1
|
Neri B, Mancone R, Fiorillo M, Schiavone SC, De Cristofaro E, Migliozzi S, Biancone L. Comprehensive overview of novel chemical drugs for ulcerative colitis: focusing on phase 3 and beyond. Expert Opin Pharmacother 2024; 25:485-499. [PMID: 38591242 DOI: 10.1080/14656566.2024.2339926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Despite the growing number of highly efficacious biologics and chemical drugs for ulcerative colitis (UC), steroid-free disease control is still difficult to achieve in subgroups of patients due to refractoriness, adverse events, primary or secondary failure. New treatments are therefore still required in order to optimize clinical management of patients with UC. AREAS COVERED The efficacy and safety of both currently available and newly developed small molecules have been summarized. The PubMed database and clinicaltrials.gov were considered in order to search for phase 2b and 3 trials on new chemical drugs for UC. The study drugs reviewed included Janus kinases (JAK) and sphingosine-1-phosphate receptor (S1Pr) inhibitors, α4 integrin antagonist, and micro-RNA-124 upregulators. EXPERT OPINION Rapidity of onset, low immunogenicity, and safety are the main characteristics of small molecules currently available or under evaluation for treatment patients with UC. Among the currently available chemical drugs, the selective JAK and the S1Pr inhibitors are characterized by a good safety profile combined with the ability to induce clinical remission in UC. A relatively low frequency of endoscopic improvement and healing currently appears associated with their use, being higher in UC patients treated with S1Pr inhibitor Etrasimod. Overall, additional new safe and effective drugs are still required in order to optimize disease control in a larger majority of UC patients.
Collapse
Affiliation(s)
- Benedetto Neri
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Roberto Mancone
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Mariasofia Fiorillo
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Sara Concetta Schiavone
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Elena De Cristofaro
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Stefano Migliozzi
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Livia Biancone
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| |
Collapse
|
2
|
Chen Y, Liang R, Shi X, Shen R, Liu L, Liu Y, Xue Y, Guo X, Dang J, Zeng D, Huang F, Sun J, Zhang J, Wang J, Olsen N, August A, Huang W, Pan Y, Zheng SG. Targeting kinase ITK treats autoimmune arthritis via orchestrating T cell differentiation and function. Biomed Pharmacother 2023; 169:115886. [PMID: 37992572 DOI: 10.1016/j.biopha.2023.115886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
IL-2 inducible T cell kinase (ITK) is critical in T helper subset differentiation and its inhibition has been suggested for the treatment of T cell-mediated inflammatory diseases. T follicular helper (Tfh), Th17 and regulatory T cells (Treg) also play important roles in the development of rheumatoid arthritis (RA), while the role of ITK in the development of RA and the intricate balance between effector T and regulatory T cells remains unclear. Here, we found that CD4+ T cells from RA patients presented with an elevated ITK activation. ITK inhibitor alleviated existing collagen-induced arthritis (CIA) and reduced antigen specific antibody production. Blocking ITK kinase activity interferes Tfh cell generation. Moreover, ITK inhibitor effectively rebalances Th17 and Treg cells by regulating Foxo1 translocation. Furthermore, we identified dihydroartemisinin (DHA) as a potential ITK inhibitor, which could inhibit PLC-γ1 phosphorylation and the progression of CIA by rebalancing Th17 and Treg cells. Out data imply that ITK activation is upregulated in RA patients, and therefore blocking ITK signal may provide an effective strategy to treat RA patients and highlight the role of ITK on the Tfh induction and RA progression.
