1
|
Ma W, Zhang J, Chen W, Liu N, Wu T. Notch-Driven Cholangiocarcinogenesis Involves the Hippo Pathway Effector TAZ via METTL3-m6A-YTHDF1. Cell Mol Gastroenterol Hepatol 2024; 19:101417. [PMID: 39369960 PMCID: PMC11612812 DOI: 10.1016/j.jcmgh.2024.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND & AIMS Notch and TAZ are implicated in cholangiocarcinogenesis, but whether and how these oncogenic molecules interact remain unknown. METHODS The development of cholangiocarcinoma (CCA) was induced by hydrodynamic tail vein injection of oncogenes (Notch1 intracellular domain [NICD]/AKT) to the FVB/NJ mice. CCA xenograft was developed by inoculation of human CCA cells into the livers of SCID mice. Tissues and cells were analyzed using quantitative reverse transcription polymerase chain reaction, Western blotting analyses, immunohistochemistry, chromatin immunoprecipitation-quantitative polymerase chain reaction and WST-1 cell proliferation assay. RESULTS Our experimental findings show that TAZ is indispensable in NICD-driven cholangiocarcinogenesis. Notch activation induces the expression of methyltransferase like-3 (METTL3), which catalyzes N6-methyladenosine modification of TAZ mRNA and that this mechanism plays a central role in the crosstalk between Notch and TAZ in CCA cells. Mechanistically, Notch regulates the expression of METTL3 through the binding of NICD to its downstream transcription factor CSL in the promoter region of METTL3. METTL3 in turn mediates N6-methyladenosine modification of TAZ mRNA, which is recognized by the m6A reader YTHDF1 to enhance TAZ protein translation. We observed that inhibition of Notch signaling decreased the protein levels of both MELLT3 and TAZ. Depletion of METTL3 by short hairpin RNAs or by the next generation GapmeR antisense oligonucleotides decreased the level of TAZ protein and inhibited the growth of human CCA cells in vitro and in mice. CONCLUSIONS This study describes a novel Notch-METTL3-TAZ signaling cascade, which is important in CCA development and progression. Our experimental results provide new insight into how the Notch pathway cooperates with TAZ signaling in CCA, and the findings may have important therapeutic implications.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Nianli Liu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
2
|
Kotsos D, Tziomalos K. Microsomal Prostaglandin E Synthase-1 and -2: Emerging Targets in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24033049. [PMID: 36769370 PMCID: PMC9918023 DOI: 10.3390/ijms24033049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects a substantial proportion of the general population and is even more prevalent in obese and diabetic patients. NAFLD, and particularly the more advanced manifestation of the disease, nonalcoholic steatohepatitis (NASH), increases the risk for both liver-related and cardiovascular morbidity. The pathogenesis of NAFLD is complex and multifactorial, with many molecular pathways implicated. Emerging data suggest that microsomal prostaglandin E synthase-1 and -2 might participate in the development and progression of NAFLD. It also appears that targeting these enzymes might represent a novel therapeutic approach for NAFLD. In the present review, we discuss the association between microsomal prostaglandin E synthase-1 and -2 and NAFLD.
Collapse
|
3
|
Wang J, Ge F, Yuan T, Qian M, Yan F, Yang B, He Q, Zhu H. The molecular mechanisms and targeting strategies of transcription factors in cholangiocarcinoma. Expert Opin Ther Targets 2022; 26:781-789. [PMID: 36243001 DOI: 10.1080/14728222.2022.2137020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/13/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cholangiocarcinoma consists of a cluster of malignant biliary tumors that tend to have a poor prognosis, ranking as the second most prevalent type of liver cancer, and their incidence rate has increased globally recently. The high-frequency driving mutations of cholangiocarcinoma, such as KRAS/IDH1/ARID1A/P53, imply the epigenetic instability of cholangiocarcinoma, leading to the dysregulation of various related transcription factors, thus affecting the occurrence and development of cholangiocarcinoma. Increasingly evidence indicates that the high heterogeneity and malignancy of cholangiocarcinoma are closely related to the dysregulation of transcription factors which promote cell proliferation, invasion, migration, angiogenesis, and drug resistance through reprogrammed transcriptional networks. It is of great significance to further explore and summarize the role of transcription factors in cholangiocarcinoma. AREAS COVERED This review summarizes the oncogenic or tumor suppressive roles of key transcription factors in regulating cholangiocarcinoma progression and the potential targeting strategies of transcription factors in cholangiocarcinoma. EXPERT OPINION Cholangiocarcinoma is a type of cancer highly influenced by transcriptional regulation, specifically transcription factors and epigenetic regulatory factors. Targeting transcription factors could be a potential and important strategy that is likely to impact future cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Jiao Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fujing Ge
