1
|
Wang R, Liu Q, You W, Chen Y. A multi-task deep learning model based on comprehensive feature integration and self-attention mechanism for predicting response to anti-PD1/PD-L1. Int Immunopharmacol 2024; 142:113099. [PMID: 39265355 DOI: 10.1016/j.intimp.2024.113099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) has been widely used in the treatment of advanced cancers, but predicting their efficacy remains challenging. Traditional biomarkers are numerous but exhibit heterogeneity within populations. For comprehensively utilizing the ICI-related biomarkers, we aim to conduct multidimensional feature selection and deep learning model construction. METHODS We used statistical and machine learning methods to map features of different levels to next-generation sequencing gene expression. We integrated genes from different sources into the feature input of a deep learning model, by means of self-attention mechanism. RESULTS We performed feature selection at the single-cell sequencing level, PD-L1 (CD274) analysis level, tumor mutational burden (TMB)/mismatch repair (MMR) level, and somatic copy number alteration (SCNA) level, obtaining 96 feature genes. Based on the pan-cancer dataset, we trained a multi-task deep learning model. We tested the model in the bladder urothelial carcinoma testing set 1 (AUC = 0.62, n = 298), bladder urothelial carcinoma testing set 2 (AUC = 0.66, n = 89), non-small cell lung cancer testing set (AUC = 0.85, n = 27), and skin cutaneous melanoma testing set (AUC = 0.71, n = 27). CONCLUSION Our study demonstrates the potential of the deep learning model for integrating multidimensional features in predicting the outcome of ICI. Our study also provides a potential methodological case for medical scenarios requiring the integration of multiple levels of features.
Collapse
Affiliation(s)
- Ren Wang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Huai'an, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiumei Liu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Huai'an, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wenhua You
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Huai'an, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yun Chen
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Huai'an, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Lu MY, Chuang WL, Yu ML. The role of artificial intelligence in the management of liver diseases. Kaohsiung J Med Sci 2024; 40:962-971. [PMID: 39440678 DOI: 10.1002/kjm2.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Universal neonatal hepatitis B virus (HBV) vaccination and the advent of direct-acting antivirals (DAA) against hepatitis C virus (HCV) have reshaped the epidemiology of chronic liver diseases. However, some aspects of the management of chronic liver diseases remain unresolved. Nucleotide analogs can achieve sustained HBV DNA suppression but rarely lead to a functional cure. Despite the high efficacy of DAAs, successful antiviral therapy does not eliminate the risk of hepatocellular carcinoma (HCC), highlighted the need for cost-effective identification of high-risk populations for HCC surveillance and tailored HCC treatment strategies for these populations. The accessibility of high-throughput genomic data has accelerated the development of precision medicine, and the emergence of artificial intelligence (AI) has led to a new era of precision medicine. AI can learn from complex, non-linear data and identify hidden patterns within real-world datasets. The combination of AI and multi-omics approaches can facilitate disease diagnosis, biomarker discovery, and the prediction of treatment efficacy and prognosis. AI algorithms have been implemented in various aspects, including non-invasive tests, predictive models, image diagnosis, and the interpretation of histopathology findings. AI can support clinicians in decision-making, alleviate clinical burdens, and curtail healthcare expenses. In this review, we introduce the fundamental concepts of machine learning and review the role of AI in the management of chronic liver diseases.
