damage was detected by comet assay and immunofluorescence assay. Reactive oxygen species (ROS), cell cycle and apoptosis rate were detected by flow cytometry. Oxidative stress, apoptosis and ferroptosis-related proteins were detected by western blot. Finally, the colony formation assay was used to detect the effect of TFERL on the radiosensitivity of colorectal cancer cells. RESULTS TFERL treatment can increase the survival rate and time of the mice after a lethal radiation dose. In the mice model of RIII induced by IR, TFERL alleviated RIII by reducing intestinal crypt/villi structural damage, increasing the number and proliferation of ISC, and maintaining the integrity of the intestinal epithelium after total abdominal irradiation. Moreover, TFERL promoted the proliferation of irradiated HIEC-6 cells, and reduced radiation-induced apoptosis and DNA damage. Mechanism studies have found that TFERL promotes the expression of NRF2 and its downstream antioxidant proteins, and silencing NRF2 resulted in the loss of radioprotection by TFERL, suggesting that TFERL exerts radiation protection by activating the NRF2 pathway. Surprisingly, TFERL reduced the number of clones of colon cancer cells after irradiation, suggesting that TFERL can increase the radiosensitivity of colon cancer cells. CONCLUSION Our data showed that TFERL inhibited oxidative stress, reduced DNA damage, reduced apoptosis and ferroptosis, and improved IR-induced RIII. This study may offer a fresh approach to using Chinese herbs for radioprotection.
Collapse
Affiliation(s)
- Shaohua Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Chen Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhengwei Tu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital, Tianjin, 300100, China
| | - Jianghong Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Feifei Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Weida Qin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Huajie Chang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhiyun Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Tong Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao Sun
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hongxin Ning
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
| | - Wenbin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
| |
Collapse
|
3
|
Wong JJW, Lorenz S, Selbo PK. All-trans retinoic acid enhances the anti-tumour effects of fimaporfin-based photodynamic therapy. Biomed Pharmacother 2022; 155:113678. [PMID: 36108391 DOI: 10.1016/j.biopha.2022.113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
The vitamin A metabolite all-trans retinoic acid (ATRA; tretinoin) has anticancer potential. However, lack of clinical success has prevented its approval for solid tumours. Herein, we propose combining short-term low-dose ATRA with fimaporfin-based photodynamic therapy (ATRA+PDT) for the improved treatment of solid cancers. Compared to monotherapies, ATRA+PDT induced synergistic cytotoxic responses including promotion of apoptosis in colon and breast carcinoma cell lines. Neither enhanced activity of alkaline phosphatase (ALP) nor increased expression of CD133 was detected after ATRA treatment indicating that the improved therapeutic effect of ATRA+PDT is independent of the differentiation state of the cancer cells. In the human colorectal adenocarcinoma cell line HT-29, the effect of ATRA+PDT on gene expression was evaluated by RNA sequencing (RNA-seq). We identified 1129 differentially expressed genes (DEGs) after ATRA+PDT compared to PDT. Ingenuity Pathway Analysis (IPA) predicted the unfolded protein response (UPR), interferon (IFN) signaling and retinoic acid-mediated apoptosis signaling as strongly activated canonical pathways after ATRA+PDT compared to PDT. A validation of the RNA-sec data by RT-qPCR revealed that ATRA+PDT elevated mRNA expression of early growth response 1 (EGR1) and strongly the stress-induced activating transcription factor 3 (ATF3), of which was confirmed on the protein level. In addition, ATRA+PDT abolished mRNA expression of regenerating islet-derived protein 4 (REG4). During the first 20 days post-ATRA+PDT, we obtained significant anti-tumour responses in HT-29 xenografts, including complete responses in 2/5 mice. In conclusion, ATRA+PDT represent a novel combination therapy for solid tumours that should be further tested in immunocompetent preclinical models.
Collapse
Affiliation(s)
- Judith Jing Wen Wong
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, P.b. 4953 Nydalen, 0424 Oslo, Norway
| | - Susanne Lorenz
- Genomics Core Facility, Department of Core Facilities, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, P.b. 4953 Nydalen, 0424 Oslo, Norway
| | - Pål Kristian Selbo
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, P.b. 4953 Nydalen, 0424 Oslo, Norway.
| |
Collapse
|
4
|
Xiang LW, Xue H, Ha MW, Yu DY, Xiao LJ, Zheng HC. The effects of REG4 expression on chemoresistance of ovarian cancer. J OBSTET GYNAECOL 2022; 42:3149-3157. [PMID: 35929918 DOI: 10.1080/01443615.2022.2106834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although ovarian cancer usually responds well to platinum- and taxane-based first-line chemotherapy, most patients develop recurrence and chemoresistance. Regenerating gene 4 (REG4) is a secretory protein involved in cell differentiation and proliferation. We found higher REG4 expression in ovarian cancer than in normal tissues (p < .05). Regenerating gene 4 expression was negatively associated with overall, progression-free or post-progression survival rates of patients with ovarian cancer receiving platinum or paclitaxel treatment (p < .05) according to a Kaplan-Meier plotter. Regenerating gene 4 overexpression resulted in either cisplatin or paclitaxel resistance, and apoptosis resistance in CAOV3 ovarian cancer cells (p < .05). REG4-transfected ovarian cancer cells showed stronger migration and invasion treated with cisplatin or paclitaxel (p < .05). Additionally, cisplatin or paclitaxel exposure led to the overexpression of phosphorylated phosphoinositide 3-kinase (p-PI3K), p-Akt, phosphorylated mammalian target of rapamycin (p-mTOR), glutathione S-transferase-π, survivin, and B-cell lymphoma 2 in REG4 transfectants compared with control cells (p < .05). These findings suggested that REG4 expression was up-regulated in ovarian cancer, and associated with poor survival and chemotherapy resistance. REG4 promoted the occurrence, development, and chemotherapy resistance of ovarian cancer by regulating cell proliferation, apoptosis, migration, and invasion, and PI3K/Akt/m-TOR signalling pathways. IMPACT STATEMENTWhat is already known on this subject? REG4 mRNA expression is up-regulated in many digestive cancers. High REG4 expression was associated with an adverse prognosis, high tumour and nodal stages, poor differentiation, and hepatic and peritoneal metastases of digestive cancers. REG4 expression conferred cancer cells with increased resistance to chemoradiotherapy, especially 5-FU-based treatment, by activating the MAPK/Erk/Bim signalling pathway.What do the results of this study add? REG4 was highly expressed in ovarian cancer. The expression of p-PI3K, p-AKT, p-mTOR, GST-π, survivin, and Bcl-2 was increased in REG4-overexpressing cells. High REG4 expression was significantly associated with inferior OS, PFS, and PPS rates in patients with ovarian cancer receiving platinum chemotherapy. REG4 mediated cisplatin and paclitaxel resistance in CAOV3 ovarian cancer cells. The percentage of apoptotic cells was markedly lower in REG4-transfected compared to mock-transfected cells after cisplatin or paclitaxel treatment.What are the implications of these findings for clinical practice and/or further research? This study aimed to evaluate the prognostic significance of REG4 expression in ovarian cancer treated with platinum and paclitaxel, to explore REG4 chemoresistance mechanisms to platinum and paclitaxel, and to provide a scientific experimental basis for the clinical treatment and outcome evaluation of ovarian cancer. In order to provide comprehensive clinical treatment of ovarian cancer, it is helpful to improve our understanding of multi-drug resistance and identify new cancer diagnostic biomarkers.
Collapse
Affiliation(s)
- Li-Wei Xiang
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hang Xue
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Min-Wen Ha
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Da-Yong Yu
- Department of Cell Biology, Basic Medicine College of Chengde Medical University, Chengde, China
| | - Li-Jun Xiao
- Department of Immunology, Basic Medicine College of Chengde Medical University, Chengde, China
| | - Hua-Chuan Zheng
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
5
|
Zheng HC, Xue H, Zhang CY. REG4 promotes the proliferation and anti-apoptosis of cancer. Front Cell Dev Biol 2022; 10:1012193. [PMID: 36172286 PMCID: PMC9511136 DOI: 10.3389/fcell.2022.1012193] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Regenerating islet-derived 4 (REG4) gene was discovered by high-throughput sequencing of ulcerative colitis cDNA libraries. REG4 is involved in infection and inflammation by enhancing macrophage polarization to M2, via activation of epidermal growth factor receptor (EGFR)/Akt/cAMP-responsive element binding and the killing inflammatory Escherichia coli, and closely linked to tumorigenesis. Its expression was transcriptionally activated by caudal type homeobox 2, GATA binding protein 6, GLI family zinc finger 1, SRY-box transcription factor 9, CD44 intracytoplasmic domain, activating transcription factor 2, and specificity protein 1, and translationally activated by miR-24. REG4 can interact with transmembrane CD44, G protein-coupled receptor 37, mannan and heparin on cancer cells. Its overexpression was observed in gastric, colorectal, pancreatic, gallbladder, ovarian and urothelial cancers, and is closely linked to their aggressive behaviors and a poor prognosis. Additionally, REG4 expression and recombinant REG4 aggravated such cellular phenotypes as tumorigenesis, proliferation, anti-apoptosis, chemoradioresistance, migration, invasion, peritoneal dissemination, tumor growth, and cancer stemness via EGFR/Akt/activator protein-1 and Akt/glycogen synthase kinase three β/β-catenin/transcription factor 4 pathways. Sorted REG4-positive deep crypt secretory cells promote organoid formation of single Lgr5 (+) colon stem cells by Notch inhibition and Wnt activation. Histologically, REG4 protein is specifically expressed in neuroendocrine tumors and signet ring cell carcinomas of the gastrointestinal tract, pancreas, ovary, and lung. It might support the histogenesis of gastric intestinal–metaplasia–globoid dysplasia–signet ring cell carcinoma. In this review, we summarized the structure, biological functions, and effects of REG4 on inflammation and cancer. We conclude that REG4 may be employed as a biomarker of tumorigenesis, subsequent progression and poor prognosis of cancer, and may be a useful target for gene therapy.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-Chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
6
|
Bishnupuri KS, Sainathan SK, Ciorba MA, Houchen CW, Dieckgraefe BK. Reg4 Interacts with CD44 to Regulate Proliferation and Stemness of Colorectal and Pancreatic Cancer Cells. Mol Cancer Res 2022; 20:387-399. [PMID: 34753802 DOI: 10.1158/1541-7786.mcr-21-0224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
Regenerating Gene 4 (Reg4) is highly upregulated in gastrointestinal (GI) malignancies including colorectal and pancreatic cancers. Numerous studies demonstrated an association between higher Reg4 expression and tumor aggressiveness, intrinsic resistance to apoptotic death, and poor outcomes from GI malignancies. However, the precise receptor and underlying signaling mechanism have remained unknown. Although we previously reported a Reg4-mediated induction of EGFR activity in colorectal cancer cells, a direct interaction between Reg4 and EGFR was not observed. This study is focused on identifying the cell surface binding partner of Reg4 and dissecting its role in colorectal cancer and pancreatic cancer growth and stem cell survival. In vitro models of human colorectal cancer and pancreatic cancer were used to evaluate the results. Results of this study find: (i) Reg4 interacts with CD44, a transmembrane protein expressed by a population of colorectal cancer and pancreatic cancer cells; (ii) Reg4 activates regulated intramembrane proteolysis of CD44 resulting in γ-secretase-mediated cleavage and release of the CD44 intracytoplasmic domain (CD44ICD) that functions as a transcriptional activator of D-type cyclins involved in the regulation of cancer cell proliferation and Klf4 and Sox2 expression involved in regulating pluripotency of cancer stem cells; and (iii) Reg4 significantly increases colorectal cancer and pancreatic cancer cell proliferation and their clonogenic potential in stem cell assays. IMPLICATIONS These results suggest that pro-proliferative and pro-stemness effects of Reg4 are mediated through γ-secretase-mediated CD44/CD44ICD signaling, hence strategies to disrupt Reg4-CD44-γ-secretase-CD44ICD signaling axis may increase cancer cell susceptibility to chemo- and radiotherapeutics.
