1
|
Xu L, Wu Q, Zhao K, Li X, Yao W. Prognostic prediction signature and molecular subtype for liver cancer: A CTC/CTM‑related gene prediction model and independent external validation. Oncol Lett 2024; 28:531. [PMID: 39290961 PMCID: PMC11406422 DOI: 10.3892/ol.2024.14664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Liver cancer is the second leading cause of tumor-related death worldwide, and a serious threat to lives and health. Circulating tumor cells (CTCs) facilitate the progression of various cancers, including liver cancer. The relationship between CTC/circulating tumor microemboli-related genes (CRGs) and the prognosis of liver cancer is unclear. The aim of the present study was to identify CTC/circulating tumour microemboli-related genes (CRGs) in hepatocellular carcinoma and to investigate their clinical significance. Transcriptomic data from The Cancer Genome Atlas (International Cancer Genome Consortium (ICGC) and GSE117623 databases were combined, and differentially expressed CRGs were identified. These were subsequently analyzed via least absolute shrinkage and selection operator and multivariate Cox analyses, and a five-gene risk signature was constructed. The signature was validated in the ICGC and GSE14520 dataset with survival analysis and receiver operating characteristic curve analysis. Immunocyte infiltration, tumor mutation burden (TMB), tumor immune dysfunction and exclusion (TIDE), and the somatic mutation rate were also compared between high- and low-risk groups, based on the median predictive index, to further evaluate the immunotherapeutic value of the model. Molecular subtypes of liver cancer were characterized by the non-negative matrix factorization method and potential therapeutic compounds were evaluated for different subtypes. Nomograms were utilized to predict the prognosis of patients, and the signature was compared with previous literature models. Additionally, the biological function of one of the CRGs, tumor protein p53 inducible protein 3 (TP53I3), in liver cancer was further explored through in vitro experiments. Analysis of the prognostic characteristics of the five CRGs led to the identification of two liver cancer subtypes. Patients in the low-risk group had a longer survival compared with those in the high-risk group, and patients in the latter group were associated with a higher TMB, immunocyte infiltration and somatic mutation rate, and lower TIDE scores. The prognostic profile was validated in the ICGC and GSE14520 datasets and exhibited a good predictive performance. In vitro analysis showed that the knockdown of TP53I3 suppressed liver cancer cell proliferation. In summary, CRGs were used to develop a new prognostic signature to predict the prognosis of patients with liver cancer. This signature may be used to assess the prognosis of patients and may provide new insights for clinical management strategies. In addition, TP53I3 is potentially a therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Ling Xu
- Department of Nursing, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qiansheng Wu
- Department of Nursing, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiangyu Li
- Department of Thoracic Surgery, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei Yao
- Department of Oncology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
2
|
Giannoukakos S, D'Ambrosi S, Koppers-Lalic D, Gómez-Martín C, Fernandez A, Hackenberg M. Assessing the complementary information from an increased number of biologically relevant features in liquid biopsy-derived RNA-Seq data. Heliyon 2024; 10:e27360. [PMID: 38515664 PMCID: PMC10955244 DOI: 10.1016/j.heliyon.2024.e27360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024] Open
Abstract
Liquid biopsy-derived RNA sequencing (lbRNA-seq) exhibits significant promise for clinic-oriented cancer diagnostics due to its non-invasiveness and ease of repeatability. Despite substantial advancements, obstacles like technical artefacts and process standardisation impede seamless clinical integration. Alongside addressing technical aspects such as normalising fluctuating low-input material and establishing a standardised clinical workflow, the lack of result validation using independent datasets remains a critical factor contributing to the often low reproducibility of liquid biopsy-detected biomarkers. Considering the outlined drawbacks, our objective was to establish a workflow/methodology characterised by: 1. Harness the rich diversity of biological features accessible through lbRNA-seq data, encompassing a holistic range of molecular and functional attributes. These components are seamlessly integrated via a Machine Learning-based Ensemble Classification framework, enabling a unified and comprehensive analysis of the intricate information encoded within the data. 2. Implementing and rigorously benchmarking intra-sample normalisation methods to heighten their relevance within clinical settings. 3. Thoroughly assessing its efficacy across independent test sets to ascertain its robustness and potential utility. Using ten datasets from several studies comprising three different sources of biological material, we first show that while the best-performing normalisation methods depend strongly on the dataset and coupled Machine Learning method, the rather simple Counts Per Million method is generally very robust, showing comparable performance to cross-sample methods. Subsequently, we demonstrate that the innovative biofeature types introduced in this study, such as the Fraction of Canonical Transcript, harbour complementary information. Consequently, their inclusion consistently enhances prediction power compared to models relying solely on gene expression-based biofeatures. Finally, we demonstrate that the workflow is robust on completely independent datasets, generally from different labs and/or different protocols. Taken together, the workflow presented here outperforms generally employed methods in prediction accuracy and may hold potential for clinical diagnostics application due to its specific design.