Collapse
Affiliation(s)
- Ye Chen
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China; Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Rongzhen Liang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Xiaoyi Shi
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Rong Shen
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Liu Liu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, PR China
| | - Yan Liu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Youqiu Xue
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Xinghua Guo
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Junlong Dang
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Donglan Zeng
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Feng Huang
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Jianbo Sun
- The first Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
| | - Jingwen Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Julie Wang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine at the Penn State University Hershey Medical Center, Hershey, PA, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Yunfeng Pan
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| |
Collapse
|
3
|
Sandborn WJ, Danese S, Leszczyszyn J, Romatowski J, Altintas E, Peeva E, Hassan-Zahraee M, Vincent MS, Reddy PS, Banfield C, Salganik M, Banerjee A, Gale JD, Hung KE. Oral Ritlecitinib and Brepocitinib for Moderate-to-Severe Ulcerative Colitis: Results From a Randomized, Phase 2b Study. Clin Gastroenterol Hepatol 2023; 21:2616-2628.e7. [PMID: 36623678 DOI: 10.1016/j.cgh.2022.12.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS The efficacy and safety of ritlecitinib (oral JAK3/TEC family kinase inhibitor) and brepocitinib (oral TYK2/JAK1 inhibitor) as induction therapy were assessed in patients with active, moderate-to-severe ulcerative colitis. METHODS This phase 2b, parallel-arm, double-blind umbrella study randomized patients with moderate-to-severe ulcerative colitis to receive 8-week induction therapy with ritlecitinib (20, 70, 200 mg), brepocitinib (10, 30, 60 mg), or placebo once daily. The primary endpoint was total Mayo Score (TMS) at week 8. RESULTS Of 319 randomized patients, 317 received ritlecitinib (n = 150), brepocitinib (n = 142), or placebo (n = 25). The placebo-adjusted mean TMSs (90% confidence interval) at week 8 were -2.0 (-3.2 to -0.9), -3.9 (-5.0 to -2.7), and -4.6 (-5.8 to -3.5) for ritlecitinib 20, 70, and 200 mg, respectively (P = .003, P < .001, P < .001), and -1.8 (-2.9 to -0.7), -2.3 (-3.4 to -1.1), and -3.2 (-4.3 to -2.1) for brepocitinib 10, 30, and 60 mg, respectively (P = .009, P = .001, P < .001). Estimates (90% confidence interval) for placebo-adjusted proportions of patients with modified clinical remission at week 8 were 13.7% (0.5%-24.2%), 32.7% (20.2%-45.3%), and 36.0% (23.6%-48.6%) for ritlecitinib 20, 70, and 200 mg, respectively, and 14.6% (1.9%-25.7%), 25.5% (11.0%-38.1%), and 25.5% (11.0%-38.1%) for brepocitinib 10, 30, and 60 mg, respectively. Adverse events were mostly mild, and there were no serious cases of herpes zoster infection. Infections were observed with brepocitinib (16.9% [12.5%-23.7%]), ritlecitinib (8.7% [5.2%-13.4%]), and placebo (4.0% [0.2%-17.6%]). One death due to myocardial infarction (ritlecitinib) and 1 thromboembolic event (brepocitinib) occurred; both were considered unrelated to study drug. CONCLUSIONS Ritlecitinib and brepocitinib induction therapies were more effective than placebo for the treatment of moderate-to-severe active ulcerative colitis, with an acceptable short-term safety profile. CLINICALTRIALS gov number: NCT02958865.
Collapse
Affiliation(s)
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, Milan, Italy
| | | | - Jacek Romatowski
- Provincial Complex Hospital, Gastroenterology, Bialystok, Poland
| | | | - Elena Peeva
- Pfizer Global Research and Development, Cambridge, Massachusetts
| | | | | | | | | | - Mikhail Salganik
- Pfizer Inc, Early Clinical Development, Cambridge, Massachusetts
| | | | - Jeremy D Gale
- Pfizer Inc, Early Clinical Development, Cambridge, Massachusetts
| | - Kenneth E Hung
- Pfizer Inc, Early Clinical Development, Cambridge, Massachusetts
| |
Collapse
|
4
|
Lindemann A, Roth D, Koop K, Neufert C, Zundler S, Atreya R, Neurath MF, Leppkes M. Protective effect of the novel calcineurin inhibitor voclosporin in experimental colitis. Front Med (Lausanne) 2023; 10:1177450. [PMID: 37358998 PMCID: PMC10289195 DOI: 10.3389/fmed.2023.1177450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Background and aims Acute severe steroid-refractory ulcerative colitis remains a medically challenging condition with frequent need of surgery. It can be treated with the calcineurin inhibitor cyclosporine A with the need for therapeutic drug monitoring and significant toxicity. Recently, a novel calcineurin inhibitor, voclosporin, has been approved for the treatment of lupus nephritis with no need for therapeutic drug monitoring and an improved long-term safety profile. However, the therapeutic effect of voclosporin in acute severe steroid-refractory ulcerative colitis is still uncertain. We aimed to assess the therapeutic potential of voclosporin to ameliorate inflammation in an experimental model of colitis. Methods We used the dextran sodium sulfate-induced model of colitis in C57BL/6 J wildtype mice treated with either cyclosporine A, voclosporin or solvent control. We employed endoscopy, histochemistry, immunofluorescence, bead-based multiplex immunoassays and flow cytometry to study the therapeutic effect of calcineurin inhibitors in a preventive setting. Results Acute colitis was induced by dextran sodium sulfate characterized by weight loss, diarrhea, mucosal erosions and rectal bleeding. Both cyclosporine A and voclosporin strongly ameliorated the course of disease and reduced colitis severity in a similar manner. Conclusion Voclosporin was identified as biologically effective in a preclinical model of colitis and may be a potential therapeutic option in treating acute severe steroid-refractory ulcerative colitis.