Collapse
Affiliation(s)
- Kumar S Bishnupuri
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
- Veteran Affair St Louis Health Care System, St Louis, Missouri
| | - Satheesh K Sainathan
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
| | - Matthew A Ciorba
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
| | - Courtney W Houchen
- Section of Digestive Disease and Nutrition, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Brian K Dieckgraefe
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
- Veteran Affair St Louis Health Care System, St Louis, Missouri
| |
Collapse
|
7
|
Dai J, He Y, Jiang M, Niu M, Li B, Wu Z, Bao J, Wen L, Wang X, Hu G. Reg4 regulates pancreatic regeneration following pancreatitis via modulating the Notch signaling. J Cell Physiol 2021; 236:7565-7577. [PMID: 33899235 DOI: 10.1002/jcp.30397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic regeneration after acute pancreatitis is critical in the normal restoration of pancreatic exocrine function, the inhibition of which can cause severe complications including pancreatic exocrine insufficiency. However, the regulators of pancreatic regeneration and the underlying mechanisms remain uncovered. Here, using the inducible Tet-on system, we found that regenerating family member 4 (Reg4) knockdown significantly impaired pancreatic regeneration after pancreatitis. Both acinar-to-ductal metaplasia and the resolution of pancreatitis during regeneration were affected by Reg4 knockdown. Further investigations confirmed that Reg4 exerted its function through regulating Notch activation both in vitro and in vivo. Our study revealed Reg4 as a new regulator and potential therapeutic target for pancreatic regeneration.
Collapse
Affiliation(s)
- Juanjuan Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yan He
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjie Jiang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Head and Neck, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mengya Niu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingpiao Bao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Kang G, Oh I, Pyo J, Kang D, Son B. Clinicopathological Significance and Prognostic Implications of REG4 Immunohistochemical Expression in Colorectal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:938. [PMID: 34577861 PMCID: PMC8464993 DOI: 10.3390/medicina57090938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022]
Abstract
Background and objectives: The present study aimed to evaluate the clinicopathological significance and prognostic implications of REG4 immunohistochemical expression in colorectal cancer (CRC). Materials and Methods: We performed immunohistochemical analysis for REG4 cytoplasmic expression in 266 human CRC tissues. Correlations between REG4 expression, clinicopathological characteristics, and survival were investigated in CRC. Results: REG4 was expressed in 84 of 266 CRC tissues (31.6%). REG4 expression was significantly more frequent in the right colon than that in the left colon and rectum (p = 0.002). However, we observed no significant correlation between REG4 expression and other clinicopathological parameters. REG4 expression was significantly higher in CRCs with low stroma than in those with high stroma (p = 0.006). In addition, REG4 was more frequently expressed in CRCs with the mucinous component than in those without it (p < 0.001). There was no significant correlation between REG4 expression and overall recurrence-free survival (p = 0.132 and p = 0.480, respectively). Patients with REG4 expression showed worse overall and recurrence-free survival in the high-stroma subgroup (p = 0.001 and p = 0.017, respectively), but no such correlation was seen in the low stroma subgroup (p = 0.232 and p = 0.575, respectively). Conclusions: REG4 expression was significantly correlated with tumor location, amount of stroma, and mucinous component in CRCs. In patients with high stroma, REG4 expression was significantly correlated with poor overall and recurrence-free survival.
Collapse
Affiliation(s)
- Guhyun Kang
- Department of Pathology, Daehang Hospital, Seoul 06699, Korea;
| | - Ilhwan Oh
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| | - Jungsoo Pyo
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| | - Dongwook Kang
- Department of Pathology, Chungnam National University Sejong Hospital, 20 Bodeum 7-ro, Sejong 30099, Korea;
- Department of Pathology, Chungnam National University School of Medicine, 266 Munhwa Street, Daejeon 35015, Korea
| | - Byoungkwan Son
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| |
Collapse
|
9
|
The Potential Role of REG Family Proteins in Inflammatory and Inflammation-Associated Diseases of the Gastrointestinal Tract. Int J Mol Sci 2021; 22:ijms22137196. [PMID: 34281249 PMCID: PMC8268738 DOI: 10.3390/ijms22137196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerating gene (REG) family proteins serve as multifunctional secretory molecules with trophic, antiapoptotic, anti-inflammatory, antimicrobial and probably immuno-regulatory effects. Since their discovery, accumulating evidence has clarified the potential roles of the REG family in the occurrence, progression and development of a wide range of inflammatory and inflammation-associated diseases of the gastrointestinal (GI) tract. However, significant gaps still exist due to the undefined nature of certain receptors, regulatory signaling pathways and possible interactions among distinct Reg members. In this narrative review, we first describe the structural features, distribution pattern and purported regulatory mechanisms of REG family proteins. Furthermore, we summarize the established and proposed roles of REG proteins in the pathogenesis of various inflammation-associated pathologies of the GI tract and the body as a whole, focusing particularly on carcinogenesis in the ulcerative colitis—colitic cancer sequence and gastric cancer. Finally, the clinical relevance of REG products in the context of diagnosis, treatment and prognostication are also discussed in detail. The current evidence suggests a need to better understanding the versatile roles of Reg family proteins in the pathogenesis of inflammatory-associated diseases, and their broadened future usage as therapeutic targets and prognostic biomarkers is anticipated.
Collapse
|
10
|
Sninsky JA, Bishnupuri KS, González I, Trikalinos NA, Chen L, Dieckgraefe BK. Reg4 and its downstream transcriptional activator CD44ICD in stage II and III colorectal cancer. Oncotarget 2021; 12:278-291. [PMID: 33659040 PMCID: PMC7899555 DOI: 10.18632/oncotarget.27896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Reg4 is highly expressed in gastrointestinal malignancies and acts as a mitogenic and pro-invasive factor. Our recent works suggest that Reg4 binds with CD44 and induces its proteolytic cleavage to release intra-cytoplasmic domain of CD44 (CD44ICD). The goal of this study is to demonstrate clinical significance of the Reg4-CD44/CD44ICD pathway in stage II/III colon cancer and its association with clinical parameters of aggression. We constructed a tissue microarray (TMA) of 93 stage II/III matched colon adenocarcinoma patients, 23 with recurrent disease. The TMA was immunohistochemically stained for Reg4, CD44, and CD44ICD proteins and analyzed to identify associations with tumor characteristics, recurrence and overall survival. The TMA data analysis showed a significant correlation between Reg4 and CD44 (r2 = 0.23, P = 0.028), CD44 and CD44ICD (r2 = 0.36, p = 0.0004), and Reg4 and CD44ICD (r2 = 0.45, p ≤ 0.0001). Reg4 expression was associated with larger tumor size (r2 = 0.23, p = 0.026). Although, no association was observed between Reg4, CD44, or CD44ICD expression and disease recurrence, Reg4-positive patients had a median survival of 4 years vs. 7 years for Reg4-negative patients (p = 0.04) in patients who recurred. Inhibition of the Reg4-CD44/CD44ICD pathway may be a future therapeutic target for colon cancer patients.
Collapse
Affiliation(s)
- Jared A Sninsky
- Division of Gastroenterology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kumar S Bishnupuri
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Iván González
- Division of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nikolaos A Trikalinos
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ling Chen
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Brian K Dieckgraefe
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
11
|
Zhang J, Zhu Z, Miao Z, Huang X, Sun Z, Xu H, Wang Z. The Clinical Significance and Mechanisms of REG4 in Human Cancers. Front Oncol 2021; 10:559230. [PMID: 33489872 PMCID: PMC7819868 DOI: 10.3389/fonc.2020.559230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Regenerating islet-derived type 4 (REG4), a member of the calcium-dependent lectin gene superfamily, is abnormally expressed in various cancers, such as colorectal, gastric, gallbladder, pancreatic, ovarian, prostate, and lung cancer. REG4 is associated with a relatively unfavorable prognosis and clinicopathologic features in cancers, including advanced tumor and nodal stage, histological differentiation, and liver and peritoneal metastasis. Moreover, REG4-positive cancer cells show more frequent resistance to chemoradiotherapy, especially 5-FU-based chemotherapy. REG4 participates in many aspects of carcinogenesis, including cell proliferation, apoptosis, cell cycle, invasion, metastasis, and drug resistance. The underlying mechanisms are complex and involve a series of signaling mediators and multiple pathways. Thus, REG4 may be a potential diagnostic and prognostic biomarker as well as a candidate therapeutic target in cancer patients. In this review, we systematically summarize the advances about the clinical significance, biological functions, and mechanisms underlying REG4 in cancer to provide new directions for future cancer research.