Collapse
Affiliation(s)
- Stavros Giannoukakos
- Department of Genetics, Faculty of Science, University of Granada, Granada, 18071, Spain
- Bioinformatics Laboratory, Biomedical Research Centre (CIBM), PTS, Granada, 18100, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain
| | - Silvia D'Ambrosi
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, 1081HV, the Netherlands
| | | | - Cristina Gómez-Martín
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, 1081HV, the Netherlands
| | - Alberto Fernandez
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, 18071, Spain
| | - Michael Hackenberg
- Department of Genetics, Faculty of Science, University of Granada, Granada, 18071, Spain
- Bioinformatics Laboratory, Biomedical Research Centre (CIBM), PTS, Granada, 18100, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain
| |
Collapse
|
3
|
Vijay J, Kumar BD, Murthy VS. Detection of Circulating Tumor Cells by Cell Block Technique in Malignant Tumors. J Cytol 2024; 41:41-46. [PMID: 38282811 PMCID: PMC10810080 DOI: 10.4103/joc.joc_123_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Cancer is a leading cause of death worldwide and is a major cause of morbidity. To deal with this magnitude of cancers and their diagnostic and prognostics, a multitude of prognostic biomarkers for various cancers have been explored over the decades, with detection of circulating tumor cells (CTCs) in the peripheral blood being one of them. This study was undertaken to explore the routine procedure of cell block in the cytopathology lab to isolate and detect CTCs. Materials and Methods In this cross-sectional study, 112 peripheral blood samples sent for routine blood investigations of various cancer patients were utilized for the preparation of cell block. The sections from the cell block were stained routinely and evaluated for the presence of CTCs. The statistical analysis was done using Mac Statplus software version 8.0. Results The malignancies were tabulated as per the International Classification of Diseases for Oncology, third edition (ICD-O-3). The maximum number of cases were from C 50 (breast) - 41/112 (36.6%), followed by C15-C26 (Digestive organs) - 19/112 (16.9%), and C00-C14 (lip, oral cavity, and pharynx) - 18/112 (16.07%) cases. CTC was detected in six (5.35%) out of 112 cases, out of which three were from the breast and one each from category C6.9 (mouth), C32.0 (glottis), and C53.8 (cervix uteri). Conclusion Among various advanced and molecular techniques available for the detection of CTCs, the cell block technique proves to be one of the effective methods, especially in resource-limited settings as these can further be utilized for additional diagnostic techniques similar to the ones employed for routine paraffin blocks.
Collapse
Affiliation(s)
- Jahnvi Vijay
- Department of Pathology, ESIC Medical College and PGIMSR, Rajajinagar, Bengaluru, Karnataka, India
| | - B Deepak Kumar
- Department of Pathology, ESIC Medical College and PGIMSR, Rajajinagar, Bengaluru, Karnataka, India
| | - V Srinivasa Murthy
- Department of Pathology, ESIC Medical College and PGIMSR, Rajajinagar, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Shaik MR, Sagar PR, Shaik NA, Randhawa N. Liquid Biopsy in Hepatocellular Carcinoma: The Significance of Circulating Tumor Cells in Diagnosis, Prognosis, and Treatment Monitoring. Int J Mol Sci 2023; 24:10644. [PMID: 37445822 DOI: 10.3390/ijms241310644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy with poor outcomes when diagnosed at an advanced stage. Current curative treatments are most effective in early-stage HCC, highlighting the importance of early diagnosis and intervention. However, existing diagnostic methods, such as radiological imaging, alpha-fetoprotein (AFP) testing, and biopsy, have limitations that hinder early diagnosis. AFP elevation is absent in a significant portion of tumors, and imaging may have low sensitivity for smaller tumors or in the presence of cirrhosis. Additionally, as our understanding of the molecular pathogenesis of HCC grows, there is an increasing need for molecular information about the tumors. Biopsy, although informative, is invasive and may not always be feasible depending on tumor location. In this context, liquid biopsy technology has emerged as a promising approach for early diagnosis, enabling molecular characterization and genetic profiling of tumors. This technique involves analyzing circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or tumor-derived exosomes. CTCs are cancer cells shed from the primary tumor or metastatic sites and circulate in the bloodstream. Their presence not only allows for early detection but also provides insights into tumor metastasis and recurrence. By detecting CTCs in peripheral blood, real-time tumor-related information at the DNA, RNA, and protein levels can be obtained. This article provides an overview of CTCs and explores their clinical significance for early detection, prognosis, treatment selection, and monitoring treatment response in HCC, citing relevant literature.
Collapse
Affiliation(s)
- Mohammed Rifat Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Prem Raj Sagar
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Nishat Anjum Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | | |
Collapse
|
5
|
Liu X, Song J, Zhang H, Liu X, Zuo F, Zhao Y, Zhao Y, Yin X, Guo X, Wu X, Zhang H, Xu J, Hu J, Jing J, Ma X, Shi H. Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. Cancer Cell 2023; 41:272-287.e9. [PMID: 36706761 DOI: 10.1016/j.ccell.2023.01.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
Circulating tumor cells (CTCs), shed by primary malignancies, function as "seeds" for distant metastasis. However, it is still largely unknown how CTCs escape immune surveillance. Here, we characterize the transcriptomes of human pancreatic ductal adenocarcinoma CTCs, primary, and metastatic lesions at single-cell scale. Cell-interaction analysis and functional studies in vitro and in vivo reveal that CTCs and natural killer (NK) cells interact via the immune checkpoint molecule pair HLA-E:CD94-NKG2A. Disruption of this interaction by blockade of NKG2A or knockdown of HLA-E expression enhances NK-mediated tumor cell killing in vitro and prevents tumor metastasis in vivo. Mechanistic studies indicate that platelet-derived RGS18 promotes the expression of HLA-E through AKT-GSK3β-CREB signaling, and overexpression of RGS18 facilitates pancreatic tumor hepatic metastasis. In conclusion, platelet-derived RGS18 protects CTCs from NK-mediated immune surveillance by engaging the immune checkpoint HLA-E:CD94-NKG2A. Interruption of the suppressive signaling prevents tumor metastasis in vivo by immune elimination of CTCs.