Collapse
Affiliation(s)
- Ming-Ying Lu
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Tu Y, Wu H, Zhong C, Liu Y, Xiong Z, Chen S, Wang J, Wong PPC, Yang W, Liang Z, Lu J, Chen S, Zhang L, Feng Y, Si-Tou WWY, Yin B, Lin Y, Liang J, Liang L, Vong JSL, Ren W, Kwong TT, Leung H, To KF, Ma S, Tong M, Sun H, Xia Q, Zhou J, Kerr D, La Thangue N, Sung JJY, Chan SL, Cheng ASL. Pharmacological activation of STAT1-GSDME pyroptotic circuitry reinforces epigenetic immunotherapy for hepatocellular carcinoma. Gut 2024:gutjnl-2024-332281. [PMID: 39486886 DOI: 10.1136/gutjnl-2024-332281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/02/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Genomic screening uncovered interferon-gamma (IFNγ) pathway defects in tumours refractory to immune checkpoint blockade (ICB). However, its non-mutational regulation and reversibility for therapeutic development remain less understood. OBJECTIVE We aimed to identify ICB resistance-associated druggable histone deacetylases (HDACs) and develop a readily translatable combination approach for patients with hepatocellular carcinoma (HCC). DESIGN We correlated the prognostic outcomes of HCC patients from a pembrolizumab trial (NCT03419481) with tumourous cell expressions of all HDAC isoforms by single-cell RNA sequencing. We investigated the therapeutic efficacy and mechanism of action of selective HDAC inhibition in 4 ICB-resistant orthotopic and spontaneous models using immune profiling, single-cell multiomics and chromatin immunoprecipitation-sequencing and verified by genetic modulations and co-culture systems. RESULTS HCC patients showing higher HDAC1/2/3 expressions exhibited deficient IFNγ signalling and poorer survival on ICB therapy. Transient treatment of a selective class-I HDAC inhibitor CXD101 resensitised HDAC1/2/3high tumours to ICB therapies, resulting in CD8+T cell-dependent antitumour and memory T cell responses. Mechanistically, CXD101 synergised with ICB to stimulate STAT1-driven antitumour immunity through enhanced chromatin accessibility and H3K27 hyperacetylation of IFNγ-responsive genes. Intratumoural recruitment of IFNγ+GZMB+cytotoxic lymphocytes further promoted cleavage of CXD101-induced Gasdermin E (GSDME) to trigger pyroptosis in a STAT1-dependent manner. Notably, deletion of GSDME mimicked STAT1 knockout in abolishing the antitumour efficacy and survival benefit of CXD101-ICB combination therapy by thwarting both pyroptotic and IFNγ responses. CONCLUSION Our immunoepigenetic strategy harnesses IFNγ-mediated network to augment the cancer-immunity cycle, revealing a self-reinforcing STAT1-GSDME pyroptotic circuitry as the mechanistic basis for an ongoing phase-II trial to tackle ICB resistance (NCT05873244).
Collapse
Affiliation(s)
- Yalin Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haoran Wu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chengpeng Zhong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yan Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhewen Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Siyun Chen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick Pak-Chun Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhixian Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiahuan Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shufen Chen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lingyun Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Willis Wai-Yiu Si-Tou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Baoyi Yin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yingnan Lin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianxin Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Liying Liang
- Department of Clinical Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Joaquim S L Vong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Weida Ren
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Tung Kwong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Howard Leung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man Tong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hanyong Sun
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - David Kerr
- Nuffield Division of Clinical and Laboratory Sciences, University of Oxford, Oxford, UK
| | - Nick La Thangue
- Department of Oncology, The University of Oxford, Oxford, UK
| | - Joseph J Y Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Ning J, Wang Y, Tao Z. The complex role of immune cells in antigen presentation and regulation of T-cell responses in hepatocellular carcinoma: progress, challenges, and future directions. Front Immunol 2024; 15:1483834. [PMID: 39502703 PMCID: PMC11534672 DOI: 10.3389/fimmu.2024.1483834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer that poses significant challenges regarding morbidity and mortality rates. In the context of HCC, immune cells play a vital role, especially concerning the presentation of antigens. This review explores the intricate interactions among immune cells within HCC, focusing on their functions in antigen presentation and the modulation of T-cell responses. We begin by summarizing the strategies that HCC uses to escape immune recognition, emphasizing the delicate equilibrium between immune surveillance and evasion. Next, we investigate the specific functions of various types of immune cells, including dendritic cells, natural killer (NK) cells, and CD8+ T cells, in the process of antigen presentation. We also examine the impact of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and the pathways involving programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1), on antigen presentation, while taking into account the clinical significance of checkpoint inhibitors. The review further emphasizes the importance of immune-based therapies, including cancer vaccines and CAR-T cell therapy, in improving antigen presentation. In conclusion, we encapsulate the latest advancements in research, propose future avenues for exploration, and stress the importance of innovative technologies and customized treatment strategies. By thoroughly analyzing the interactions of immune cells throughout the antigen presentation process in HCC, this review provides an up-to-date perspective on the field, setting the stage for new therapeutic approaches.