Collapse
Affiliation(s)
- Junyan Zhang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Zhu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifeng Miao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhe Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huimian Xu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Zhang XQ, Yu LT, Du P, Yin TQ, Zhang ZY, Xu Y, Li X, Li YJ, Wang M, Luo C. Single-chain Antibody Against Reg4 Suppresses Gastric Cancer Cell Growth and Enhances 5-FU-induced Cell Death in vitro. Anticancer Agents Med Chem 2020; 19:610-619. [PMID: 30465515 DOI: 10.2174/1871520619666181122104720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/15/2018] [Accepted: 11/13/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Regenerating islet-derived gene family member 4 (Reg4), a well-investigated growth factor in the regenerative pancreas, has recently been reported to be highly associated with a majority of gastrointestinal cancers. Pathological hyper-expression or artificial over-expression of Reg4 causes acceleration of tumor growth, migration, and resistance to chemotherapeutic 5-Fluorouracil (5-FU). Until now, no method has been successfully established for eliminating the effects of Reg4 protein. METHODS This study reports the production of an engineered immunoglobin, a single-chain variable fragment (scFv-Reg4), to specifically bind Reg4 and block the bioactivity. The complementary-determining regions (CDRs) against Reg4 were assigned using MOE and ZDOCK servers. The binding affinity (KD) was determined by bio-layer interferometry (BLI). MKN45 and AGS cell proliferation was determined by Thiazolyl blue tetrazolium bromide (MTT) method and the cell apoptosis was detected by flow cytometry assay. RESULTS The KD of scFv-Reg4 to Reg4 was determined to be 1.91×10-8. In MKN45 and AGS cell lines, scFv- Reg4 depressed Reg4-stimulated cell proliferation and the inhibitory rates were 27.7±1.5% and 17.3±2.6%, respectively. Furthermore, scFv significantly enhanced 5-FU-induced cell death, from 23.0±1.0% to 28.4±1.2% in MKN45 and 28.2±0.7% to 36.6±0.6% in AGS cells. Treatment with scFv alone could lyse cancer cells to a certain extent, but no significance has been observed. CONCLUSION The single-chain antibody (scFv-Reg4) significantly inhibited gastric cancer cell proliferation and synergistically enhanced the lethal effect of 5-FU. Thus, traditional chemo-/radio- therapeutics supplemented with scFv-Reg4 may provide advances in the strategy for gastrointestinal cancer treatment.
Collapse
Affiliation(s)
- Xue-Qing Zhang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Lu-Ting Yu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.,Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Pei Du
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Tian-Qi Yin
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Zhi-Yuan Zhang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Ying Xu
- Jiangsu Celtec Biotechnology Co. Ltd, Jiangsu, China
| | - Xiang Li
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - You-Jie Li
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Min Wang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Chen Luo
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Xu X, Fukui H, Ran Y, Wang X, Inoue Y, Ebisudani N, Nishimura H, Tomita T, Oshima T, Watari J, Kiyama H, Miwa H. The Link between Type III Reg and STAT3-Associated Cytokines in Inflamed Colonic Tissues. Mediators Inflamm 2019; 2019:7859460. [PMID: 31780871 PMCID: PMC6875322 DOI: 10.1155/2019/7859460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/10/2019] [Accepted: 09/25/2019] [Indexed: 02/08/2023] Open
Abstract
Reg (regenerating gene) family proteins are known to be overexpressed in gastrointestinal (GI) tissues under conditions of inflammation. However, the pathophysiological significance of Reg family protein overexpression and its regulation is still unclear. In the present study, we investigated the profile of Reg family gene expression in a colitis model and focused on the regulation of Reg IIIβ and IIIγ, which are overexpressed in inflamed colonic mucosa. C57BL/6 mice were administered 2% dextran sulfate sodium (DSS) in drinking water for five days, and their colonic tissues were investigated histopathologically at interval for up to 12 weeks. Gene expression of the Reg family and cytokines (IL-6, IL-17, and IL-22) was evaluated by real-time RT-PCR, and Reg IIIβ/γ expression was examined by immunohistochemistry. The effects of cytokines on STAT3 phosphorylation and HIP/PAP (type III REG) expression in Caco2 and HCT116 cells were examined by Western blot analysis. Among Reg family genes, Reg IIIβ and IIIγ were alternatively overexpressed in the colonic tissues of mice with DSS-induced colitis. The expression of STAT3-associated cytokines (IL-6, IL-17, and IL-22) was also significantly increased in those tissues, being significantly correlated with that of Reg IIIβ/γ. STAT3 phosphorylation and HIP/PAP expression were significantly enhanced in Caco2 cells upon stimulation with IL-6, IL-17, and IL-22. In HCT116 cells, those enhancements were also observed by IL-6 and IL-22 stimulations but not IL-17. The link between type III Reg and STAT3-associated cytokines appears to play a pivotal role in the pathophysiology of DSS-induced colitis.
Collapse
Affiliation(s)
- Xin Xu
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ying Ran
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuan Wang
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yoshihito Inoue
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Nobuhiko Ebisudani
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Heihachiro Nishimura
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jiro Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
14
|
Poynter L, Galea D, Veselkov K, Mirnezami A, Kinross J, Nicholson J, Takáts Z, Darzi A, Mirnezami R. Network Mapping of Molecular Biomarkers Influencing Radiation Response in Rectal Cancer. Clin Colorectal Cancer 2019; 18:e210-e222. [PMID: 30928329 DOI: 10.1016/j.clcc.2019.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/12/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023]
Abstract
Preoperative radiotherapy (RT) plays an important role in the management of locally advanced rectal cancer (RC). Tumor regression after RT shows marked variability, and robust molecular methods are needed to help predict likely response. The aim of this study was to review the current published literature and use Gene Ontology (GO) analysis to define key molecular biomarkers governing radiation response in RC. A systematic review of electronic bibliographic databases (Medline, Embase) was performed for original articles published between 2000 and 2015. Biomarkers were then classified according to biological function and incorporated into a hierarchical GO tree. Both significant and nonsignificant results were included in the analysis. Significance was binarized on the basis of univariate and multivariate statistics. Significance scores were calculated for each biological domain (or node), and a direct acyclic graph was generated for intuitive mapping of biological pathways and markers involved in RC radiation response. Seventy-two individual biomarkers across 74 studies were identified. On highest-order classification, molecular biomarkers falling within the domains of response to stress, cellular metabolism, and pathways inhibiting apoptosis were found to be the most influential in predicting radiosensitivity. Homogenizing biomarker data from original articles using controlled GO terminology demonstrated that cellular mechanisms of response to RT in RC-in particular the metabolic response to RT-may hold promise in developing radiotherapeutic biomarkers to help predict, and in the future modulate, radiation response.
Collapse
Affiliation(s)
- Liam Poynter
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Dieter Galea
- Computational & Systems Medicine, Imperial College London, London, UK
| | - Kirill Veselkov
- Computational & Systems Medicine, Imperial College London, London, UK
| | | | - James Kinross
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Jeremy Nicholson
- Computational & Systems Medicine, Imperial College London, London, UK
| | - Zoltán Takáts
- Computational & Systems Medicine, Imperial College London, London, UK
| | - Ara Darzi
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Reza Mirnezami
- Department of Surgery & Cancer, Imperial College London, London, UK; St Mark's Hospital and Academic Institute, Harrow, London, UK.
| |
Collapse
|
15
|
Jin J, Lv H, Wu J, Li D, Chen K, Zhang F, Han J, Feng J, Zhang N, Yu H, Su D, Ying L. Regenerating Family Member 4 (Reg4) Enhances 5-Fluorouracil Resistance of Gastric Cancer Through Activating MAPK/Erk/Bim Signaling Pathway. Med Sci Monit 2017; 23:3715-3721. [PMID: 28759561 PMCID: PMC5549713 DOI: 10.12659/msm.903134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/19/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Reg4, a member of the Reg multigene family, is highly upregulated in many gastrointestinal cancers including gastric cancer (GC). The enhanced expression of Reg4 is associated with the resistance of GC to 5-fluorouracil (5-FU), while the underlying mechanism is not clear. The aim of the present study was to explore the resistant mechanism underlying 5-FU resistance. MATERIAL AND METHODS Reg4 expression was assessed by Western blot analysis for SGC-7901, BGC-823, AGS, MKN28, and MKN45. Synthetic short single strand RNA oligonucleotides and Flag-Reg4 plasmid were used to investigate the biological function of Reg4 in vitro. The cell viability assay was performed by MTT. Flow cytometry was carried out to measure the apoptosis caused by 5-FU. Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) was used to examine the expression of 5-FU metabolism related enzymes. The effect of Reg4 on intracellular signaling was evaluated by Western blot. RESULTS Western blot analysis of 5 GC cells showed that Reg4 was low or null in SGC-7901 and BGC-823, while high in AGS, MKN28, and MKN45. Over-expression of flag-Reg4 in SGC-7901 led to an increase in cell viability and lower apoptosis with 5-FU treatment. In contrast, siRNA knockdown of Reg4 enhanced 5-FU induced apoptosis. However, over-expression or knockdown of Reg4 had no significant influence on the expression of 5-FU metabolic enzymes. Further investigation revealed that Reg4 could activate Erk1/2-Bim-caspase3 cascade. CONCLUSIONS Reg4 inhibited apoptosis through regulating MAPK/Erk/Bim signaling pathway and thereby enhanced the resistance of GC to 5-FU.
Collapse
Affiliation(s)
- Jiaoyue Jin
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Hang Lv
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Zhejiang Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Junzhou Wu
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Dan Li
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Kaiyan Chen
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Fanrong Zhang
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Jing Han
- Tissue Bank, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, P.R. China
| | - Jianguo Feng
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Nan Zhang
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, U.S.A
| | - Dan Su
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Lisha Ying
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
16
|
Luo C, Yu LT, Yang MQ, Li X, Zhang ZY, Alfred MO, Liu JL, Wang M. Recombinant Reg3β protein protects against streptozotocin-induced β-cell damage and diabetes. Sci Rep 2016; 6:35640. [PMID: 27767186 PMCID: PMC5073304 DOI: 10.1038/srep35640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022] Open
Abstract
Regenerating genes (Reg) have been found during the search for factors involved in pancreatic islet regeneration. Our recent study discovered that pancreatic β-cell-specific overexpression of Reg3β protects against streptozotocin (Stz) -induced diabetes in mice. To investigate its potential roles in the treatment of diabetes, we produced a recombinant Reg3β protein and provided evidence that it is active in promoting islet β-cell survival against Stz- triggered cell death. Though ineffective in alleviating preexisting diabetes, pretreatment of recombinant Reg3β was capable of minimizing the Stz-induced hyperglycemia and weight loss, by preserving serum and pancreatic insulin levels, and islet β-cell mass. No obvious changes were observed in the rate of cell proliferation and hypertrophy in α- or acinar-cells after treatment with recombinant Reg3β. The underlying mechanism of Reg3β-mediated protection seems to involve Akt activation which upregulates Bcl-2 and Bcl-xL levels and consequently promotes cell survival.