Collapse
Affiliation(s)
- Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Jinen Song
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Hao Zhang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinyu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Fengli Zuo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Yunuo Zhao
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yujie Zhao
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xiaomeng Yin
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinyu Guo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xi Wu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Hu Zhang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Jie Xu
- Institutes of Biological Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Jianping Hu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Jing Jing
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hubing Shi
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China.
| |
Collapse
|
6
|
Pathology of Combined Hepatocellular Carcinoma-Cholangiocarcinoma: An Update. Cancers (Basel) 2023; 15:cancers15020494. [PMID: 36672443 PMCID: PMC9856551 DOI: 10.3390/cancers15020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) is a rare primary liver cancer that is composed of both hepatocellular and cholangiocellular differentiated cells. It is slightly more common in men and among Asian and Pacific islanders. Overall, risk factors are similar to classic risk factors of hepatocellular carcinoma (HCC). The classification has significantly evolved over time. The last WHO classification (2019) mainly emphasized diagnosis on morphological basis with routine stainings, discarded previously recognized classifications with carcinomas with stem cell features, introduced intermediate cell carcinoma as a specific subtype and considered cholangiolocarcinoma as a subtype of cholangiocellular carcinoma. Immunohistochemical markers may be applied for further specification but have limited value for diagnosis. Recent discoveries in molecular pathway regulation may pioneer new therapeutic approaches for this poor prognostic and challenging diagnosis.
Collapse
|
7
|
Payne K, Brooks J, Batis N, Taylor G, Nankivell P, Mehanna H. Characterizing the epithelial-mesenchymal transition status of circulating tumor cells in head and neck squamous cell carcinoma. Head Neck 2022; 44:2545-2554. [PMID: 35932094 PMCID: PMC9804280 DOI: 10.1002/hed.27167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs), in particular those undergoing an epithelial-mesenchymal transition (EMT), are a promising source of biomarkers in head and neck squamous cell carcinoma (HNSCC). Our aim was to validate a protocol using microfluidic enrichment (Parsortix platform) with flow-cytometry CTC characterization. METHOD Blood samples from 20 treatment naïve HNSCC patients underwent Parsortix enrichment and flow cytometry analysis to quantify CTCs and identify epithelial or EMT subgroups-correlated to clinical outcomes and EMT gene-expression in tumor tissue. RESULTS CTCs were detected in 65% of patients (mean count 4 CTCs/ml). CTCs correlated with advanced disease (p = 0.0121), but not T or N classification. Epithelial or EMT CTCs did not correlate with progression-free or overall survival. Tumor mesenchymal gene-expression did not correlate with CTC EMT expression (p = 0.347). DISCUSSION Microfluidic enrichment and flow cytometry successfully characterizes EMT CTCs in HNSCC. The lack of association between tumor and CTC EMT profile suggests CTCs may undergo an adaptive EMT in response to stimuli within the circulation.
Collapse
Affiliation(s)
- Karl Payne
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Jill Brooks
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Graham Taylor
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
8
|
Chen VL, Huang Q, Harouaka R, Du Y, Lok AS, Parikh ND, Garmire LX, Wicha MS. A Dual-Filtration System for Single-Cell Sequencing of Circulating Tumor Cells and Clusters in HCC. Hepatol Commun 2022; 6:1482-1491. [PMID: 35068084 PMCID: PMC9134808 DOI: 10.1002/hep4.1900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide. Identification and sequencing of circulating tumor (CT) cells and clusters may allow for noninvasive molecular characterization of HCC, which is an unmet need, as many patients with HCC do not undergo biopsy. We evaluated CT cells and clusters, collected using a dual-filtration system in patients with HCC. We collected and filtered whole blood from patients with HCC and selected individual CT cells and clusters with a micropipette. Reverse transcription, polymerase chain reaction, and library preparation were performed using a SmartSeq2 protocol, followed by single-cell RNA sequencing (scRNAseq) on an Illumina MiSeq V3 platform. Of the 8 patients recruited, 6 had identifiable CT cells or clusters. Median age was 64 years old; 7 of 8 were male; and 7 of 8 had and Barcelona Clinic Liver Cancer stage C. We performed scRNAseq of 38 CT cells and 33 clusters from these patients. These CT cells and clusters formed two distinct groups. Group 1 had significantly higher expression than group 2 of markers associated with epithelial phenotypes (CDH1 [Cadherin 1], EPCAM [epithelial cell adhesion molecule], ASGR2 [asialoglycoprotein receptor 2], and KRT8 [Keratin 8]), epithelial-mesenchymal transition (VIM [Vimentin]), and stemness (PROM1 [CD133], POU5F1 [POU domain, class 5, transcription factor 1], NOTCH1, STAT3 [signal transducer and activator of transcription 3]) (P < 0.05 for all). Patients with identifiable group 1 cells or clusters had poorer prognosis than those without them (median overall survival 39 vs. 384 days; P = 0.048 by log-rank test). Conclusion: A simple dual-filtration system allows for isolation and sequencing of CT cells and clusters in HCC and may identify cells expressing candidate genes known to be involved in cancer biology. Presence of CT cells/clusters expressing candidate genes is associated with poorer prognosis in advanced-stage HCC.