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Yuan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meijia Qian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangjie Yan
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- The Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Wang XY, Zhu WW, Wang Z, Huang JB, Wang SH, Bai FM, Li TE, Zhu Y, Zhao J, Yang X, Lu L, Zhang JB, Jia HL, Dong QZ, Chen JH, Andersen JB, Ye D, Qin LX. Driver mutations of intrahepatic cholangiocarcinoma shape clinically relevant genomic clusters with distinct molecular features and therapeutic vulnerabilities. Am J Cancer Res 2022; 12:260-276. [PMID: 34987644 PMCID: PMC8690927 DOI: 10.7150/thno.63417] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose: To establish a clinically applicable genomic clustering system, we investigated the interactive landscape of driver mutations in intrahepatic cholangiocarcinoma (ICC). Methods: The genomic data of 1481 ICCs from diverse populations was analyzed to investigate the pair-wise co-occurrences or mutual exclusivities among recurrent driver mutations. Clinicopathological features and outcomes were compared among different clusters. Gene expression and DNA methylation profiling datasets were analyzed to investigate the molecular distinctions among mutational clusters. ICC cell lines with different gene mutation backgrounds were used to evaluate the cluster specific biological behaviors and drug sensitivities. Results: Statistically significant mutation-pairs were identified across 21 combinations of genes. Seven most recurrent driver mutations (TP53, KRAS, SMAD4, IDH1/2, FGFR2-fus and BAP1) showed pair-wise co-occurrences or mutual exclusivities and could aggregate into three genetic clusters: Cluster1: represented by tripartite interaction of KRAS, TP53 and SMAD4 mutations, exhibited large bile duct histological phenotype with high CA19-9 level and dismal prognosis; Cluster2: co-association of IDH/BAP1 or FGFR2-fus/BAP1 mutation, was characterized by small bile duct phenotype, low CA19-9 level and optimal prognosis; Cluster3: mutation-free ICC cases with intermediate clinicopathological features. These clusters showed distinct molecular traits, biological behaviors and responses to therapeutic drugs. Finally, we identified S100P and KRT17 as “cluster-specific”, “lineage-dictating” and “prognosis-related” biomarkers, which in combination with CA19-9 could well stratify Cluster3 ICCs into two biologically and clinically distinct subtypes. Conclusions: This clinically applicable clustering system can be instructive to ICC prognostic stratification, molecular classification, and therapeutic optimization.
Collapse
|
5
|
Ma W, Han C, Zhang J, Song K, Chen W, Kwon H, Wu T. The Histone Methyltransferase G9a Promotes Cholangiocarcinogenesis Through Regulation of the Hippo Pathway Kinase LATS2 and YAP Signaling Pathway. Hepatology 2020; 72:1283-1297. [PMID: 31990985 PMCID: PMC7384937 DOI: 10.1002/hep.31141] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a highly malignant epithelial tumor of the biliary tree with poor prognosis. In the current study, we present evidence that the histone-lysine methyltransferase G9a is up-regulated in human CCA and that G9a enhances CCA cell growth and invasiveness through regulation of the Hippo pathway kinase large tumor suppressor 2 (LATS2) and yes-associated protein (YAP) signaling pathway. APPROACH AND RESULTS Kaplan-Meier survival analysis revealed that high G9a expression is associated with poor prognosis of CCA patients. In experimental systems, depletion of G9a by small interfering RNA/short hairpin RNA or inhibition of G9a by specific pharmacological inhibitors (UNC0642 and UNC0631) significantly inhibited human CCA cell growth in vitro and in severe combined immunodeficient mice. Increased G9a expression was also observed in mouse CCA induced by hydrodynamic tail vein injection of notch intracellular domain (NICD) and myr-Akt. Administration of the G9a inhibitor UNC0642 to NICD/Akt-injected mice reduced the growth of CCA, in vivo. These findings suggest that G9a inhibition may represent an effective therapeutic strategy for the treatment of CCA. Mechanistically, our data show that G9a-derived dimethylated H3K9 (H3K9me2) silenced the expression of the Hippo pathway kinase LATS2, and this effect led to subsequent activation of oncogenic YAP. Consequently, G9a depletion or inhibition reduced the level of H3K9me2 and restored the expression of LATS2 leading to YAP inhibition. CONCLUSIONS Our findings provide evidence for an important role of G9a in cholangiocarcinogenesis through regulation of LATS2-YAP signaling and suggest that this pathway may represent a potential therapeutic target for CCA treatment.