Collapse
Affiliation(s)
- Chen Luo
- School of Life Science &Technology, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Lu-Ting Yu
- School of Life Science &Technology, China Pharmaceutical University, Nanjing, China
| | - Meng-Qi Yang
- School of Life Science &Technology, China Pharmaceutical University, Nanjing, China
| | - Xiang Li
- School of Life Science &Technology, China Pharmaceutical University, Nanjing, China
| | - Zhi-Yuan Zhang
- School of Life Science &Technology, China Pharmaceutical University, Nanjing, China
| | - Martin O Alfred
- School of Life Science &Technology, China Pharmaceutical University, Nanjing, China
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Min Wang
- School of Life Science &Technology, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
Yu LT, Yang MQ, Liu JL, Alfred MO, Li X, Zhang XQ, Zhang J, Wu MY, Wang M, Luo C. Recombinant Reg3α protein protects against experimental acute pancreatitis in mice. Mol Cell Endocrinol 2016; 422:150-159. [PMID: 26683606 DOI: 10.1016/j.mce.2015.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/19/2015] [Accepted: 12/01/2015] [Indexed: 12/27/2022]
Abstract
Regenerating gene 3α (Reg3α) protein is a trophic factor that stimulates cell and tissue proliferation, neogenesis and also acts against apoptosis and necrosis. In order to explore the potential roles of recombinant Reg3α (rReg3α), we produced a mature rReg3α polypeptide for direct administration in l-arginine (L-Arg) induced acute pancreatitis (AP) in mice. Our results showed that rReg3α stimulated cell proliferation through Erk1/2 and p38 phosphorylation and also cyclin D1 upregulation mediated by Akt/ATF-2 signaling. Moreover, rReg3α administration significantly reduced the pancreatic damage caused by L-Arg injection, as shown in histological examination and serum amylase, lipase and C-reactive protein (CRP) assays. Not only acinar cell necrosis but also apoptosis found in the pancreas of AP mice were alleviated by rReg3α. Finally, upregulated Bcl-2 and Bcl-xL and suppressed poly (ADP-ribose) synthetase/polymerase (PARP) levels were detected as being relevant to the mechanism of rReg3α protection. We therefore conclude that rReg3α acts as a protective polypeptide against AP in mice by enhancing Bcl-2 and Bcl-xL expressions and suppressing PARP level.
Collapse
MESH Headings
- Acinar Cells/drug effects
- Animals
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/pharmacology
- Apoptosis/drug effects
- Arginine/adverse effects
- Biomarkers, Tumor/administration & dosage
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/pharmacology
- Cell Line
- Cell Proliferation
- Disease Models, Animal
- Female
- Gene Expression Regulation/drug effects
- Humans
- Lectins, C-Type/administration & dosage
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mice
- Pancreatitis/chemically induced
- Pancreatitis/pathology
- Pancreatitis/prevention & control
- Pancreatitis-Associated Proteins
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Lu-Ting Yu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Meng-Qi Yang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Martin O Alfred
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Xiang Li
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Xue-Qing Zhang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Juan Zhang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines China Pharmaceutical University, Nanjing, China
| | - Ming-Yuan Wu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Min Wang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines China Pharmaceutical University, Nanjing, China.
| | - Chen Luo
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
18
|
Ma X, Wu D, Zhou S, Wan F, Liu H, Xu X, Xu X, Zhao Y, Tang M. The pancreatic cancer secreted REG4 promotes macrophage polarization to M2 through EGFR/AKT/CREB pathway. Oncol Rep 2015; 35:189-96. [PMID: 26531138 DOI: 10.3892/or.2015.4357] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
In the periphery of pancreatic ductal adenocarcinoma (PDAC), high accumulation of tumor-associated macrophages (TAMs), which exhibit M2 phenotype, has been shown to be correlated with extra-pancreatic invasion, lymph vessel invasion, lymph node involvement and shortened survival time. However, mechanisms by which tumor cells educate and reprogram TAMs remain largely unclear. The phenotype of TAMs in PDAC tissues was confirmed by immunofluoresence and confocal microscopy. Human CD14+ monocytes were incubated with recombinant human REG4 (rREG4) before being stimulated with LPS and IL-10 and IL-6 were measured with ELISA. A panel of M1 and M2 genes were measured by quantitative real-time PCR. Panc1, AsPC1 and BxPC3 cells were cultured in the conditioned medium (CM) and treated with REG4. The macrophages were infected with CREB shRNA or cultured by the CM of Panc1 cells infected with REG4 shRNA. The expression of CD163, CD206 and REG4 and the phosphorylation levels of epidermal growth factor receptor (EGFR), AKT and cAMP response element-binding protein (CREB) in cells were assessed with western blotting. Cell proliferation and invasiveness were also assessed. The rREG4 or the conditioned medium of Panc1 cells which secreted REG4 induced the polarization macrophages to M2 phenotype. Treatment of human macrophages with REG4 resulted in phosphorylation of EGFR, AKT and CREB. The latter was responsible for REG4-mediated macrophage polarization to M2. The conditioned medium of macrophages treated with rREG4 promoted the proliferation and invasion of pancreatic cancer cell lines. REG4, overexpressed in PDAC and secreted by cancer cells, promoted macrophage polarization to M2, through at least in part, activation of ERK1/2 and CREB and changed the microenvironment to facilitate cancer growth and metastasis.
Collapse
Affiliation(s)
- Xiuying Ma
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Deqing Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shu Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Feng Wan
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hua Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaorong Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xuanfu Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yan Zhao
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Maochun Tang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
19
|
REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis. Sci Rep 2015; 5:14291. [PMID: 26387746 PMCID: PMC4585703 DOI: 10.1038/srep14291] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/24/2015] [Indexed: 12/29/2022] Open
Abstract
The transcription factor GATA6 is a critical regulator of cell proliferation and development in the gastrointestinal tract. We have recently reported that GATA6 induces the expression of the intestinal stem cell marker LGR5 and enhances the clonogenicity and tumorigenicity of colon cancer cells, but not the growth of these cells cultured under adherent conditions. Here we show that REG4, a member of the regenerating islet-derived (REG) family, is also a target of GATA6. We further demonstrate that REG4 is downregulated by overexpression of miR-363, which suppresses GATA6 expression. Moreover, we show that GATA6-mediated activation of REG4 enhances the growth of colon cancer cells under adherent conditions and is required for their tumorigenicity. Taken together, our findings demonstrate that GATA6 simultaneously induces the expression of genes essential for the growth of colon cancer cells under adherent conditions (REG4) and genes required for their clonogenicity (LGR5), and that the miR-363-GATA6-REG4/LGR5 signaling cascade promotes the tumorigenicity of colon cancer cells.
Collapse
|
20
|
The role of Reg IV in colorectal cancer, as a potential therapeutic target. Contemp Oncol (Pozn) 2015; 19:261-4. [PMID: 26557771 PMCID: PMC4631303 DOI: 10.5114/wo.2015.54385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/05/2013] [Accepted: 11/22/2013] [Indexed: 01/28/2023] Open
Abstract
Regenerating islet-derived family, member 4 (Reg IV), a member of the Reg gene family, has been reported to be overexpressed in gastrointestinal tract cancers. Reg IV overexpression in tumor cells has been associated with carcinogenesis, tissue regeneration, proliferation and resistance to apoptosis. Reg IV activates the epidermal growth factor receptor (EGFR) signaling pathway in colon cancer and increases expression of B-cell lymphoma-2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl), which are associated with the inhibition of apoptosis, results in mitogenic signaling in colon cancer cells, increase cell proliferation, metastasis and decreased apoptosis. Reg IV treatment inhibits 5-fluorouracil induced apoptosis, at least two mechanisms are involved in inhibition of apoptosis by Reg IV, including Bcl-2 and dihydropyrimidine dehydrogenase (DPD). These studies may lead to novel therapeutic strategies for cancers expressing Reg IV. Recently, one proteoglycan was confirmed to disrupt this signaling pathway to perform antitumor effect. This review summaries current knowledge of the expression and roles of Reg IV in human colorectal cancer, describes the possible signaling pathway which Reg IV activates, and discusses the relevance of Reg IV as a potential therapeutic target for cancer treatment.
Collapse
|
21
|
Chen S, Gou WF, Zhao S, Niu ZF, Zhao Y, Takano Y, Zheng HC. The role of the REG4 gene and its encoding product in ovarian epithelial carcinoma. BMC Cancer 2015; 15:471. [PMID: 26077911 PMCID: PMC4469329 DOI: 10.1186/s12885-015-1435-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 05/13/2015] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Although its biological function remains poorly understood, REG4 is reported to be a potent activator of the EGFR/Akt/AP-1 signaling pathway in colon cancer cells and closely linked with the inhibition of apoptosis. METHODS SKOV3 cells were transfected with a REG4-expressing plasmid or treated with recombinant REG4. We then analyzed proliferation, cell cycle, apoptosis, invasion and metastasis or expression of related molecules. REG4 expression was examined in normal ovarian tissue, benign and borderline tumors, and cancers by immunohistochemistry or real-time PCR. RESULTS REG4 overexpression and the recombinant protein inhibited cell apoptosis, enhanced G2/S progression, proliferation, migration and invasion. Furthermore, expression of Wnt5a, p70s6k, survivin and VEGF expression was increased, while Bax expression was decreased at both the mRNA and protein levels compared to control or mock cells (P<0.05). REG4 mRNA levels were higher in benign tumors and primary cancer compared to those in normal ovarian tissue (P<0.05) while, REG4 protein expression was higher in all three tumor types than that in normal ovarian tissue (P<0.05). Higher REG4 mRNA expression was observed in mucinous carcinomas than serous carcinomas (P<0.05), and in well- and moderately-differentiated carcinomas than poorly-differentiated carcinomas (P<0.05). Survival analysis revealed an inverse relationship between REG4 expression and cumulative or relapse-free survival rates of the patients with ovarian cancer as an independent factor (P<0.05). CONCLUSIONS Our findings indicate that aberrant REG4 expression plays an essential role in early ovarian carcinogenesis and is closely linked to mucinous ovarian tumors, differentiation and adverse prognosis of ovarian cancer by modulating proliferation, apoptosis, migration and invasion.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Wen-Feng Gou
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 110001, China.
| | - Shuang Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 110001, China.
| | - Zhe-Feng Niu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 110001, China.