Collapse
Affiliation(s)
- Vincent L. Chen
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMIUSA
| | - Qianhui Huang
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMIUSA
| | - Ramdane Harouaka
- Division of Hematology and OncologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMIUSA
| | - Yuheng Du
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMIUSA
| | - Anna S. Lok
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMIUSA
| | - Neehar D. Parikh
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMIUSA
| | - Lana X. Garmire
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMIUSA
| | - Max S. Wicha
- Division of Hematology and OncologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
9
|
Grinspan LT, Villanueva A. Biomarker Development Using Liquid Biopsy in Hepatocellular Carcinoma. Semin Liver Dis 2022; 42:188-201. [PMID: 35738257 DOI: 10.1055/s-0042-1748924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liver cancer incidence rate continues to increase and currently ranks third in the total number of annual deaths, behind only lung and colorectal cancer. Most patients with hepatocellular carcinoma (HCC) are diagnosed at advanced stages, and they live for less than 2 years after diagnosis on average. This contrasts with those diagnosed at an early stage, who can be cured with surgery. However, even after curative resection, there remains a risk of up to 70% of postoperative HCC recurrence. There have been major changes in the management of HCC in the past 5 years, particularly for patients at advanced stages. Despite this multitude of new therapies, there is a lack of clear biomarkers to guide providers on the best approach to sequence therapies, which would maximize efficacy while minimizing toxicity. There are several areas in clinical management of HCC that are particularly challenging, and would benefit from development and implementation of new biomarkers to improve patient overall survival. Here, we review the major advances in liquid biopsy biomarkers for early detection of HCC, minimum residual disease, and predicting response to treatment.
Collapse
Affiliation(s)
- Lauren Tal Grinspan
- Division of Liver Diseases, Recanati/Miller Transplantation Institute, The Mount Sinai Hospital, New York, New York
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
10
|
Pelizzaro F, Cardin R, Penzo B, Pinto E, Vitale A, Cillo U, Russo FP, Farinati F. Liquid Biopsy in Hepatocellular Carcinoma: Where Are We Now? Cancers (Basel) 2021; 13:2274. [PMID: 34068786 PMCID: PMC8126224 DOI: 10.3390/cancers13092274] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related death worldwide. Diagnostic, prognostic, and predictive biomarkers are urgently needed in order to improve patient survival. Indeed, the most widely used biomarkers, such as alpha-fetoprotein (AFP), have limited accuracy as both diagnostic and prognostic tests. Liver biopsy provides an insight on the biology of the tumor, but it is an invasive procedure, not routinely used, and not representative of the whole neoplasia due to the demonstrated intra-tumoral heterogeneity. In recent years, liquid biopsy, defined as the molecular analysis of cancer by-products, released by the tumor in the bloodstream, emerged as an appealing source of new biomarkers. Several studies focused on evaluating extracellular vesicles, circulating tumor cells, cell-free DNA and non-coding RNA as novel reliable biomarkers. In this review, we aimed to provide a comprehensive overview on the most relevant available evidence on novel circulating biomarkers for early diagnosis, prognostic stratification, and therapeutic monitoring. Liquid biopsy seems to be a very promising instrument and, in the near future, some of these new non-invasive tools will probably change the clinical management of HCC patients.
Collapse
Affiliation(s)
- Filippo Pelizzaro
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Romilda Cardin
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Barbara Penzo
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Elisa Pinto
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Alessandro Vitale
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (A.V.); (U.C.)
| | - Umberto Cillo
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (A.V.); (U.C.)
| | - Francesco Paolo Russo
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Fabio Farinati
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| |
Collapse
|
11
|
Ploss A, Strick-Marchand H, Li W. Animal Models for Hepatitis B: Does the Supply Meet the Demand? Gastroenterology 2021; 160:1437-1442. [PMID: 33352166 PMCID: PMC8035324 DOI: 10.1053/j.gastro.2020.11.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey.
| | - Hélène Strick-Marchand
- Innate Immunity Unit and, Institut National de la Santé et de la Recherche Médicale U1223, Institut Pasteur, Paris, France
| | - Wenhui Li
- National Institute of Biological Sciences and, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Rodríguez J, Avila J, Rolfo C, Ruíz-Patiño A, Russo A, Ricaurte L, Ordóñez-Reyes C, Arrieta O, Zatarain-Barrón ZL, Recondo G, Cardona AF. When Tissue is an Issue the Liquid Biopsy is Nonissue: A Review. Oncol Ther 2021; 9:89-110. [PMID: 33689160 PMCID: PMC8140006 DOI: 10.1007/s40487-021-00144-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Precision medicine has impacted the field of medical oncology by introducing personalized therapies, improving all measurable outcomes. This field, in turn, has expanded to obtaining and analyzing a vast and ever-increasing amount of genomic information. One technique currently applied is the liquid biopsy, which consists of detecting and isolating DNA and exosomes in cancer patients. Newly developed techniques have made it possible to use the liquid biopsy in a wide range of settings. However, challenges regarding the validation of its clinical utility exist because of a lack of standardization across different techniques and tumor types, confounder genomic information, lack of appropriate clinical trial designs, and a non-measured, and therefore not estimated, economic impact on population health. Nowadays, liquid biopsy is not routinely used, but ongoing research is increasing its popularity, and a new era in oncology is developing. Therefore, it is essential to have an in-depth understanding of the liquid biopsy technique. In this review, we summarize the leading techniques and liquid biopsy applications in cancer.
Collapse
Affiliation(s)
- July Rodríguez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia
| | - Jenny Avila
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alejandro Ruíz-Patiño
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia
| | - Alessandro Russo
- Medical Oncology Unit A.O. Papardo and Department of Human Pathology, University of Messina, Messina, Italy
| | - Luisa Ricaurte
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Pathology Department, Mayo Clinic, Rochester, MN, USA
| | | | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | - Gonzalo Recondo
- Thoracic Oncology Section, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | - Andrés F Cardona
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia.