Collapse
|
6
|
Zhu B, Wei Y. Antitumor activity of celastrol by inhibition of proliferation, invasion, and migration in cholangiocarcinoma via PTEN/PI3K/Akt pathway. Cancer Med 2020; 9:783-796. [PMID: 31957323 PMCID: PMC6970044 DOI: 10.1002/cam4.2719] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/02/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
AIM Cholangiocarcinoma is a malignant tumor originating from bile duct epithelium. Currently, the treatment strategy is very limited and the prognosis is poor. Recent studies reported celastrol exhibits antigrowth and antimetastasis properties in many tumors. Our study aimed to assess the anti-CCA effects of cholangiocarcinoma (CCA) and the mechanisms involved in it. METHODS In this study, the long-term and short-term antiproliferation effects was determined using colony formation and Cell Counting Kit-8 (CCK-8) assays, respectively. Flow cytometry was performed to quantify apoptosis. Furthermore, wound healing and transwell assays were performed to determine the cell migration and invasion capabilities, respectively. To further find the mechanism involved in the celastrol-induced biological functions, LY204002, a PI3K/Akt signaling inhibitor, and an Akt-1 overexpression plasmid were employed to find whether PI3K/Akt pathway was involved in the celastrol-induced CCA cell inhibition. Additionally, short interfering RNA (siRNA) was also used to investigate the mechanism involved in the celastrol-induced PI3K/Akt signaling inhibition. Western blotting and immunofluorescence assays were also performed to detect the degree of relative proteins. Moreover, we validated the antiproliferation and antimetastasis effects of celastrol in vivo by constructing subcutaneous and lung metastasis nude mice models. RESULTS We discovered that celastrol effectively induced apoptotic cell death and inhibited the capacity of migration and invasion in CCA cells. Further mechanistic study identified that celastrol regulated the PI3K/Akt signaling pathway, and the antitumor efficacy was likely due to the upregulation of PTEN, a negative regulator of PI3K/Akt. Blockage of PTEN abolished the celastrol-induced PI3K/Akt signaling inhibition. Additionally, in vivo experiments conformed celastrol inhibited the tumor growth and lung metastasis with no serious side effects. CONCLUSIONS Overall, our study elucidated a mechanistic framework for the anti-CCA effects of celastrol via PTEN/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Biqiang Zhu
- Department of Oncology and Laparoscopy SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
- Translational Medicine Research and Cooperation Center of Northern ChinaHarbinHeilongjiangChina
| | - Yunwei Wei
- Department of Oncology and Laparoscopy SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
- Translational Medicine Research and Cooperation Center of Northern ChinaHarbinHeilongjiangChina
| |
Collapse
|
7
|
Chen Z, Cai X, Li M, Yan L, Wu L, Wang X, Tang N. CRISPR/Cas9-based liver-derived reporter cells for screening of mPGES-1 inhibitors. J Enzyme Inhib Med Chem 2019; 34:799-807. [PMID: 30879343 PMCID: PMC6427568 DOI: 10.1080/14756366.2019.1587416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
mPGES-1 is a terminal rate-limiting enzyme responsible for inflammation-induced PGE2 production. The inhibition of mPGES-1 has been considered as a safe and effective target for the treatment of inflammation and cancer. However, a specific, efficient, and simple method for high-throughput screening of mPGES-1 inhibitors is still lacking. In this study, we developed a fluorescence imaging strategy to monitor the expression of mPGES-1 via CRISPR/Cas9 knock-in system. Immunofluorescence colocalisation, Sanger sequencing, RNAi, and IL-1β treatment all confirmed the successful construction of mPGES-1 reporter cells. The fluorescence signal intensity of the reporter cells treated with four conventional mPGES-1 inhibitors was considerably attenuated via flow cytometry and fluorescent microplate reader, demonstrating that the reporter cells can be used as an efficient and convenient means for screening and optimising mPGES-1 inhibitors. Moreover, it provides a new technical support for the development of targeted small molecule compounds for anti-inflammatory and tumour therapy.
Collapse
Affiliation(s)
- Zhanfei Chen
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Xiaoling Cai
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Man Li
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - LinLin Yan
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Luxi Wu
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Xiaoqian Wang
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Nanhong Tang
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China.,b Key Laboratory of Ministry of Education for Gastrointestinal Cancer , Research Center for Molecular Medicine, Fujian Medical University , Fuzhou , China
| |
Collapse
|
8
|
Recabarren-Leiva D, Alarcón M. New insights into the gene expression associated to amyotrophic lateral sclerosis. Life Sci 2018; 193:110-123. [DOI: 10.1016/j.lfs.2017.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/01/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
|
9
|
Yao L, Chen W, Han C, Wu T. Microsomal prostaglandin E synthase-1 protects against Fas-induced liver injury. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1071-80. [PMID: 27102561 PMCID: PMC4935489 DOI: 10.1152/ajpgi.00327.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/17/2016] [Indexed: 01/31/2023]
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme for the synthesis of prostaglandin E2 (PGE2), a proproliferative and antiapoptotic lipid molecule important for tissue regeneration and injury repair. In this study, we developed transgenic (Tg) mice with targeted expression of mPGES-1 in the liver to assess Fas-induced hepatocyte apoptosis and acute liver injury. Compared with wild-type (WT) mice, the mPGES-1 Tg mice showed less liver hemorrhage, lower serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, less hepatic necrosis/apoptosis, and lower level of caspase cascade activation after intraperitoneal injection of the anti-Fas antibody Jo2. Western blotting analysis revealed increased expression and activation of the serine/threonine kinase Akt and associated antiapoptotic molecules in the liver tissues of Jo2-treated mPGES-1 Tg mice. Pretreatment with the mPGES-1 inhibitor (MF63) or the Akt inhibitor (Akt inhibitor V) restored the susceptibility of the mPGES-1 Tg mice to Fas-induced liver injury. Our findings provide novel evidence that mPGES-1 prevents Fas-induced liver injury through activation of Akt and related signaling and suggest that induction of mPGES-1 or treatment with PGE2 may represent important therapeutic strategy for the prevention and treatment of Fas-associated liver injuries.