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Yasuo Takano
- Clinical Cancer Institute, Kanagawa Cancer Center, Yokohama, 241-0815, Japan.
| | - Hua-Chuan Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
22
|
Sun C, Fukui H, Hara K, Kitayama Y, Eda H, Yang M, Yamagishi H, Tomita T, Oshima T, Watari J, Takasawa S, Chiba T, Miwa H. Expression of Reg family genes in the gastrointestinal tract of mice treated with indomethacin. Am J Physiol Gastrointest Liver Physiol 2015; 308:G736-44. [PMID: 25747353 DOI: 10.1152/ajpgi.00362.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/19/2015] [Indexed: 01/31/2023]
Abstract
Regenerating gene (Reg) family proteins, which are classified into four types, commonly act as trophic and/or antiapoptotic factors in gastrointestinal (GI) diseases. However, it remains unclear how these proteins coordinate their similar roles under such pathophysiological conditions. Here, we investigated the interrelationships of Reg family gene expression with mucosal cell proliferation and apoptosis in nonsteroidal anti-inflammatory drug (NSAID)-induced GI injury. GI injury was induced by subcutaneous injection of indomethacin into Reg I knockout (KO) and wild-type (WT) mice, and its severity was scored histopathologically. Temporal changes in the expression of Reg family genes, mucosal proliferation, and apoptosis were evaluated throughout the GI tract by real-time RT-PCR, Ki-67 immunoreactivity, and TUNEL assay, respectively. Reg I, Reg III family, and Reg IV were predominantly expressed in the upper, middle, and lower GI mucosa, respectively. Expression of Reg I and Reg III family genes was upregulated in specific portions of the GI tract after indomethacin treatment. Ki-67-positive epithelial cells were significantly decreased in the gastric and small-intestinal mucosa of Reg I KO mice under normal conditions. After treatment with indomethacin, the number of TUNEL-positive cells was significantly greater throughout the GI mucosa in Reg I KO mice than in WT mice. Expression of Reg I was independent of that of other Reg family genes in, not only normal GI tissues, but also indomethacin-induced GI lesions. Members of the Reg gene family show distinct profiles of expression in the GI tract, and Reg I independently plays a role in protecting the GI mucosa against NSAID-induced injury.
Collapse
Affiliation(s)
- Chao Sun
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; Department of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan;
| | - Ken Hara
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshitaka Kitayama
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirotsugu Eda
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mo Yang
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; Department of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Hidetsugu Yamagishi
- Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, Tochigi, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jiro Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
23
|
Zhu X, Han Y, Yuan C, Tu W, Qiu G, Lu S, Lu H, Peng Z, Zhou C. Overexpression of Reg4, alone or combined with MMP-7 overexpression, is predictive of poor prognosis in colorectal cancer. Oncol Rep 2015; 33:320-8. [PMID: 25338725 DOI: 10.3892/or.2014.3559] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/23/2014] [Indexed: 11/05/2022] Open
Abstract
Regenerating islet-derived family, member 4 (Reg4) is a secreted protein that plays a critical role in the development of colorectal cancer (CRC). In the present study, we examined the relationship between Reg4 and matrix metalloproteinase-7 (MMP-7) expression in CRC, particularly with regard to metastasis. RT-qPCR, western blotting, tissue microarray (TMA) and immunohistochemical staining were performed to detect Reg4 and MMP-7 expression in CRC tissues and paired adjacent normal tissues. As compared with normal tissues, most paired colon cancers showed a ≥2-fold increase in the Reg4 and MMP-7 mRNA levels, which was subsequently validated by the post-transcriptional levels. Immunohistochemical analysis demonstrated that Reg4 was associated with lymph node and distant metastasis, advanced American Joint Committee on Cancer (AJCC) stage, and histologic grade. Further studies showed the correlation between Reg4 and MMP-7 expression was significant in CRC with distant metastasis (r=0.555, P=0.021) and in the lymph‑node metastasis samples (r=0.557, P<0.001). Patients with tumor positivity for the two molecules showed a worse prognosis even after radical surgery (P<0.001). Multivariate analysis revealed that patients with Reg4- and MMP-7-positive tumors had extremely poor OS (HR 4.63; 95% CI 2.43-8.81; P<0.001) and DFS (HR 3.88; 95% CI 2.08-7.22; P<0.001). Reg4 expression may be useful in the prediction of colon cancer prognosis when combined with MMP-7.
Collapse
Affiliation(s)
- Xingwu Zhu
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Yang Han
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Chenwei Yuan
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Weiwei Tu
- Department of General Surgery, Shanghai First People's Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoqiang Qiu
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Su Lu
- Department of Pathology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Huijun Lu
- Department of Pathology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Zhihai Peng
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Chongzhi Zhou
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| |
Collapse
|
24
|
Weinstock JV, Elliott DE. Helminth infections decrease host susceptibility to immune-mediated diseases. THE JOURNAL OF IMMUNOLOGY 2014; 193:3239-47. [PMID: 25240019 DOI: 10.4049/jimmunol.1400927] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Helminthic infection has become rare in highly industrialized nations. Concurrent with the decline in helminthic infection has been an increase in the prevalence of inflammatory disease. Removal of helminths from our environment and their powerful effects on host immunity may have contributed to this increase. Several helminth species can abrogate disease in murine models of inflammatory bowel disease, type 1 diabetes, multiple sclerosis, and other conditions. Helminths evoke immune regulatory pathways often involving dendritic cells, regulatory T cells, and macrophages that help to control disease. Cytokines, such as IL-4, IL-10, and TGF-β, have a role. Notable is the helminthic modulatory effect on innate immunity, which impedes development of aberrant adaptive immunity. Investigators are identifying key helminth-derived immune modulatory molecules that may have therapeutic usefulness in the control of inflammatory disease.
Collapse
Affiliation(s)
- Joel V Weinstock
- Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111; and
| | - David E Elliott
- Division of Gastroenterology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
25
|
He HL, Lee YE, Shiue YL, Lee SW, Lin LC, Chen TJ, Wu TF, Hsing CH, Huang HY, Wang JY, Li CF. Overexpression of REG4 confers an independent negative prognosticator in rectal cancers receiving concurrent chemoradiotherapy. J Surg Oncol 2014; 110:1002-10. [PMID: 25155043 DOI: 10.1002/jso.23764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/19/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Neoadjuvant concurrent chemoradiotherapy (CCRT) followed by surgery is the standard treatment for locally advanced rectal cancer. Through data mining from published transcriptomic database, we identified Regenerating Gene Type IV (REG4) as the most significantly associated gene with resistance to CCRT. This study examined the prognostic impact of REG4 expression in patients with rectal cancer receiving neoadjuvant CCRT. METHODS REG4 immunohistochemistry was retrospectively assessed for pre-treatment biopsy specimens from 172 rectal cancer patients who received neoadjuvant CCRT followed by surgery without initial distant metastasis. The results were correlated with the clinicopathological variables, disease-specific survival (DSS), local recurrence-free survival (LRFS), and distant metastasis-free survival (DMFS), as well as γ-H2AX expression in post-treatment tumor samples. RESULTS High expression of REG4 was associated with advanced pre-treatment nodal status (P = 0.026), advanced post-treatment tumor status (P = 0.006), advanced post-treatment nodal status (P = 0.001), advanced post-treatment tumor stage (P < 0.001), and inferior tumor regression grade (P = 0.001). Of note, high expression of REG4 emerged as an adverse prognosticator for DSS (P = 0.0004), LRFS (P = 0.0009), and MeFS (P = 0.0254). After multivariate comparisons, it remained independently prognostic for worse DSS (hazard ratio [HR] = 2.731; P = 0.025) and LRFS (HR = 2.676; P = 0.029). High expression of REG4 was also negatively associated with γ-H2AX expression (P < 0.0001, r = -0.708). CONCLUSIONS High expression of REG4 is associated with poor therapeutic response, adverse outcome and an aggressive phenotype in rectal cancer patients treated with neoadjuvant CCRT, justifying REG4 is a surrogate marker to predict CCRT resistance.
Collapse
Affiliation(s)
- Hong-Lin He
- Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan; Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Delker DA, McGettigan BM, Kanth P, Pop S, Neklason DW, Bronner MP, Burt RW, Hagedorn CH. RNA sequencing of sessile serrated colon polyps identifies differentially expressed genes and immunohistochemical markers. PLoS One 2014; 9:e88367. [PMID: 24533081 PMCID: PMC3922809 DOI: 10.1371/journal.pone.0088367] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sessile serrated adenomas/polyps (SSA/Ps) may account for 20-30% of colon cancers. Although large SSA/Ps are generally recognized phenotypically, small (<1 cm) or dysplastic SSA/Ps are difficult to differentiate from hyperplastic or small adenomatous polyps by endoscopy and histopathology. Our aim was to define the comprehensive gene expression phenotype of SSA/Ps to better define this cancer precursor. RESULTS RNA sequencing was performed on 5' capped RNA from seven SSA/Ps collected from patients with the serrated polyposis syndrome (SPS) versus eight controls. Highly expressed genes were analyzed by qPCR in additional SSA/Ps, adenomas and controls. The cellular localization and level of gene products were examined by immunohistochemistry in syndromic and sporadic SSA/Ps, adenomatous and hyperplastic polyps and controls. We identified 1,294 differentially expressed annotated genes, with 106 increased ≥10-fold, in SSA/Ps compared to controls. Comparing these genes with an array dataset for adenomatous polyps identified 30 protein coding genes uniquely expressed ≥10-fold in SSA/Ps. Biological pathways altered in SSA/Ps included mucosal integrity, cell adhesion, and cell development. Marked increased expression of MUC17, the cell junction protein genes VSIG1 and GJB5, and the antiapoptotic gene REG4 were found in SSA/Ps, relative to controls and adenomas, were verified by qPCR analysis of additional SSA/Ps (n = 21) and adenomas (n = 10). Immunohistochemical staining of syndromic (n≥11) and sporadic SSA/Ps (n≥17), adenomatous (n≥13) and hyperplastic (n≥10) polyps plus controls (n≥16) identified unique expression patterns for VSIG1 and MUC17 in SSA/Ps. CONCLUSION A subset of genes and pathways are uniquely increased in SSA/Ps, compared to adenomatous polyps, thus supporting the concept that cancer develops by different pathways in these phenotypically distinct polyps with markedly different gene expression profiles. Immunostaining for a subset of these genes differentiates both syndromic and sporadic SSA/Ps from adenomatous and hyperplastic polyps.