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia.
- Clinical and Traslational Oncology Group, Clinica del Country, Bogota, Colombia.
| |
Collapse
|
13
|
Wang PX, Xu Y, Sun YF, Cheng JW, Zhou KQ, Wu SY, Hu B, Zhang ZF, Guo W, Cao Y, Huang XW, Zhou J, Fan J, Yang XR. Detection of circulating tumour cells enables early recurrence prediction in hepatocellular carcinoma patients undergoing liver transplantation. Liver Int 2021; 41:562-573. [PMID: 33205544 DOI: 10.1111/liv.14734] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Liver transplantation (LTx) is one of the most effective treatments for hepatocellular carcinoma (HCC); however, tumour recurrence after LTx often leads to poor outcomes. This study investigated the value of circulating tumour cells (CTCs) as a predictor of recurrence following LTx in patients with HCC. METHODS This analysis included 193 patients with HCC who underwent LTx at our institute and accepted pre- and post-operative CTC detection; 38 were selected for serial CTC monitoring. The predictive value of CTCs for tumour recurrence in patients with HCC following LTx was evaluated. Single-cell whole genome sequencing was used to characterize CTCs. RESULTS Overall, the CTC burden decreased after LTx (P < .05). Post-operative CTC count ≥ 1 per 5 mL peripheral blood was identified as a potential biomarker for predicting tumour recurrence after LTx, especially in patients with no detectable CTCs prior to LTx and negative tumour serological biomarkers. The predictive value of post-operative CTC count ≥ 1 per 5 mL blood was retained in patients who did not meet the Milan criteria, University of California San Francisco (UCSF) criteria, or Fudan criteria (all P < .05). Furthermore, post-operative serial CTC detection may be useful in post-surgical surveillance for HCC recurrence. CONCLUSIONS CTCs may be a useful biomarker to evaluate recurrence risk following LTx in patients with HCC. Evaluation based on CTC detection may enhance the post-transplant management of HCC, and improve the therapeutic efficacy of LTx.
Collapse
Affiliation(s)
- Peng-Xiang Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Yang Xu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Yun-Fan Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jian-Wen Cheng
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Kai-Qian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Sui-Yi Wu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Bo Hu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Ze-Fan Zhang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Ya Cao
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Central South University, Changsha, P. R. China
| | - Xiao-Wu Huang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
14
|
Zhao L, Wu X, Li T, Luo J, Dong D. ctcRbase: the gene expression database of circulating tumor cells and microemboli. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5819651. [PMID: 32294193 DOI: 10.1093/database/baaa020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/04/2023]
Abstract
Circulating tumor cells/microemboli (CTCs/CTMs) are malignant cells that depart from cancerous lesions and shed into the bloodstream. Analysis of CTCs can allow the investigation of tumor cell biomarker expression from a non-invasive liquid biopsy. To date, high-throughput technologies have become a powerful tool to provide a genome-wide view of transcriptomic changes associated with CTCs/CTMs. These data provided us much information to understand the tumor heterogeneity, and the underlying molecular mechanism of tumor metastases. Unfortunately, these data have been deposited into various repositories, and a uniform resource for the cancer metastasis is still unavailable. To this end, we integrated previously published transcriptome datasets of CTCs/CTMs and constructed a web-accessible database. The first release of ctcRbase contains 526 CTCs/CTM samples across seven cancer types. The expression of 14 631 mRNAs and 3642 long non-coding RNAs of CTCs/CTMs were included. Experimental validations from the published literature are also included. Since CTCs/CTMs are considered to be precursors of metastases, ctcRbase also collected the expression data of primary tumors and metastases, which allows user to discover a unique 'circulating tumor cell gene signature' that is distinct from primary tumor and metastases. An easy-to-use database was constructed to query and browse CTCs/CTMs genes. ctcRbase can be freely accessible at http://www.origin-gene.cn/database/ctcRbase/.