Collapse
Affiliation(s)
- Jianbo Ning
- The Fourth Clinical College, China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zijia Tao
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Salié H, Wischer L, D'Alessio A, Godbole I, Suo Y, Otto-Mora P, Beck J, Neumann O, Stenzinger A, Schirmacher P, Fulgenzi CAM, Blaumeiser A, Boerries M, Roehlen N, Schultheiß M, Hofmann M, Thimme R, Pinato DJ, Longerich T, Bengsch B. Spatial single-cell profiling and neighbourhood analysis reveal the determinants of immune architecture connected to checkpoint inhibitor therapy outcome in hepatocellular carcinoma. Gut 2024:gutjnl-2024-332837. [PMID: 39349005 DOI: 10.1136/gutjnl-2024-332837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/05/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND The determinants of the response to checkpoint immunotherapy in hepatocellular carcinoma (HCC) remain poorly understood. The organisation of the immune response in the tumour microenvironment (TME) is expected to govern immunotherapy outcomes but spatial immunotypes remain poorly defined. OBJECTIVE We hypothesised that the deconvolution of spatial immune network architectures could identify clinically relevant immunotypes in HCC. DESIGN We conducted highly multiplexed imaging mass cytometry on HCC tissues from 101 patients. We performed in-depth spatial single-cell analysis in a discovery and validation cohort to deconvolute the determinants of the heterogeneity of HCC immune architecture and develop a spatial immune classification that was tested for the prediction of immune checkpoint inhibitor (ICI) therapy. RESULTS Bioinformatic analysis identified 23 major immune, stroma, parenchymal and tumour cell types in the HCC TME. Unsupervised neighbourhood detection based on the spatial interaction of immune cells identified three immune architectures with differing involvement of immune cells and immune checkpoints dominated by either CD8 T-cells, myeloid immune cells or B- and CD4 T-cells. We used these to define three major spatial HCC immunotypes that reflect a higher level of intratumour immune cell organisation: depleted, compartmentalised and enriched. Progression-free survival under ICI therapy differed significantly between the spatial immune types with improved survival of enriched patients. In patients with intratumour heterogeneity, the presence of one enriched area governed long-term survival.
Collapse
Affiliation(s)
- Henrike Salié
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Lara Wischer
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Antonio D'Alessio
- Department of Surgery & Cancer, Imperial College London, London, UK
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Ira Godbole
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Yuan Suo
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Patricia Otto-Mora
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Juergen Beck
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Andreas Blaumeiser
- Institute of Medical Bioinformatics and Systems Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany, partner site Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany, partner site Freiburg, Freiburg, Germany
| | - Natascha Roehlen
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Michael Schultheiß
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - David J Pinato
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bertram Bengsch
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany, partner site Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| |
Collapse
|
6
|
Cowzer D, Chou JF, Walch H, Keane F, Khalil D, Shia J, Do RKG, Yarmohammadi H, Erinjeri JP, El Dika I, Yaqubie A, Azhari H, Gambarin M, Hajj C, Crane C, Wei AC, Jarnagin W, Solit DB, Berger MF, O'Reilly EM, Schultz N, Chatila W, Capanu M, Abou-Alfa GK, Harding JJ. Clinicogenomic predictors of outcomes in patients with hepatocellular carcinoma treated with immunotherapy. Oncologist 2024; 29:894-903. [PMID: 38937977 PMCID: PMC11448888 DOI: 10.1093/oncolo/oyae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibitor (ICI) combinations extend overall survival (OS) while anti-PD-1/L1 monotherapy is non-inferior to sorafenib in treatment-naïve, patients with advanced hepatocellular carcinoma (HCC). Clinicogenomic features are posited to influence patient outcomes. METHODS The primary objective of this retrospective study was to define the clinical, pathologic, and genomic factors associated with outcomes to ICI therapy in patients with HCC. Patients with histologically confirmed advanced HCC treated with ICI at Memorial Sloan Kettering Cancer Center from 2012 to 2022 were included. Association between clinical, pathological, and genomic characteristics were assessed with univariable and multivariable Cox regression model for progression-free survival (PFS) and OS. RESULTS Two-hundred and forty-two patients were treated with ICI-based therapy. Patients were predominantly male (82%) with virally mediated HCC (53%) and Child Pugh A score (70%). Median follow-up was 28 months (0.5-78.4). Median PFS for those treated in 1st line, 2nd line and ≥ 3rd line was 4.9 (range: 2.9-6.2), 3.1 (2.3-4.0), and 2.5 (2.1-4.0) months, respectively. Median OS for those treated in 1st line, 2nd line, and ≥ 3rd line was 16 (11-22), 7.5 (6.4-11), and 6.4 (4.6-26) months, respectively. Poor liver function and performance status associated with worse PFS and OS, while viral hepatitis C was associated with favorable outcome. Genetic alterations were not associated with outcomes. CONCLUSION Clinicopathologic factors were the major determinates of outcomes for patients with advanced HCC treated with ICI. Molecular profiling did not aid in stratification of ICI outcomes. Future studies should explore alternative biomarkers such as the level of immune activation or the pretreatment composition of the immune tumor microenvironment.