Collapse
Affiliation(s)
- Aylin Lindemann
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dominik Roth
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kristina Koop
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Moritz Leppkes
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
5
|
Wei D, Chen X, Xu J, He W. Identification of molecular subtypes of ischaemic stroke based on immune-related genes and weighted co-expression network analysis. IET Syst Biol 2023; 17:58-69. [PMID: 36802116 PMCID: PMC10116020 DOI: 10.1049/syb2.12059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/20/2023] Open
Abstract
Immune system has been reported to play a key role in the development of ischaemic stroke (IS). Nevertheless, its exact immune-related mechanism has not yet been fully revealed. Gene expression data of IS and healthy control samples was downloaded from Gene Expression Omnibus database and differentially expressed genes (DEGs) was obtained. Immune-related genes (IRGs) data was downloaded from the ImmPort database. The molecular subtypes of IS were identified based on IRGs and weighted co-expression network analysis (WGCNA). 827 DEGs and 1142 IRGs were obtained in IS. Based on 1142 IRGs, 128 IS samples were clustered into two molecular subtypes: clusterA and clusterB. Based on the WGCNA, the authors found that the blue module had the highest correlation with IS. In the blue module, 90 genes were screened as candidate genes. The top 55 genes were selected as the central nodes according to gene degree in protein-protein interactions network of all genes in blue module. Through taking overlap, nine real hub genes were obtained that might distinguish between clusterA subtype and clusterB subtype of IS. The real hub genes (IL7R, ITK, SOD1, CD3D, LEF1, FBL, MAF, DNMT1, and SLAMF1) may be associated with molecular subtypes and immune regulation of IS.
Collapse
Affiliation(s)
- Duncan Wei
- Department of PharmacyFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Xiaopu Chen
- Department of NeurologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Jing Xu
- Department of PharmacyFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Wenzhen He
- Department of NeurologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| |
Collapse
|
6
|
Li D, Liu L, Du X, Ma W, Zhang J, Piao W. MiRNA-374b-5p and miRNA-106a-5p are related to inflammatory bowel disease via regulating IL-10 and STAT3 signaling pathways. BMC Gastroenterol 2022; 22:492. [DOI: 10.1186/s12876-022-02533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is one of the most frequent gastrointestinal disorders worldwide. Although the actual etiology of IBD remains unclear, growing evidence suggests that CD4+ T cells-associated cytokines, including interferon (IFN)-γ, interleukin (IL)-10 and IL-17A, are crucial for the occurrence of IBD. It has been reported that there is a positive association between miRNAs and IBD development. In this study, we investigated the roles of hsa-miRNA-374b-5p(miRNA-374b-5p) and hsa-miRNA-106a-5p(miRNA-106a-5p) in regulating IBD development.
Methods
Serum was obtained from vein blood of IBD patients and healthy controls, qRT-PCR was performed to study the expression of miRNA-374b-5p and miRNA-106a-5p. Furthermore, we investigate the effects of overexpression or inhibition of miRNA-374b-5p on naïve CD4 + T cell subsets differentiation from vein blood of healthy controls by RT-qPCR, flow cytometry and western blot. And more the prediction and confirmation of the targeting genes of miRNA-374b-5p and miRNA-106a-5p were performed by bioinformatics softwares and dual-luciferase reporter assay.
Results
The results showed that miRNA-106a-5p and miRNA-374b-5p were significantly overexpressed in IBD patients. MiRNA-374b-5p could enhance Th1/Th17 cell differentiation and was related to IBD pathogenesis. MiRNA-374b-5p overexpression induced the mRNA expression of IL-17A and IFN-γ, and suppressed that of IL-10 in T cells. MiRNA-374b-5p inhibition decreased the mRNA expression of IL-17A and IFN-γ, while upregulated that of IL-10 in T cells. These qPCR data were further verified at protein level by western blotting and flow cytometry. In addition, dual-luciferase reporter (DLR) assay indicated that miRNA-374b-5p was directly targeted by IL-10, a key anti-inflammatory cytokine for preventing the occurrence of IBD. Meanwhile, STAT3 was identified as a target gene of miRNA-106a-5p by DLR assays. Further analysis revealed that miRNA-374b-5p regulated JAK1 and STAT3 pathways in CD4+ T cells via IL-10/STAT3 axis. MiRNA-374b-5p overexpression remarkably decreased the mRNA expression and phosphorylated (ser-727) protein levels of STAT3, while miRNA-374b-5p inhibition had the opposite effects.
Conclusion
MiRNA-374b-5p and miRNA-106a-5p may contribute to IBD development by regulating IL-10/STAT3 signal transduction.