Collapse
Affiliation(s)
| | | | | | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
10
|
Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes SJ, Fouassier L, Geier A, Calvisi DF, Mertens JC, Trauner M, Benedetti A, Maroni L, Vaquero J, Macias RIR, Raggi C, Perugorria MJ, Gaudio E, Boberg KM, Marin JJG, Alvaro D. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 2016; 13:261-80. [PMID: 27095655 DOI: 10.1038/nrgastro.2016.51] [Citation(s) in RCA: 914] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the "European Network for the Study of Cholangiocarcinoma" (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, CIBERehd, Paseo del Dr. Begiristain s/n, E-20014, San Sebastian, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy
| | - Marco Marzioni
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Pietro Invernizzi
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310, Oslo, Norway
| | - Trine Folseraas
- Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, N-0424, Oslo, Norway
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, EH16 4SB, Edinburgh, United Kingdom
| | - Laura Fouassier
- INSERM UMR S938, Centre de Recherche Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571, Paris cedex 12, Fondation ARC, 9 rue Guy Môquet 94803 Villejuif, France
| | - Andreas Geier
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacherstrasse 6, D-97080, Würzburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, Universitätsmedizin Greifswald, Friedrich-Löffler-Strasse 23e, 17489, Greifswald, Germany
| | - Joachim C Mertens
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Antonio Benedetti
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Luca Maroni
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Javier Vaquero
- INSERM UMR S938, Centre de Recherche Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571, Paris cedex 12, Fondation ARC, 9 rue Guy Môquet 94803 Villejuif, France
| | - Rocio I R Macias
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Campus Miguel de Unamuno, E.I.D. S-09, University of Salamanca, IBSAL, CIBERehd, 37007, Salamanca, Spain
| | - Chiara Raggi
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, CIBERehd, Paseo del Dr. Begiristain s/n, E-20014, San Sebastian, Spain
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - Kirsten M Boberg
- Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, N-0424, Oslo, Norway
| | - Jose J G Marin
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Campus Miguel de Unamuno, E.I.D. S-09, University of Salamanca, IBSAL, CIBERehd, 37007, Salamanca, Spain
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| |
Collapse
|
11
|
Hu J, Yin B. Advances in biomarkers of biliary tract cancers. Biomed Pharmacother 2016; 81:128-135. [PMID: 27261586 DOI: 10.1016/j.biopha.2016.02.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/14/2022] Open
Abstract
Tumor biomarkers can be applied for early diagnosis or precise treatment, thereby leading to personalized treatment and better outcomes. Biliary tract cancers (BTCs) are a group of cancers that occurs in different locations and have different clinical or genetic properties. Though the incidence of BTCs is rare, BTCs are among the most lethal cancers in the world and all have very low 5-year survivals. Lack of efficient early diagnostic approaches or adjuvant therapies for BTCs are main reasons. These urge us to broaden the researches into BTC biomarkers. Although few progresses of diagnostic biomarkers for BTCs have been achieved, there are still some advances in prognostic, predictive and therapeutic areas. In this review, we will focus on these achievements.
Collapse
Affiliation(s)
- Jun Hu
- Department of General Surgery, Huashan Hosptial, Fudan University, Shanghai 200040, PR China.
| | - Baobing Yin
- Department of General Surgery, Huashan Hosptial, Fudan University, Shanghai 200040, PR China; Department of General Surgery, Jing'an Branch of Huashan Hospital, Fudan University (Jing'an District Centre Hospital of Shanghai), Shanghai 200040, PR China.