Collapse
Affiliation(s)
- Lei Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241 China
| | - Xiaohong Wu
- Department of General Surgery, the Affiliated Yixing Hospital of Jiangsu University, No. 75 Zhenguan Road, Yixing, Jiangsu 214200, China
| | - Tong Li
- Thyroid and breast surgery, the Fourth Hospital of Jinan City, No. 50 Shifan Road, Jinan, Shandong 250021, China
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241 China
| | - Dong Dong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241 China.,Cancer Institute, Xuzhou Medical University, No. 84 West huaihai Road, Xuzhou, Jiangsu 221006, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, No.315 West huaihai Road, Xuzhou, Jiangsu 221006, China
| |
Collapse
|
15
|
Llovet JM, Villanueva A, Marrero JA, Schwartz M, Meyer T, Galle PR, Lencioni R, Greten TF, Kudo M, Mandrekar SJ, Zhu AX, Finn RS, Roberts LR. Trial Design and Endpoints in Hepatocellular Carcinoma: AASLD Consensus Conference. Hepatology 2021; 73 Suppl 1:158-191. [PMID: 32430997 DOI: 10.1002/hep.31327] [Citation(s) in RCA: 236] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Josep M Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Institució Catalana d'Estudis Avançats (ICREA), Barcelona, Spain
| | - Augusto Villanueva
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Myron Schwartz
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tim Meyer
- Department Oncology, University College London Cancer Institute, London, UK
| | - Peter R Galle
- Department of Internal Medicine, Mainz University Medical Center, Mainz, Germany
| | - Riccardo Lencioni
- Department of Radiology, University of Pisa School of Medicine, Pisa, Italy.,Miami Cancer Institute, Miami, FL
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | | | - Andrew X Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA.,Jiahui International Cancer Center, Shanghai, China
| | | | - Lewis R Roberts
- Gastroenterology & Hepatology Department, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
16
|
Chen VL, Xu D, Wicha MS, Lok AS, Parikh ND. Utility of Liquid Biopsy Analysis in Detection of Hepatocellular Carcinoma, Determination of Prognosis, and Disease Monitoring: A Systematic Review. Clin Gastroenterol Hepatol 2020; 18:2879-2902.e9. [PMID: 32289533 PMCID: PMC7554087 DOI: 10.1016/j.cgh.2020.04.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Liquid biopsies, or blood samples, can be analyzed to detect circulating tumor cells (CTCs), cell-free DNA (cfDNA), and extracellular vesicles, which might identify patients with hepatocellular carcinoma (HCC) or help determine their prognoses. We performed a systematic review of studies of analyses of liquid biopsies from patients with HCC and their comparisons with other biomarkers. METHODS We performed a systematic review of original studies published before December 1, 2019. We included studies that compared liquid biopsies alone and in combination with other biomarkers for the detection of HCC, performed multivariate analyses of the accuracy of liquid biopsy analysis in determining patient prognoses, or evaluated the utility of liquid biopsy analysis in monitoring treatment response. RESULTS Our final analysis included 112 studies: 67 on detection, 46 on determining prognosis, and 25 on treatment monitoring or selection. Ten studies evaluated assays that characterized cfDNA for detection of HCC in combination with measurement of α-fetoprotein (AFP)-these studies found that the combined measurement of cfDNA and AFP more accurately identified patients with HCC than measurement of AFP alone. Six studies evaluated assays for extracellular vesicles and 2 studies evaluated assays for CTC in detection of HCC, with and without other biomarkers-most of these studies found that detection of CTCs or extracellular vesicles with AFP more accurately identified patients with HCC than measurement of AFP alone. Detection of CTCs before surgery was associated with HCC recurrence after resection in 13 of 14 studies; cfDNA and extracellular vesicles have been studied less frequently as prognostic factors. Changes in CTC numbers before vs after treatment more accurately identify patients with HCC recurrence than pretreatment counts alone, and measurements of cfDNA can identify patients with disease recurrence or progression before changes can be detected by imaging. We found little evidence that analyses of liquid biopsies can aid in the selection of treatment for HCC. Quality assessment showed risk of bias in studies of HCC detection and determination of prognosis. CONCLUSIONS In a systematic review of 112 studies of the accuracy of liquid biopsy analysis, we found that assays for CTCs and cfDNA might aid in determining patient prognoses and monitoring HCC, and assays for cfDNA might aid in HCC detection, but there is a risk of bias in these studies. Studies must be standardized before we can assess the clinical utility of liquid biopsy analysis in the detection and management of patients with HCC.
Collapse
Affiliation(s)
- Vincent L Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan.
| | - Dabo Xu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Max S Wicha
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| |
Collapse
|
17
|
Court CM, Hou S, Liu L, Winograd P, DiPardo BJ, Liu SX, Chen PJ, Zhu Y, Smalley M, Zhang R, Sadeghi S, Finn RS, Kaldas FM, Busuttil RW, Zhou XJ, Tseng HR, Tomlinson JS, Graeber TG, Agopian VG. Somatic copy number profiling from hepatocellular carcinoma circulating tumor cells. NPJ Precis Oncol 2020; 4:16. [PMID: 32637655 PMCID: PMC7331695 DOI: 10.1038/s41698-020-0123-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Somatic copy number alterations (SCNAs) are important genetic drivers of many cancers. We investigated the feasibility of obtaining SCNA profiles from circulating tumor cells (CTCs) as a molecular liquid biopsy for hepatocellular carcinoma (HCC). CTCs from ten HCC patients underwent SCNA profiling. The Cancer Genome Atlas (TCGA) SCNA data were used to develop a cancer origin classification model, which was then evaluated for classifying 44 CTCs from multiple cancer types. Sequencing of 18 CTC samples (median: 4 CTCs/sample) from 10 HCC patients using a low-resolution whole-genome sequencing strategy (median: 0.88 million reads/sample) revealed frequent SCNAs in previously reported HCC regions such as 8q amplifications and 17p deletions. SCNA profiling revealed that CTCs share a median of 80% concordance with the primary tumor. CTCs had SCNAs not seen in the primary tumor, some with prognostic implications. Using a SCNA profiling model, the tissue of origin was correctly identified for 32/44 (73%) CTCs from 12/16 (75%) patients with different cancer types.