Collapse
Affiliation(s)
- Don A. Delker
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Brett M. McGettigan
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Priyanka Kanth
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Stelian Pop
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Deborah W. Neklason
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary P. Bronner
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Randall W. Burt
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Curt H. Hagedorn
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- The Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Prediction of response to preoperative chemoradiotherapy in rectal cancer by using reverse transcriptase polymerase chain reaction analysis of four genes. Dis Colon Rectum 2014; 57:23-31. [PMID: 24316942 DOI: 10.1097/01.dcr.0000437688.33795.9d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Patients with rectal cancer exhibit a wide spectrum of responses to chemoradiotherapy. Several gene expression signatures have been reported to predict the response to chemoradiotherapy in rectal cancer, but the lack of practical assays has restricted the clinical use of this technique. OBJECTIVE We aimed to identify a set of discriminating genes that can be used for the clinical prediction of response to chemoradiotherapy in rectal cancer. DESIGN AND SETTINGS This study is a retrospective analysis of tumor samples in a single institute. PATIENTS Sixty-two patients who underwent preoperative chemoradiotherapy were studied. MAIN OUTCOME MEASURES Gene expression was initially studied in 46 training samples by microarray analysis, and the association between gene expression and response to chemoradiotherapy was evaluated. Quantitative reverse transcriptase polymerase chain reaction was performed to validate the microarray expression levels of the discriminating genes. We developed a gene expression model for the prediction of response to chemoradiotherapy based on the reverse transcriptase polymerase chain reaction findings and validated it by using 16 independent test samples. RESULTS We identified 24 discriminating probes with expression levels that differed significantly between responders and nonresponders. Among 18 genes identified by Gene Symbol, real-time reverse transcriptase polymerase chain reaction showed significant differences in the expression of 16 genes between responders and nonresponders. We constructed a predictive model by using different sets of these 16 genes, and the highest accuracy rate (89.1%) was obtained by using LRRIQ3, FRMD3, SAMD5, and TMC7. The predictive accuracy rate of this 4-gene signature in the independent set of 16 patients was 81.3%. LIMITATIONS Validation in a different and large cohort of patients is necessary. CONCLUSIONS The 4-gene signature identified in this study is closely associated with response to chemoradiotherapy in rectal cancer.
Collapse
|
28
|
Abstract
The regenerating gene (Reg) family is a group of small molecules that includes four members found in various species, although only three are found in human tissues. Their expression is stimulated by certain growth factors or cytokines. The Reg family plays different roles in proliferation, migration, and anti-apoptosis through activating different signaling pathways. Their dysexpression is closely associated with a number of human conditions and diseases such as inflammation and cancer, especially in the human digestive system. Clinically, upregulation of Reg proteins is usually demonstrated in histological sections and sera from cancer patients. Therefore, Reg proteins can predict the progression and prognosis of cancers, especially those of the digestive tract, and can also act as diagnostic markers and therapeutic targets.
Collapse
|
29
|
Bishnupuri KS, Sainathan SK, Bishnupuri K, Leahy DR, Luo Q, Anant S, Houchen CW, Dieckgraefe BK. Reg4-induced mitogenesis involves Akt-GSK3β-β-Catenin-TCF-4 signaling in human colorectal cancer. Mol Carcinog 2013; 53 Suppl 1:E169-80. [PMID: 24151146 DOI: 10.1002/mc.22088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 11/06/2022]
Abstract
Upregulation of regenerating gene 4 (Reg4) is observed in many human gastrointestinal malignancies including colorectal cancer (CRC). We previously reported a Reg4-mediated induction of epidermal growth factor receptor-Akt-AP1 signaling regulating CRC cell apoptosis. However, the role of Reg4 in the regulation of CRC cell division is poorly understood. This study tests the hypothesis that Reg4 induces Akt-GSK3β-β-Catenin-TCF-4 signaling to regulate CRC cell division. In vitro models of human CRC were used to determine the role of Reg4 in regulation of CRC cell division. Cell cycle studies demonstrated that Reg4 treatment significantly decreased CRC cell number in G1 phase and increased in G2 phase. Subsequently Reg4 significantly increased the mitotic index of CRC cells. As assessed by real-time RT-PCR and Western blot analyses, Reg4 significantly increased the expression of cell cycle regulatory genes Cyclin D1 and D3, and associated Cyclin-dependent kinases (CDK4 and CDK6). Reg4-mediated increase in these genes involved a pathway that included an induced Akt activity by increasing phosphorylation of Thr308 and Ser473, a reduced glycogen synthase kinase 3β (GSK-3β) activity by increasing phosphorylation of Ser9, an induced nuclear translocation of β-Catenin by decreasing phosphorylation of Ser33/37/Thr41, and an increased TCF-4 transcriptional activity. Furthermore, antagonism of Reg4-signaling using Reg4-specific mAbs (2H6 and 3E5) and Akt inhibitor significantly decreased, whereas agonism using GSK-3β antagonist (SB216763) significantly increased mitotic index and proliferation of CRC cells. These results identify Reg4 as a key regulator of the CRC cell division and proliferation, hence a potential target of human CRC treatment.
Collapse
Affiliation(s)
- Kumar S Bishnupuri
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sulindac modulates secreted protein expression from LIM1215 colon carcinoma cells prior to apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2293-307. [PMID: 23899461 DOI: 10.1016/j.bbapap.2013.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 07/03/2013] [Accepted: 07/18/2013] [Indexed: 11/21/2022]
Abstract
Colorectal cancer (CRC) is a major cause of mortality in Western populations. Growing evidence from human and rodent studies indicate that nonsteroidal anti-inflammatory drugs (NSAIDs) cause regression of existing colon tumors and act as effective chemopreventive agents in sporadic colon tumor formation. Although much is known about the action of the NSAID sulindac, especially its role in inducing apoptosis, mechanisms underlying these effects is poorly understood. In previous secretome-based proteomic studies using 2D-DIGE/MS and cytokine arrays we identified over 150 proteins released from the CRC cell line LIM1215 whose expression levels were dysregulated by treatment with 1mM sulindac over 16h; many of these proteins are implicated in molecular and cellular functions such as cell proliferation, differentiation, adhesion, angiogenesis and apoptosis (Ji et al., Proteomics Clin. Appl. 2009, 3, 433-451). We have extended these studies and describe here an improved protein/peptide separation strategy that facilitated the identification of 987 proteins and peptides released from LIM1215 cells following 1mM sulindac treatment for 8h preceding the onset of apoptosis. This peptidome separation strategy involved fractional centrifugal ultrafiltration of concentrated cell culture media (CM) using nominal molecular weight membrane filters (NMWL 30K, 3K and 1K). Proteins isolated in the >30K and 3-30K fractions were electrophoretically separated by SDS-PAGE and endogenous peptides in the 1-3K membrane filter were fractioned by RP-HPLC; isolated proteins and peptides were identified by nanoLC-MS-MS. Collectively, our data show that LIM1215 cells treated with 1mM sulindac for 8h secrete decreased levels of proteins associated with extracellular matrix remodeling (e.g., collagens, perlecan, syndecans, filamins, dyneins, metalloproteinases and endopeptidases), cell adhesion (e.g., cadherins, integrins, laminins) and mucosal maintenance (e.g., glycoprotein 340 and mucins 5AC, 6, and 13). A salient finding of this study was the increased proteolysis of cell surface proteins following treatment with sulindac for 8h (40% higher than from untreated LIM1215 cells); several of these endogenous peptides contained C-terminal amino acids from transmembrane domains indicative of regulated intramembrane proteolysis (RIP). Taken together these results indicate that during the early-stage onset of sulindac-induced apoptosis (evidenced by increased annexin V binding, dephosphorylation of focal adhesion kinase (FAK), and cleavage of caspase-3), 1mM sulindac treatment of LIM1215 cells results in decreased expression of secreted proteins implicated in ECM remodeling, mucosal maintenance and cell-cell-adhesion. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
|
31
|
Planell N, Lozano JJ, Mora-Buch R, Masamunt MC, Jimeno M, Ordás I, Esteller M, Ricart E, Piqué JM, Panés J, Salas A. Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. Gut 2013; 62:967-76. [PMID: 23135761 DOI: 10.1136/gutjnl-2012-303333] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Ulcerative colitis (UC) is a chronic condition characterised by the relapsing inflammation despite previous endoscopic and histological healing. Our objective was to identify the molecular signature associated with UC remission. DESIGN We performed whole-genome transcriptional analysis of colonic biopsies from patients with histologically active and inactive UC, and non-inflammatory bowel disease (non-IBD) controls. Real-time reverse transcriptase-PCR and immunostaining were used for validating selected genes in independent cohorts of patients. RESULTS Microarray analysis (n=43) demonstrates that UC patients in remission present an intestinal transcriptional signature that significantly differs from that of non-IBD controls and active patients. Fifty-four selected genes were validated in an independent cohort of patients (n=30). Twenty-nine of these genes were significantly regulated in UC-in-remission subjects compared with non-IBD controls, including a large number of epithelial cell-expressed genes such as REG4, S100P, SERPINB5, SLC16A1, DEFB1, AQP3 and AQP8, which modulate epithelial cell growth, sensitivity to apoptosis and immune function. Expression of inflammation-related genes such as REG1A and IL8 returned to control levels during remission. REG4, S100P, SERPINB5 and REG1A protein expression was confirmed by immunohistochemistry (n=23). CONCLUSIONS Analysis of the gene signature associated with remission allowed us to unravel pathways permanently deregulated in UC despite histological recovery. Given the strong link between the regulation of some of these genes and the growth and dissemination of gastrointestinal cancers, we believe their aberrant expression in UC may provide a mechanism for epithelial hyper-proliferation and, in the context of malignant transformation, for tumour growth.