| |
Collapse
|
12
|
Yao L, Han C, Song K, Zhang J, Lim K, Wu T. Omega-3 Polyunsaturated Fatty Acids Upregulate 15-PGDH Expression in Cholangiocarcinoma Cells by Inhibiting miR-26a/b Expression. Cancer Res 2015; 75:1388-98. [PMID: 25691459 DOI: 10.1158/0008-5472.can-14-2561] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/26/2015] [Indexed: 12/19/2022]
Abstract
Prostaglandin E2 (PGE2) is a proinflammatory lipid mediator that promotes cancer growth. The 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes oxidation of the 15(S)-hydroxyl group of PGE2, leading to its inactivation. Therefore, 15-PGDH induction may offer a strategy to treat cancers that are driven by PGE2, such as human cholangiocarcinoma. Here, we report that omega-3 polyunsaturated fatty acids (ω-3 PUFA) upregulate 15-PGDH expression by inhibiting miR-26a and miR-26b, thereby contributing to ω-3 PUFA-induced inhibition of human cholangiocarcinoma cell growth. Treatment of human cholangiocarcinoma cells (CCLP1 and TFK-1) with ω-3 PUFA (DHA) or transfection of these cells with the Fat-1 gene (encoding Caenorhabditis elegans desaturase, which converts ω-6 PUFA to ω-3 PUFA) significantly increased 15-PGDH enzymes levels, but with little effect on the activity of the 15-PGDH gene promoter. Mechanistic investigations revealed that this increase in 15-PGDH levels in cells was mediated by a reduction in the expression of miR-26a and miR-26b, which target 15-PGDH mRNA and inhibit 15-PGDH translation. These findings were extended by the demonstration that overexpressing miR-26a or miR-26b decreased 15-PGDH protein levels, reversed ω-3 PUFA-induced accumulation of 15-PGDH protein, and prevented ω-3 PUFA-induced inhibition of cholangiocarcinoma cell growth. We further observed that ω-3 PUFA suppressed miR-26a and miR-26b by inhibiting c-myc, a transcription factor that regulates miR-26a/b. Accordingly, c-myc overexpression enhanced expression of miR-26a/b and ablated the ability of ω-3 PUFA to inhibit cell growth. Taken together, our results reveal a novel mechanism for ω-3 PUFA-induced expression of 15-PGDH in human cholangiocarcinoma and provide a preclinical rationale for the evaluation of ω-3 PUFA in treatment of this malignancy.
Collapse
Affiliation(s)
- Lu Yao
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kyoungsub Song
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kyu Lim
- Department of Biochemistry, College of Medicine, Cancer Research Institute and Infection Signaling, Network Research Center, Chungnam National University, Daejeon, Korea
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
13
|
PGE2 signaling and its biosynthesis-related enzymes in cholangiocarcinoma progression. Tumour Biol 2014; 35:8051-64. [PMID: 24839005 DOI: 10.1007/s13277-014-2021-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/27/2014] [Indexed: 12/19/2022] Open
Abstract
Prostaglandin E2 (PGE2) involves in progression of various chronic inflammation-related cancers including cholangiocarcinoma (CCA). This study aimed to determine the role of PGE2 signaling, its biosynthesis-related enzymes in a clinical prognosis, and their targeted inhibition in CCA progression. The immunohistochemical staining of cyclooxygenase (COX)-1, COX-2, mPGES-1, EP1, and EP4 was examined in CCA tissues, and their expressions were compared with clinicopathological parameters. The effect of PGE2 on levels of its signaling molecules was examined in CCA cell lines using proteome profiler array. The suppression of mPGES-1 using a small-molecule inhibitor (CAY10526) and small interfering RNA (siRNA) was determined for growth and migration ability in CCA cells. The results indicated that strong expressions of COX-1, COX-2, mPGES-1, EP1, and EP4 were found in CCA tissues as 87.5, 47.5, 52.5, 55, and 80 % of frequencies, respectively. High mPGES-1 expression was significantly correlated with tumor stages III-IV (p = 0.001), lymph node metastasis (p = 0.004), shorter survival (p = 0.009), and prognostic indicator of CCA patients (HR = 2.512, p = 0.041). Expressions of COX-1, COX-2, and EP receptors did not correlate with data tested from patients. PGE2 markedly enhanced protein levels of integrinα6, VE-cadherin, Jagged1, and Notch3, and CAY10526 suppressed those protein levels as well as PGE2 production in CCA cells. CAY10526 and siRNA mPGES-1 markedly suppressed mPGES-1 protein levels, growth, and migration abilities of CCA cell lines. In conclusion, PGE2 signaling strongly promotes CCA progression. Therefore, inhibition of PGE2 synthesis by suppression of its biosynthesis-related enzymes could be useful for prevention and treatment of CCA.
Collapse
|
14
|
Kitasato A, Kuroki T, Adachi T, Ono S, Tanaka T, Tsuneoka N, Hirabaru M, Takatsuki M, Eguchi S. A Selective Cyclooxygenase-2 Inhibitor (Etodolac) Prevents Spontaneous Biliary Tumorigenesis in a Hamster Bilioenterostomy Model. Eur Surg Res 2014; 52:73-82. [DOI: 10.1159/000362542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/27/2014] [Indexed: 01/30/2023]
|
15
|
Hopkins BD, Hodakoski C, Barrows D, Mense SM, Parsons RE. PTEN function: the long and the short of it. Trends Biochem Sci 2014; 39:183-90. [PMID: 24656806 DOI: 10.1016/j.tibs.2014.02.006] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 12/31/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a phosphatase that is frequently altered in cancer. PTEN has phosphatase-dependent and -independent roles, and genetic alterations in PTEN lead to deregulation of protein synthesis, the cell cycle, migration, growth, DNA repair, and survival signaling. PTEN localization, stability, conformation, and phosphatase activity are controlled by an array of protein-protein interactions and post-translational modifications. Thus, PTEN-interacting and -modifying proteins have profound effects on the tumor suppressive functions of PTEN. Moreover, recent studies identified mechanisms by which PTEN can exit cells, via either exosomal export or secretion, and act on neighboring cells. This review focuses on modes of PTEN protein regulation and ways in which perturbations in this regulation may lead to disease.