Collapse
Affiliation(s)
- Colin M Court
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA USA.,Department of Surgery, Veteran's Health Administration, Greater Los Angeles, Los Angeles, CA USA.,Department of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA USA
| | - Shuang Hou
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA USA
| | - Lian Liu
- PacGenomics, llc, Los Angeles, CA USA
| | - Paul Winograd
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA USA.,Department of Surgery, Veteran's Health Administration, Greater Los Angeles, Los Angeles, CA USA
| | - Benjamin J DiPardo
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA USA.,Department of Surgery, Veteran's Health Administration, Greater Los Angeles, Los Angeles, CA USA
| | - Sean X Liu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA USA
| | - Pin-Jung Chen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA USA
| | - Yazhen Zhu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA USA
| | - Matthew Smalley
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA USA
| | - Ryan Zhang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA USA
| | - Saeed Sadeghi
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA USA
| | - Richard S Finn
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA USA
| | - Fady M Kaldas
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA USA
| | - Ronald W Busuttil
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA USA.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA USA
| | - Xianghong J Zhou
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA USA.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA USA
| | - James S Tomlinson
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA USA.,Department of Surgery, Veteran's Health Administration, Greater Los Angeles, Los Angeles, CA USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA USA
| | - Thomas G Graeber
- Department of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA USA.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA USA
| | - Vatche G Agopian
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA USA
| |
Collapse
|
18
|
Zhang Q, Xu K, Chen M, Miao Y, Wang N, Xu Z, Xu H. Circulating tumor cells in whole process management of gastrointestinal stromal tumor in a real-life setting. Saudi J Gastroenterol 2020; 26:160-167. [PMID: 32386192 PMCID: PMC7392290 DOI: 10.4103/sjg.sjg_24_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIM Liquid biopsy is changing the diagnosis and treatment strategies of various neoplasms. However, the circulating tumor cells (CTCs) of gastrointestinal stromal tumor (GIST) patients with different disease process are not clear. To better understand the dynamic change of CTCs in GIST patients, we conducted a real-life setting study. PATIENTS AND METHODS One-hundred fifty GIST patients were included. The isolation by size of tumor cell (ISET) method was employed to detect the CTCs/circulating tumor microemboli (CTM). Imatinib (IM) plasma concentration was detected by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Multivariate and univariate analysis were used to analyze the effects of clinical characteristics on the positive rate of CTC and the number of CTCs/CTM. RESULTS The positive rate of CTCs was 72%. The median number of CTCs and CTM was 4 and 0. Logistic multivariate regression analysis showed that tumor diameter was the only independent factor of the positive rate of CTCs (P < 0.05). The numbers of CTCs and CTM had intensive linear correlation (P < 0.001). Tumor diameter, Ki 67 expression and mitotic were related to the number of CTCs (P < 0.05). Patients with higher Ki 67 expression tend to have more CTM (P < 0.05). IM plasma concentration showed no influence to the CTCs/CTM (P > 0.05). CONCLUSIONS : In the current study, we assessed the CTCs and CTM of GIST patients in various disease progressions and identified clinicopathological factors influencing the detection of CTCs and CTM. These results are instructive for clinicians to understand CTCs/CTM in GIST patients.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Kangjing Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China
| | - Ming Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China
| | - Yongchang Miao
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nuofan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China,Address for correspondence: Dr. Hao Xu, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China. E-mail:
| |
Collapse
|
19
|
Alsohaibani F, Alquaiz M, Alkahtani K, Alashgar H, Peedikayil M, AlFadda A, Almadi M. Efficacy of a bismuth-based quadruple therapy regimen for Helicobacter pylori eradication in Saudi Arabia. Saudi J Gastroenterol 2020; 26:84-88. [PMID: 32295933 PMCID: PMC7279072 DOI: 10.4103/sjg.sjg_626_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIM The treatment efficacy of Helicobacter pylori (H. pylori) has been decreasing over time due to resistance to multiple antimicrobial therapies. The most effective treatment regimen for Saudi Arabian patients infected with H. pylori is still unknown. We aimed to study the eradication rate of 10 days of quadruple therapy; bismuth subcitrate potassium 140 mg, metronidazole 125 mg, and tetracycline 125 mg for H. pylori infection in a Saudi population. PATIENTS AND METHODS This was a prospective, open-label, non-randomized controlled trial. Patients with H. pylori infection were diagnosed by upper gastrointestinal (GI) endoscopy and rapid urease test (RUT) or histology. Patients who tested positive were recruited. Eligible patients were prescribed a 10-day course of quadruple therapy and received three capsules 4 times daily for 10 days along with omeprazole 20 mg twice daily. H. pylori was considered eradicated if the urea breath test (UBT) was negative after 6 weeks of completing the treatment. RESULTS Ninety-two patients with H. pylori infection were recruited. Three patients withdrew from the trial and another seven patients lost follow-up. We analyzed 82 patient's data as per-protocol analysis, of whom 66 (80%) were naive to H. pylori treatment. Four patients had failed previous treatment with the sequential regimen and 12 patients had treatment with clarithromycin-based triple therapy. The post-treatment UBT for H. pylori infection was negative by per-protocol analysis in 72/82 patients (87.8%), and 72/92 (78.3%) by intention-to-treat analysis. There was no correlation between previous treatment failure and treatment response to the bismuth-based quadruple therapy (P value = 0.28). CONCLUSIONS Treatment with a bismuth-based quadruple therapy was effective in eradicating H. pylori infection in 78.3% of Saudi patients with an ITT analysis and in 87.8% as per-protocol analysis.
Collapse
Affiliation(s)
- Fahad Alsohaibani
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia,Address for correspondence: Dr. Fahad Alsohaibani, Department of Medicine MBC # 46, King Faisal Specialist Hospital and Research Center, P.O Box 3354, Riyadh - 11211, Saudi Arabia. E-mail:
| | - Mohammed Alquaiz
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khalid Alkahtani
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alashgar
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Musthafa Peedikayil
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdulrahman AlFadda
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Majid Almadi
- Department of Medicine, Division of Gastroenterology, King Saud University Medical City, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Dietz MS, Beach CZ, Barajas R, Parappilly MS, Sengupta SK, Baird LC, Ciporen JN, Han SJ, Loret de Mola R, Cho YJ, Nazemi KJ, McClelland S, Wong MH, Jaboin JJ. Measure Twice: Promise of Liquid Biopsy in Pediatric High-Grade Gliomas. Adv Radiat Oncol 2020; 5:152-162. [PMID: 32280814 PMCID: PMC7136635 DOI: 10.1016/j.adro.2019.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/07/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose To review and critique the current state of liquid biopsy in pHGG. Materials and Methods Published literature was reviewed for articles related to liquid biopsy in pediatric glioma and adult glioma with a focus on high-grade gliomas. Results This review discusses the current state of liquid biomarkers of pHGG and their potential applications for liquid biopsy development. Conclusions While nascent, the progress toward identifying circulating analytes of pHGG primes the field of neuro-oncoogy for liquid biopsy development.