Collapse
|
7
|
Xu M, Kong Y, Chen N, Peng W, Zi R, Jiang M, Zhu J, Wang Y, Yue J, Lv J, Zeng Y, Chin YE. Identification of Immune-Related Gene Signature and Prediction of CeRNA Network in Active Ulcerative Colitis. Front Immunol 2022; 13:855645. [PMID: 35392084 PMCID: PMC8980722 DOI: 10.3389/fimmu.2022.855645] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Background Ulcerative colitis (UC) is an inflammatory disease of the intestinal mucosa, and its incidence is steadily increasing worldwide. Intestinal immune dysfunction has been identified as a central event in UC pathogenesis. However, the underlying mechanisms that regulate dysfunctional immune cells and inflammatory phenotype remain to be fully elucidated. Methods Transcriptome profiling of intestinal mucosa biopsies were downloaded from the GEO database. Robust Rank Aggregation (RRA) analysis was performed to identify statistically changed genes and differentially expressed genes (DEGs). Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to explore potential biological mechanisms. CIBERSORT was used to evaluate the proportion of 22 immune cells in biopsies. Weighted co-expression network analysis (WGCNA) was used to determine key module-related clinical traits. Protein-Protein Interaction (PPI) network and Cytoscape were performed to explore protein interaction network and screen hub genes. We used a validation cohort and colitis mouse model to validate hub genes. Several online websites were used to predict competing endogenous RNA (ceRNA) network. Results RRA integrated analysis revealed 1838 statistically changed genes from four training cohorts (adj. p-value < 0.05). GSEA showed that statistically changed genes were enriched in the innate immune system. CIBERSORT analysis uncovered an increase in activated dendritic cells (DCs) and M1 macrophages. The red module of WGCNA was considered the most critical module related to active UC. Based on the results of the PPI network and Cytoscape analyses, we identified six critical genes and transcription factor NF-κB. RT-PCR revealed that andrographolide (AGP) significantly inhibited the expression of hub genes. Finally, we identified XIST and three miRNAs (miR-9-5p, miR-129-5p, and miR-340-5p) as therapeutic targets. Conclusions Our integrated analysis identified four hub genes (CXCL1, IL1B, MMP1, and MMP10) regulated by NF-κB. We further revealed that AGP decreased the expression of hub genes by inhibiting NF-κB activation. Lastly, we predicted the involvement of ceRNA network in the regulation of NF-κB expression. Collectively, our results provide valuable information in understanding the molecular mechanisms of active UC. Furthermore, we predict the use of AGP and small RNA combination for the treatment of UC.
Collapse
Affiliation(s)
- Mengmeng Xu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Kong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Nannan Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Wenlong Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ruidong Zi
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Manman Jiang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jinfeng Zhu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yuting Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jicheng Yue
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jinrong Lv
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yuanyuan Zeng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Y Eugene Chin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Zhang W, Wang W, Shen C, Wang X, Pu Z, Yin Q. Network pharmacology for systematic understanding of Schisandrin B reduces the epithelial cells injury of colitis through regulating pyroptosis by AMPK/Nrf2/NLRP3 inflammasome. Aging (Albany NY) 2021; 13:23193-23209. [PMID: 34628369 PMCID: PMC8544312 DOI: 10.18632/aging.203611] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease with increasing incidence and prevalence in many countries. The purpose of this study is to explore the function of Schisandrin B and its underlying molecular mechanisms in colitis. In this study, mice with colitis were induced by giving 2.0% dextran sulfate sodium (DSS, MP) in the drinking water for seven days. Furthermore, TCMSP server and GEO DataSets were used to analyze the mechanism of Schisandrin B in colitis. It was found that Schisandrin B presented colitis in mice model. At the same time, Schisandrin B not only reduced inflammation in vivo and vitro model of colitis, but also suppressed the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome in vivo and vitro model of colitis. In addition, Schisandrin B induced AMP-activated protein kinase (AMPK) / Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in model of colitis, and regulated AMPK protein at 316 sites. The inhibition of AMPK reduced the anti-inflammation effects of Schisandrin B on NLRP3 inflammasome. Apart from that, Schisandrin B decreased reactive oxygen species (ROS)-induced mitochondrial damage and reduced epithelial cells damage of colitis through regulating pyroptosis. Collectively, our novel findings for first time showed that, Schisandrin B suppressed NLRP3 inflammasome activation-mediated interleukin-1beta (IL-1β) level and pyroptosis in intestinal epithelial cells of colitis model through the activation of AMPK/Nrf2 dependent signaling-ROS-induced mitochondrial damage, which may be a significant therapeutic approach in the treatment of acute colitis.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Pharmacy, Second Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Wusan Wang
- Department of Pharmacology, Wannan Medical College, Wuhu 241001, Anhui, China
| | - Chaozhuang Shen
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Xiaohu Wang
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Zhichen Pu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Qin Yin
- Department of Pharmacy, Second Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.,Wannan Medical College, Wuhu 241001, Anhui, China
| |
Collapse
|