Collapse
Affiliation(s)
- Benjamin D Hopkins
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Cindy Hodakoski
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Douglas Barrows
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Sarah M Mense
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Ramon E Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
16
|
Jo HJ, Shim HE, Han ME, Kim HJ, Kim KS, Baek S, Choi KU, Hur GY, Oh SO. WTAP regulates migration and invasion of cholangiocarcinoma cells. J Gastroenterol 2013; 48:1271-82. [PMID: 23354623 DOI: 10.1007/s00535-013-0748-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 12/25/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Wilms' tumor 1-associating protein (WTAP) is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Although its dynamic expression and physiological functions in vascular cells have been reported, its expression and roles in cholangiocarcinoma cells are poorly characterized. METHODS To examine the expression of WTAP in patient tissues, we performed immunohistochemistry. To examine motility of cholangiocarcinoma cells, we employed Boyden chamber, wound healing and Matrigel invasion assays, and a liver xenograft model. RESULTS Immunohistochemistry in patient tissues showed WTAP overexpression in cholangiocarcinoma tissues and correlation of WTAP expression with metastasis of cholangiocarcinoma cells. Overexpression or knockdown of WTAP significantly increased or decreased the motility of cholangiocarcinoma cells. Moreover, WTAP overexpression or knockdown significantly increased or decreased tumorigenicity of cholangiocarcinoma cells in an orthotopic xenograft model. Furthermore, microarray study showed that WTAP induce the expressions of MMP7, MMP28, cathepsin H and Muc1. CONCLUSION WTAP is overexpressed in cholangiocarcinoma and regulates motility of cholangiocarcinoma cells.
Collapse
Affiliation(s)
- Hong-Jae Jo
- Departments of Surgery, School of Medicine, Pusan National University, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zang S, Ni M, Lian Y, Zhang Y, Liu J, Huang A. Expression of microsomal prostaglandin E2 synthase-1 and its role in human hepatocellular carcinoma. Hum Pathol 2013; 44:1681-7. [DOI: 10.1016/j.humpath.2013.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|
18
|
Ishii Y, Sasaki T, Serikawa M, Minami T, Okazaki A, Yukutake M, Ishigaki T, Kosaka K, Mouri T, Yoshimi S, Shimizu A, Tsuboi T, Chayama K. Elevated expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in primary sclerosing cholangitis: ιmplications for cholangiocarcinogenesis. Int J Oncol 2013; 43:1073-9. [PMID: 23900502 DOI: 10.3892/ijo.2013.2038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/05/2013] [Indexed: 11/05/2022] Open
Abstract
Cholangiocarcinoma (CCA) occurs frequently in primary sclerosing cholangitis (PSC). Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) induced by inflammation are believed to mediate prostaglandin E2 (PGE2) production thereby promoting carcinogenesis. Their expression in PSC-associated CCA tissues and non-neoplastic bile duct epithelial cells (BDECs) in PSC was investigated. COX-2 and mPGES-1 levels in 15 PSC patients (7 with CCA) were scored using immunohistochemical staining. The results were compared with those obtained in CCA tissues and non-neoplastic BDECs (controls) of 15 sporadic CCA patients. Non-neoplastic BDECs from large and small bile ducts were investigated separately. The mRNA expression levels of COX-2 and mPGES-1 in CCA tissues were analyzed by quantitative polymerase chain reaction. Ki-67 immunostaining was performed to evaluate cell proliferation. COX-2 was strongly expressed in PSC-associated CCA tissues and non-neoplastic BDECs in PSC. This expression was significantly upregulated in both compared with sporadic CCA tissues and non-neoplastic BDECs in sporadic CCA (both P<0.01). mPGES-1 was expressed at moderate to strong levels in PSC. Compared with controls, the expression was significantly higher in non-neoplastic small BDECs (P<0.01). COX-2 mRNA levels were significantly higher in PSC-associated tissues than in sporadic CCA tissues (P<0.01). Conversely, no differences were observed in mPGES-1 mRNA levels. Ki-67 labeling indices were higher in PSC-associated CCA tissues and non-neoplastic BDECs in PSC than in controls. In conclusion, COX-2 and mPGES-1 were highly expressed in PSC-associated CCA tissues and non-neoplastic BDECs in PSC, suggesting the involvement of COX-2 and mPGES-1 in cholangiocarcinogenesis.