Collapse
Affiliation(s)
- Matthew S Dietz
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Catherine Z Beach
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon
| | - Ramon Barajas
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon.,Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
| | - Michael S Parappilly
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon
| | - Sidharth K Sengupta
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Lissa C Baird
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Jeremy N Ciporen
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Seunggu J Han
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | | | - Yoon Jae Cho
- Department of Neurology, Oregon Health & Science University, Portland, Oregon.,The Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Kellie J Nazemi
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Shearwood McClelland
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa H Wong
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon.,The Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Jerry J Jaboin
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon.,The Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
21
|
Cell release during perfusion reflects cold ischemic injury in rat livers. Sci Rep 2020; 10:1102. [PMID: 31980677 PMCID: PMC6981218 DOI: 10.1038/s41598-020-57589-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/28/2019] [Indexed: 12/13/2022] Open
Abstract
The global shortage of donor organs has made it crucial to deeply understand and better predict donor liver viability. However, biomarkers that effectively assess viability of marginal grafts for organ transplantation are currently lacking. Here, we showed that hepatocytes, sinusoidal endothelial, stellate, and liver-specific immune cells were released into perfusates from Lewis rat livers as a result of cold ischemia and machine perfusion. Perfusate comparison analysis of fresh livers and cold ischemic livers showed that the released cell profiles were significantly altered by the duration of cold ischemia. Our findings show for the first time that parenchymal cells are released from organs under non-proliferative pathological conditions, correlating with the degree of ischemic injury. Thus, perfusate cell profiles could serve as potential biomarkers of graft viability and indicators of specific injury mechanisms during organ handling and transplantation. Further, parenchymal cell release may have applications in other pathological conditions beyond organ transplantation.
Collapse
|
22
|
Underhill GH, Khetani SR. Emerging trends in modeling human liver disease in vitro. APL Bioeng 2019; 3:040902. [PMID: 31893256 PMCID: PMC6930139 DOI: 10.1063/1.5119090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
The liver executes 500+ functions, such as protein synthesis, xenobiotic metabolism, bile production, and metabolism of carbohydrates/fats/proteins. Such functions can be severely degraded by drug-induced liver injury, nonalcoholic fatty liver disease, hepatitis B and viral infections, and hepatocellular carcinoma. These liver diseases, which represent a significant global health burden, are the subject of novel drug discovery by the pharmaceutical industry via the use of in vitro models of the human liver, given significant species-specific differences in disease profiles and drug outcomes. Isolated primary human hepatocytes (PHHs) are a physiologically relevant cell source to construct such models; however, these cells display a rapid decline in the phenotypic function within conventional 2-dimensional monocultures. To address such a limitation, several engineered platforms have been developed such as high-throughput cellular microarrays, micropatterned cocultures, self-assembled spheroids, bioprinted tissues, and perfusion devices; many of these platforms are being used to coculture PHHs with liver nonparenchymal cells to model complex cell cross talk in liver pathophysiology. In this perspective, we focus on the utility of representative platforms for mimicking key features of liver dysfunction in the context of chronic liver diseases and liver cancer. We further discuss pending issues that will need to be addressed in this field moving forward. Collectively, these in vitro liver disease models are being increasingly applied toward the development of new therapeutics that display an optimal balance of safety and efficacy, with a focus on expediting development, reducing high costs, and preventing harm to patients.
Collapse
Affiliation(s)
- Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Salman R. Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
23
|
|
24
|
|
25
|
The Use of Non-Tumor-Related Liquid Biopsy in Respiratory Medicine. Arch Bronconeumol 2019; 55:555-556. [PMID: 31377108 DOI: 10.1016/j.arbres.2019.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/21/2022]
|
26
|
Roos FJM, IJzermans JNM, van der Laan LJW. Reply to "Detection and Analysis of Circulating Epithelial Cells in Liquid Biopsies from Patients with Liver Disease": Implications for Transplant Chimerism. Gastroenterology 2019; 156:1932-1933. [PMID: 30771353 DOI: 10.1053/j.gastro.2018.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/17/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Floris J M Roos
- Department of Surgery, Erasmus MC, Rotterdam, the Netherlands
| | | | | |
Collapse
|
27
|
Wang J, Dong R, Zheng S. Circulating Epithelial Cells in Patients With Liver Disease. Gastroenterology 2019; 156:1932. [PMID: 30771356 DOI: 10.1053/j.gastro.2018.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 12/02/2022]
Affiliation(s)
- Junfeng Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University and Shanghai Key Laboratory of Birth Defect, Shanghai, P.R. China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University and Shanghai Key Laboratory of Birth Defect, Shanghai, P.R. China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University and Shanghai Key Laboratory of Birth Defect, Shanghai, P.R. China
| |
Collapse
|
28
|
Bhan I, Aryee M, Ting DT. Reply. Gastroenterology 2019; 156:1933-1934. [PMID: 30928436 DOI: 10.1053/j.gastro.2019.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Irun Bhan
- MGH Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Martin Aryee
- MGH Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - David T Ting
- MGH Cancer Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|