Collapse
Affiliation(s)
- Núria Planell
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hackl C, Man S, Francia G, Milsom C, Xu P, Kerbel RS. Metronomic oral topotecan prolongs survival and reduces liver metastasis in improved preclinical orthotopic and adjuvant therapy colon cancer models. Gut 2013; 62:259-71. [PMID: 22543158 PMCID: PMC3553490 DOI: 10.1136/gutjnl-2011-301585] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Advanced and recurrent diseases are the major causes of death in colon cancer. No standard preclinical model addresses advanced disease and spontaneous metastasis after orthotopic tumour growth. In this study, the authors report the establishment of such standardised orthotopic mouse models of colon cancer and their use in evaluating metronomic topotecan alone or in combination with standard chemotherapy. DESIGN Human colon cancer cell lines, transfected with human chorionic gonadotropin and luciferase, were injected orthotopically into the caecal wall of severe combined immunodeficient mice, intrasplenically or subcutaneously. For adjuvant therapy, caecal resections were performed 3-5 weeks after tumour cell injection. Chemotherapy drugs tested included uracil/tegafur, folinic acid, oxaliplatin, topotecan, pazopanib and various combinations. RESULTS Subcutaneous tumours showed exaggerated sensitivity to treatment by delayed tumour growth (p=0.002) and increased survival (p=0.0064), but no metastatic spread. Intrasplenic cell injection resulted in rapid and extensive but artefactual metastasis without treatment effect. Intracaecal cell injection with tumour take rates of 87.5-100% showed spontaneous metastases at clinically relevant rates. Metronomic topotecan significantly polonged survival and reduced metastasis. In the adjuvant setting, metronomic maintenance therapy (after FOLFOX-like induction) prolonged survival compared with vehicle controls (p=0.0003), control followed by topotecan (p=0.0161) or FOLFOX-like therapy (p=0.0003). CONCLUSION The refined orthotopic implantation technique proved to be a clinically relevant model for metastasis and therapy studies. Furthermore, metronomic therapy with oral topotecan may be promising to consider for clinical trials of metastatic colon cancer and long-term adjuvant maintenance therapy of colon cancer.
Collapse
Affiliation(s)
- Christina Hackl
- Department of Medical Biophysics, Molecular and Cellular Biology Research, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
Ying LS, Yu JL, Lu XX, Ling ZQ. Enhanced RegIV expression predicts the intrinsic 5-fluorouracil (5-FU) resistance in advanced gastric cancer. Dig Dis Sci 2013; 58:414-22. [PMID: 23010741 DOI: 10.1007/s10620-012-2381-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/20/2012] [Indexed: 01/23/2023]
Abstract
AIM RegIV, a member of the Regenerating (REG) gene family, may be a marker for the prediction of resistance to 5-fluorouracil (5-FU)-based chemotherapy. However, the relationship between the intrinsic drug resistance of gastric cancer (GC) cells to 5-FU used alone (single FU) or in multidrug therapeutic regimens (5-FU combinations) and RegIV expression has not been investigated. METHODS The patient cohort comprised 45 patients with primary GC. The chemoresistance of GC cells to therapeutic regimens consisting of single 5-FU or FU combinations was investigated using the ATP-tumor chemosensitivity assay. The level of RegIV mRNA transcripts was determined by real-time reverse transcriptase-PCR. RegIV expression was evaluated as a novel predictive biomarker for the intrinsic drug resistance of primary GC cells to single 5-FU or 5-FU combinations. RESULTS Upregulation of RegIV mRNA transcripts was observed in 36 of the 45 tumor specimens and was positively correlated with the invasive depth of the tumor cells (p = 0.000), the clinical stages (p = 0.000) and the in vitro intrinsic drug resistance of primary GC cells to 5-FU (p = 0.000) or 5-FU combinations. CONCLUSION RegIV mRNA transcript level was strongly associated with the intrinsic resistance of GC cells to single 5-FU or 5-FU combinations, suggesting that RegIV may play an important role in the intrinsic resistance of GC cells to 5-FU and that targeted therapy against the RegIV gene could be applied to overcome 5-FU resistance in the treatment of GC.
Collapse
Affiliation(s)
- Li-Sha Ying
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, No.38 Guangji Rd., Banshanqiao District, Hangzhou, 310022, People's Republic of China.
| | | | | | | |
Collapse
|
34
|
He XJ, Jiang XT, Ma YY, Xia YJ, Wang HJ, Guan TP, Shao QS, Tao HQ. REG4 contributes to the invasiveness of pancreatic cancer by upregulating MMP-7 and MMP-9. Cancer Sci 2012; 103:2082-91. [PMID: 22957785 DOI: 10.1111/cas.12018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/26/2012] [Accepted: 09/01/2012] [Indexed: 01/23/2023] Open
Abstract
Recent studies have shown that overexpression of regenerating gene family member 4 (REG4) is associated with the initiation and progression of pancreatic cancer. In our study, we explored the role of REG4 in the invasion of pancreatic cancer. Real-time PCR and Western blot analysis were used to determine REG4 expression in pancreatic cancer cell lines. An MTT assay was carried out to test the effect of REG4 on the growth of pancreatic cancer cells. The involvement of REG4 in cancer cell invasion was examined by Transwell invasion assay. Two MMPs, MMP-7 and MMP-9, were identified from a pool of candidate genes as being related to REG4-induced cell invasion by PCR and Western blotting. Immunohistochemistry was used to confirm the correlation between REG4 and the two MMPs. High expression of REG4 was found in BXPC-3 cells and its culture media. But in PANC-1 and ASPC-1 cell lines, REG4 expression levels were very low, and no detectable protein was found in the culture medium. The MTT and Transwell invasion assays showed that recombinant REG4 protein and BXPC-3 conditioned media significantly promoted the proliferation and invasiveness of pancreatic cancer cells. It was also shown that MMP-7 and MMP-9 are upregulated by REG4 induction using real-time PCR and Western blotting analysis. Immunohistochemical study further verified this result. In conclusion, REG4 promotes not only growth but also in vitro invasiveness of pancreatic cancer cells by upregulating MMP-7 and MMP-9.
Collapse
Affiliation(s)
- Xu-Jun He
- Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang Q, Deng J, Yuan J, Wang L, Zhao Z, He S, Zhang Y, Tu Y. Oncogenic reg IV is a novel prognostic marker for glioma patient survival. Diagn Pathol 2012; 7:69. [PMID: 22713481 PMCID: PMC3465175 DOI: 10.1186/1746-1596-7-69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/19/2012] [Indexed: 12/22/2022] Open
Abstract
Aim The aberrant expression of regenerating islet-derived family member, 4 (Reg IV) has been found in various human cancers. However, the roles of Reg IV gene and its encoding product in human glioma have not been clearly understood. Therefore, the aim of this study was to investigate the clinicopathological significance of Reg IV expression in glioma. Methods Reg IV mRNA and protein expression in human gliomas and non-neoplastic brain tissues were respectively detected by real-time quantitative RT-PCR assay, Western blot, and immunohistochemistry. The association of Reg IV immunostaining with clinicopathological factors and prognosis of glioma patients was also statistically analyzed. Results Reg IV mRNA and protein expression levels in glioma tissues were both significantly higher than those in the corresponding non-neoplastic brain tissues (both P < 0.001). Additionally, the increased Reg IV immunostaining in glioma tissues was significantly associated with advanced pathological grade (P = 0.008). Reg IV protein up-regulation was also significantly correlated with low Karnofsky performance score (KPS) (P = 0.02). Moreover, the overall survival of patients with high Reg IV protein expression was dramatically shorter than those with low Reg IV protein expression (P < 0.001). Multivariate Cox regression analysis further confirmed that Reg IV expression was an independent prognostic factor for patients with gliomas (P = 0.008). Conclusions These convinced evidences suggest for the first time that Reg IV might accelerate disease progression and act as a candidate prognostic marker for gliomas. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2145344361720706
Collapse
Affiliation(s)
- Qi Wang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an City 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Katsuno Y, Ehata S, Yashiro M, Yanagihara K, Hirakawa K, Miyazono K. Coordinated expression of REG4 and aldehyde dehydrogenase 1 regulating tumourigenic capacity of diffuse-type gastric carcinoma-initiating cells is inhibited by TGF-β. J Pathol 2012; 228:391-404. [PMID: 22430847 DOI: 10.1002/path.4020] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 12/14/2022]
Abstract
Aldehyde dehydrogenase 1 (ALDH1) has been shown to serve as a marker for cancer-initiating cells (CICs), but little is known about the regulation of the CIC functions of ALDH1+ cancer cells. We isolated ALDH1+ cells from human diffuse-type gastric carcinoma cells and characterized these cells using an Aldefluor assay. ALDH1+ cells constituted 5-8% of the human diffuse-type gastric carcinoma cells, OCUM-2MLN and HSC-39; were more tumourigenic than ALDH1- cells; and were able to self-renew and generate heterogeneous cell populations. Using gene expression microarray analyses, we identified REG4 (regenerating islet-derived family, member 4) as one of the genes up-regulated in ALDH1+ cells, and thus as a novel marker for ALDH1+ tumour cells. Induced expression of REG4 enhanced the colony-forming ability of OCUM-2MLN cells, while knockdown of REG4 inhibited the tumourigenic potential of ALDH1+ cells. We further found that TGF-β signalling reduces the expression of ALDH1 and REG4, and the size of the ALDH1+ cell population. In human diffuse-type gastric carcinoma tissues, the expression of ALDH1 and REG4 correlated with each other, as assessed by immunohistochemistry, and ALDH1 expression correlated inversely with Smad3 phosphorylation as a measure of TGF-β signalling. These findings illustrate that, in diffuse-type gastric carcinoma, REG4 is up-regulated in ALDH1+ CICs, and that the increased tumourigenic ability of ALDH1+ cells depends on REG4. Moreover, TGF-β down-regulates ALDH1 and REG4 expression, which correlates with a reduction in CIC population size and tumourigenicity. Targeting REG4 in ALDH1+ CICs may provide a novel strategy in the treatment of diffuse-type gastric carcinoma.