Collapse
Affiliation(s)
- Yasutaka Ishii
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Minami, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Minicis SD, Kisseleva T, Francis H, Baroni GS, Benedetti A, Brenner D, Alvaro D, Alpini G, Marzioni M. Liver carcinogenesis: rodent models of hepatocarcinoma and cholangiocarcinoma. Dig Liver Dis 2013; 45. [PMID: 23177172 PMCID: PMC3716909 DOI: 10.1016/j.dld.2012.10.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma and cholangiocarcinoma are primary liver cancers, both represent a growing challenge for clinicians due to their increasing morbidity and mortality. In the last few years a number of in vivo models of hepatocellular carcinoma and cholangiocarcinoma have been developed. The study of these models is providing a significant contribution in unveiling the pathophysiology of primary liver malignancies. They are also fundamental tools to evaluate newly designed molecules to be tested as new potential therapeutic agents in a pre-clinical set. Technical aspects of each model are critical steps, and they should always be considered in order to appropriately interpret the findings of a study or its planning. The purpose of this review is to describe the technical and experimental features of the most significant rodent models, highlighting similarities or differences between the corresponding human diseases. The first part is dedicated to the discussion of models of hepatocellular carcinoma, developed using toxic agents, or through dietary or genetic manipulations. In the second we will address models of cholangiocarcinoma developed in rats or mice by toxin administration, genetic manipulation and/or bile duct incannulation or surgery. Xenograft or syngenic models are also proposed.
Collapse
Affiliation(s)
- Samuele De Minicis
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Tatiana Kisseleva
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, CA, United States
| | - Heather Francis
- Division Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Department of Medicine, Division Gastroenterology, Scott & White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | | | - Antonio Benedetti
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - David Brenner
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, CA, United States
| | - Domenico Alvaro
- Division of Gastroenterology, Polo Pontino, Università degli Studi “La Sapienza”, Rome, Italy
| | - Gianfranco Alpini
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, CA, United States,Co-corresponding author. Tel.: +1 254 743 1041/1044; fax: +1 254 743 0378/0555. (M. Marzioni)
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy,Corresponding author at: Department of Gastroenterology, Università Politecnica delle Marche, Nuovo Polo Didattico, III Piano, Via Tronto 10, 60020 Ancona, Italy. Tel.: +39 0712206043; fax: +39 0712206044
| |
Collapse
|
20
|
Abstract
INTRODUCTION PTEN (phosphatase and tensin homolog deleted on chromosome 10) plays a pivotal role in controlling intracellular signaling for cell survival and proliferation by inhibiting the PI3K/Akt pathway, and its dysfunction is associated with several neoplastic diseases. PTEN is frequently found mutated in many pathological conditions highlighting its importance in normal physiological function. Unlike several cellular proteins which are activated by phosphorylation, PTEN is inactivated upon phosphorylation by specific kinases which phosphorylate serine and threonine residues in its C-terminal region. Therefore, development of therapeutic agents that specifically target kinases and kinase-domain-containing proteins affecting PTEN would lead to the treatment of PTEN-related diseases. AREAS COVERED With increasing evidence on the role of PTEN in many human diseases, the present review focuses on the clinical relevance of PTEN with a comprehensive list of currently identified modulators of PTEN, and proposes potentially novel molecular targets which could aid in the development of drug candidates for the treatment of PTEN-related diseases such as cardiovascular diseases, diabetes, obesity, cancer, autism, Parkinson's and Alzheimer's diseases. EXPERT OPINION This review describes several target sites that could help in the development of novel drug candidates to regulate or restore the normal physiological functions of PTEN and are essential in the treatment of human diseases where PTEN plays a pivotal role.
Collapse
Affiliation(s)
- Chandra S Boosani
- Creighton University School of Medicine, Department of Biomedical Sciences, Omaha, NE 68178, USA
| | | |
Collapse
|
21
|
KOEBERLE ANDREAS, WERZ OLIVER. Microsomal Prostaglandin E2 Synthase-1. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The prostanoids and leukotrienes (LTs) formed from arachidonic acid (AA) via the cyclooxygenase (COX)-1/2 and 5-lipoxygenase (5-LO) pathway, respectively, mediate inflammatory responses, chronic tissue remodelling, cancer, asthma and autoimmune disorders, but also possess homeostatic functions in the gastrointestinal tract, uterus, brain, kidney, vasculature and host defence. Based on the manifold functions of these eicosanoids, the clinical use of non-steroidal anti-inflammatory drugs (NSAIDs), a class of drugs that block formation of all prostanoids, is hampered by severe side-effects including gastrointestinal injury, renal irritations and cardiovascular risks. Therefore, anti-inflammatory agents interfering with eicosanoid biosynthesis require a well-balanced pharmacological profile to minimize these on-target side-effects. Current anti-inflammatory research aims at identifying compounds that can suppress the massive formation of pro-inflammatory prostaglandin (PG)E2 without affecting homeostatic PGE2 and PGI2 synthesis. The inducible microsomal prostaglandin E2 synthase-1 (mPGES-1) is one promising target enzyme. We will give an overview about the structure, regulation and function of mPGES-1 and then present novel inhibitors of mPGES-1 that may possess a promising pharmacological profile.
Collapse
Affiliation(s)
- ANDREAS KOEBERLE
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy University Jena Philosophenweg 14, D-07743 Jena Germany
| | - OLIVER WERZ
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy University Jena Philosophenweg 14, D-07743 Jena Germany
| |
Collapse
|
22
|
Finetti F, Terzuoli E, Bocci E, Coletta I, Polenzani L, Mangano G, Alisi MA, Cazzolla N, Giachetti A, Ziche M, Donnini S. Pharmacological inhibition of microsomal prostaglandin E synthase-1 suppresses epidermal growth factor receptor-mediated tumor growth and angiogenesis. PLoS One 2012; 7:e40576. [PMID: 22815767 PMCID: PMC3399882 DOI: 10.1371/journal.pone.0040576] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/11/2012] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Blockade of Prostaglandin (PG) E(2) production via deletion of microsomal Prostaglandin E synthase-1 (mPGES-1) gene reduces tumor cell proliferation in vitro and in vivo on xenograft tumors. So far the therapeutic potential of the pharmacological inhibition of mPGES-1 has not been elucidated. PGE(2) promotes epithelial tumor progression via multiple signaling pathways including the epidermal growth factor receptor (EGFR) signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS Here we evaluated the antitumor activity of AF3485, a compound of a novel family of human mPGES-1 inhibitors, in vitro and in vivo, in mice bearing human A431 xenografts overexpressing EGFR. Treatment of the human cell line A431 with interleukin-1beta (IL-1β) increased mPGES-1 expression, PGE(2) production and induced EGFR phosphorylation, and vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) expression. AF3485 reduced PGE(2) production, both in quiescent and in cells stimulated by IL-1β. AF3485 abolished IL-1β-induced activation of the EGFR, decreasing VEGF and FGF-2 expression, and tumor-mediated endothelial tube formation. In vivo, in A431 xenograft, AF3485, administered sub-chronically, decreased tumor growth, an effect related to inhibition of EGFR signalling, and to tumor microvessel rarefaction. In fact, we observed a decrease of EGFR phosphorylation, and VEGF and FGF-2 expression in tumours explanted from treated mice. CONCLUSION Our work demonstrates that the pharmacological inhibition of mPGES-1 reduces squamous carcinoma growth by suppressing PGE(2) mediated-EGFR signalling and by impairing tumor associated angiogenesis. These results underscore the potential of mPGES-1 inhibitors as agents capable of controlling tumor growth.
Collapse
Affiliation(s)
- Federica Finetti
- Department of Biotechnology, University of Siena, Via Aldo Moro, 2, Siena, and Istituto Toscano Tumori (ITT), Italy
| | - Erika Terzuoli
- Department of Biotechnology, University of Siena, Via Aldo Moro, 2, Siena, and Istituto Toscano Tumori (ITT), Italy
| | - Elena Bocci
- Department of Biotechnology, University of Siena, Via Aldo Moro, 2, Siena, and Istituto Toscano Tumori (ITT), Italy
| | - Isabella Coletta
- Angelini Research Center–A.C.R.A.F. S.p.A., Piazzale della stazione, S. Palomba-Pomezia (Rome), Italy
| | - Lorenzo Polenzani
- Angelini Research Center–A.C.R.A.F. S.p.A., Piazzale della stazione, S. Palomba-Pomezia (Rome), Italy
| | - Giorgina Mangano
- Angelini Research Center–A.C.R.A.F. S.p.A., Piazzale della stazione, S. Palomba-Pomezia (Rome), Italy
| | - Maria Alessandra Alisi
- Angelini Research Center–A.C.R.A.F. S.p.A., Piazzale della stazione, S. Palomba-Pomezia (Rome), Italy
| | - Nicola Cazzolla
- Angelini Research Center–A.C.R.A.F. S.p.A., Piazzale della stazione, S. Palomba-Pomezia (Rome), Italy
| | - Antonio Giachetti
- Department of Biotechnology, University of Siena, Via Aldo Moro, 2, Siena, and Istituto Toscano Tumori (ITT), Italy
| | - Marina Ziche
- Department of Biotechnology, University of Siena, Via Aldo Moro, 2, Siena, and Istituto Toscano Tumori (ITT), Italy
- * E-mail: (MZ); (SD)
| | - Sandra Donnini
- Department of Biotechnology, University of Siena, Via Aldo Moro, 2, Siena, and Istituto Toscano Tumori (ITT), Italy
- * E-mail: (MZ); (SD)
| |
Collapse
|