Collapse
Affiliation(s)
- Yoko Katsuno
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Rothenberg ME, Nusse Y, Kalisky T, Lee JJ, Dalerba P, Scheeren F, Lobo N, Kulkarni S, Sim S, Qian D, Beachy PA, Pasricha PJ, Quake SR, Clarke MF. Identification of a cKit(+) colonic crypt base secretory cell that supports Lgr5(+) stem cells in mice. Gastroenterology 2012; 142:1195-1205.e6. [PMID: 22333952 PMCID: PMC3911891 DOI: 10.1053/j.gastro.2012.02.006] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Paneth cells contribute to the small intestinal niche of Lgr5(+) stem cells. Although the colon also contains Lgr5(+) stem cells, it does not contain Paneth cells. We investigated the existence of colonic Paneth-like cells that have a distinct transcriptional signature and support Lgr5(+) stem cells. METHODS We used multicolor fluorescence-activated cell sorting to isolate different subregions of colon crypts, based on known markers, from dissociated colonic epithelium of mice. We performed multiplexed single-cell gene expression analysis with quantitative reverse transcriptase polymerase chain reaction followed by hierarchical clustering analysis to characterize distinct cell types. We used immunostaining and fluorescence-activated cell sorting analyses with in vivo administration of a Notch inhibitor and in vitro organoid cultures to characterize different cell types. RESULTS Multicolor fluorescence-activated cell sorting could isolate distinct regions of colonic crypts. Four major epithelial subtypes or transcriptional states were revealed by gene expression analysis of selected populations of single cells. One of these, the goblet cells, contained a distinct cKit/CD117(+) crypt base subpopulation that expressed Dll1, Dll4, and epidermal growth factor, similar to Paneth cells, which were also marked by cKit. In the colon, cKit(+) goblet cells were interdigitated with Lgr5(+) stem cells. In vivo, this colonic cKit(+) population was regulated by Notch signaling; administration of a γ-secretase inhibitor to mice increased the number of cKit(+) cells. When isolated from mouse colon, cKit(+) cells promoted formation of organoids from Lgr5(+) stem cells, which expressed Kitl/stem cell factor, the ligand for cKit. When organoids were depleted of cKit(+) cells using a toxin-conjugated antibody, organoid formation decreased. CONCLUSIONS cKit marks small intestinal Paneth cells and a subset of colonic goblet cells that are regulated by Notch signaling and support Lgr5(+) stem cells.
Collapse
Affiliation(s)
- Michael E. Rothenberg
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Ysbrand Nusse
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California
| | - Tomer Kalisky
- Department of Bioengineering, Stanford University, Stanford, California
| | - John J. Lee
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California,Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California
| | - Piero Dalerba
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California,Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California
| | - Ferenc Scheeren
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California
| | - Neethan Lobo
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California
| | - Subhash Kulkarni
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Sopheak Sim
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California
| | - Dalong Qian
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California
| | - Philip A. Beachy
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Pankaj J. Pasricha
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, California,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Michael F. Clarke
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California,Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
38
|
Perineural invasion and lymph node involvement as indicators of surgical outcome and pattern of recurrence in the setting of preoperative gemcitabine-based chemoradiation therapy for resectable pancreatic cancer. Ann Surg 2012; 255:95-102. [PMID: 22123160 DOI: 10.1097/sla.0b013e31823d813c] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To analyze the histopathological indicators significantly associated with surgical outcome and the pattern of recurrence in the setting of preoperative gemcitabine-based chemoradiation therapy (CRT) and subsequent pancreatectomy. BACKGROUND Clinicopathological assessment of the resected specimen is an indispensable tool for predicting patient prognosis and localizing high-risk sites for tumor relapse. This procedure is also essential for the establishment of efficient postoperative follow-up protocols in the setting of a preoperative CRT strategy. METHODS In a prospective phase II clinical trial at our hospital, 110 patients received preoperative CRT and subsequent resection. All 110 resected cases were included in this study. We employed disease-free survival (DFS) as a surgical outcome, and the pattern of recurrence was divided into 2 categories: (1) recurrence in the abdominal cavity (RAC), defined as either a locoregional or a peritoneal recurrence; or (2) distant recurrence (DR), defined as cancer recurrence in a distant organ. Clinicopathological variables were analyzed in association with DFS, RAC, and DR. RESULTS Positive nodal involvement and perineural invasion were independent factors that were significantly associated with an unfavorable DFS (P = 0.021 and P = 0.026, respectively). The presence of perineural invasion was the single independent variable significantly associated with an increased risk of RAC (P = 0.002), whereas the status of nodal involvement was the single independent variable significantly associated with an increased risk of DR (P = 0.013). CONCLUSIONS The status of nodal involvement and perineural invasion in resected specimens are significantly associated with DFS and clearly predict the pattern of recurrence in the setting of a preoperative gemcitabine-based CRT strategy. This study is registered at UMIN-CTR and carries the ID number UMIN000001804.
Collapse
|
39
|
Hirshoren N, Cohen J, Neuman T, Weinberger JM, Eliashar R. DCLK1 expression in gastrointestinal stem cells and neoplasia. ACTA ACUST UNITED AC 2012. [DOI: 10.7243/2049-7962-1-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Vanderlaag K, Wang W, Fayadat-Dilman L, Wagner J, Bald L, Grein J, Janatpour MJ. Regenerating islet-derived family member, 4 modulates multiple receptor tyrosine kinases and mediators of drug resistance in cancer. Int J Cancer 2011; 130:1251-63. [DOI: 10.1002/ijc.26089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 02/25/2011] [Indexed: 01/20/2023]
|
41
|
Wang F, Xu L, Guo C, Ke A, Hu G, Xu X, Mo W, Yang L, Huang Y, He S, Wang X. Identification of RegIV as a novel GLI1 target gene in human pancreatic cancer. PLoS One 2011; 6:e18434. [PMID: 21494603 PMCID: PMC3073946 DOI: 10.1371/journal.pone.0018434] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 03/04/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIMS GLI1 is the key transcriptional factor in the Hedgehog signaling pathway in pancreatic cancer. RegIV is associated with regeneration, and cell growth, survival, adhesion and resistance to apoptosis. We aimed to study RegIV expression in pancreatic cancer and its relationship to GLI1. METHODS GLI1 and RegIV expression were evaluated in tumor tissue and adjacent normal tissues of pancreatic cancer patients and 5 pancreatic cancer cell lines by qRT-PCR, Western blot, and immunohistochemistry (IHC), and the correlation between them. The GLI1-shRNA lentiviral vector was constructed and transfected into PANC-1, and lentiviral vector containing the GLI1 expression sequence was constructed and transfected into BxPC-3. GLI1 and RegIV expression were evaluated by qRT-PCR and Western blot. Finally we demonstrated RegIV to be the target of GLI1 by chromatin immunoprecipitation (CHIP) and electrophoretic mobility shift assays (EMSA). RESULTS The results of IHC and qRT-PCR showed that RegIV and GLI1 expression was higher in pancreatic cancer tissues versus adjacent normal tissues (p<0.001). RegIV expression correlated with GLI1 expression in these tissues (R = 0.795, p<0.0001). These results were verified for protein (R = 0.939, p = 0.018) and mRNA expression (R = 0.959, p = 0.011) in 5 pancreatic cancer cell lines. RegIV mRNA and protein expression was decreased (94.7±0.3%, 84.1±0.5%; respectively) when GLI1 was knocked down (82.1±3.2%, 76.7±2.2%; respectively) by the RNAi technique. GLI1 overexpression in mRNA and protein level (924.5±5.3%, 362.1±3.5%; respectively) induced RegIV overexpression (729.1±4.3%, 339.0±3.7%; respectively). Moreover, CHIP and EMSA assays showed GLI1 protein bound to RegIV promotor regions (GATCATCCA) in pancreatic cancer cells. CONCLUSION GLI1 promotes RegIV transcription by binding to the RegIV gene promoter in pancreatic cancer.
Collapse
Affiliation(s)
- Feng Wang
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ling Xu
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Aiwu Ke
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Guoyong Hu
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Xuanfu Xu
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Wenhui Mo
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Lijuan Yang
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yinshi Huang
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Shanshan He
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Xingpeng Wang
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
42
|
Zheng HC, Sugawara A, Okamoto H, Takasawa S, Takahashi H, Masuda S, Takano Y. Expression profile of the REG gene family in colorectal carcinoma. J Histochem Cytochem 2011; 59:106-15. [PMID: 21339177 DOI: 10.1369/jhc.2010.956961] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Regenerating (REG) gene family belongs to the calcium-dependent lectin gene superfamily and encodes small multifunctional secretory proteins, which might be involved in cell proliferation, differentiation, and carcinogenesis. To clarify REG expression profile in colorectal carcinoma (CRC), the authors examined the expression of REG Iα, Iβ, III, HIP/PAP, and REG IV by immunohistochemistry on tissue microarray. The expression of REG Iα, III, and HIP/PAP was more frequently observed in the CRCs than adjacent non-neoplastic mucosa (p < 0.001), whereas it was the converse for REG Iβ and IV (p < 0.001). The expression of REG Iα, Iβ, III, and HIP/PAP was negatively correlated with the depth of invasion of CRCs (p < 0.05). The REG Iβ and HIP/PAP were less expressed in CRCs with than without venous invasion (p < 0.05). The positive rates of REG Iα and HIP/PAP were significantly higher in CRCs without than with lymph node metastasis (p < 0.05). Mucinous carcinoma more frequently expressed REG IV protein than well- and moderately differentiated ones (p < 0.05). There was a positive relationship between REG Iα, Iβ, III, and HIP/PAP expression (p < 0.05). Survival analysis indicated the REG Iβ or HIP/PAP expression was positively linked to favorable prognosis of carcinoma patients (p < 0.05). This study indicated that aberrant REG expression might be closely linked to the pathogenesis, invasion, or lymph node metastasis of CRCs. REG Iβ and HIP/PAP could be considered reliable markers of favorable prognosis of CRC patients.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Jin CX, Hayakawa T, Ko SBH, Ishiguro H, Kitagawa M. Pancreatic stone protein/regenerating protein family in pancreatic and gastrointestinal diseases. Intern Med 2011; 50:1507-16. [PMID: 21804274 DOI: 10.2169/internalmedicine.50.5362] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pancreatic stone protein (PSP; reported in 1979), pancreatitis-associated protein (PAP; 1984) and regenerating protein (Reg I; 1988) were discovered independently in the fields of the exocrine (pancreatitis) and endocrine (diabetes) pancreas. Subsequent analysis revealed that PSP and Reg I are identical and PAP belongs to the same protein family. PSP/Reg I and PAP share a selective and specific trypsin cleavage site and result in insoluble fibrils (PTP, PATP). Search for a functional role of PSP had led to the idea that it might serve as an inhibitor in pancreatic stone formation and PSP was renamed lithostathine. Inhibitory effects of lithostathine in stone formation have been questioned. Evidence so far obtained can support a lithogenic role rather than a lithostatic role of PSP. PAP and its isoforms have been investigated mainly regarding responses to inflammation and stress. Reg I and its isoforms have been examined on regeneration, growth and mitogenesis in gastrointestinal neoplastic diseases as well as diabetes. Evidence obtained can be applied in the prediction of prognosis and therapy for inflammatory and neoplastic diseases.
Collapse
Affiliation(s)
- Chun Xiang Jin
- The First Clinical College of Norman Bethune Medical Division, Jilin University, China
| | | | | | | | | |
Collapse
|