Collapse
Affiliation(s)
- Darren Cowzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Joanne F Chou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Henry Walch
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Danny Khalil
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Jinru Shia
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Richard K G Do
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hooman Yarmohammadi
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Joseph P Erinjeri
- Weill Medical College of Cornell University, New York, NY, United States
| | - Imane El Dika
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Amin Yaqubie
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hassan Azhari
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Maya Gambarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Carla Hajj
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Christopher Crane
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alice C Wei
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, NY, United States
| | - William Jarnagin
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, NY, United States
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Michael F Berger
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Nikolaus Schultz
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Walid Chatila
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - James J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| |
Collapse
|
7
|
Childs A, Aidoo-Micah G, Maini MK, Meyer T. Immunotherapy for hepatocellular carcinoma. JHEP Rep 2024; 6:101130. [PMID: 39308986 PMCID: PMC11414669 DOI: 10.1016/j.jhepr.2024.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 09/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global healthcare challenge, with >1 million patients predicted to be affected annually by 2025. In contrast to other cancers, both incidence and mortality rates continue to rise, and HCC is now the third leading cause of cancer-related death worldwide. Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for advanced HCC, with trials demonstrating a superior overall survival benefit compared to sorafenib in the first-line setting. Combination therapy with either atezolizumab (anti-PD-L1) and bevacizumab (anti-VEGF) or durvalumab (anti-PD-L1) and tremelimumab (anti-CTLA-4) is now recognised as standard of care for advanced HCC. More recently, two phase III studies of ICI-based combination therapy in the early and intermediate disease settings have successfully met their primary end points of improved recurrence- and progression-free survival, respectively. Despite these advances, and in contrast to other tumour types, there remain no validated predictive biomarkers of response to ICIs in HCC. Ongoing research efforts are focused on further characterising the tumour microenvironment in order to select patients most likely to benefit from ICI and identify novel therapeutic targets. Herein, we review the current understanding of the immune landscape in which HCC develops and the evidence for ICI-based therapeutic strategies in HCC. Additionally, we describe the state of biomarker development and novel immunotherapy approaches in HCC which have progressed beyond the pre-clinical stage and into early-phase trials.
Collapse
Affiliation(s)
- Alexa Childs
- Department of Medical Oncology, Royal Free Hospital, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Gloryanne Aidoo-Micah
- Department of Medical Oncology, Royal Free Hospital, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Tim Meyer
- Department of Medical Oncology, Royal Free Hospital, London, UK
- UCL Cancer Institute, University College London, UK
| |
Collapse
|
8
|
Taherifard E, Tran K, Saeed A, Yasin JA, Saeed A. Biomarkers for Immunotherapy Efficacy in Advanced Hepatocellular Carcinoma: A Comprehensive Review. Diagnostics (Basel) 2024; 14:2054. [PMID: 39335733 PMCID: PMC11431712 DOI: 10.3390/diagnostics14182054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver malignancy and the sixth most common cancer globally, remains fatal for many patients with inappropriate responses to treatment. Recent advancements in immunotherapy have transformed the treatment landscape for advanced HCC. However, variability in patient responses to immunotherapy highlights the need for biomarkers that can predict treatment outcomes. This manuscript comprehensively reviews the evolving role of biomarkers in immunotherapy efficacy, spanning from blood-derived indicators-alpha-fetoprotein, inflammatory markers, cytokines, circulating tumor cells, and their DNA-to tissue-derived indicators-programmed cell death ligand 1 expression, tumor mutational burden, microsatellite instability, and tumor-infiltrating lymphocytes. The current body of evidence suggests that these biomarkers hold promise for improving patient selection and predicting immunotherapy outcomes. Each biomarker offers unique insights into disease biology and the immune landscape of HCC, potentially enhancing the precision of treatment strategies. However, challenges such as methodological variability, high costs, inconsistent findings, and the need for large-scale validation in well-powered two-arm trial studies persist, making them currently unsuitable for integration into standard care. Addressing these challenges through standardized techniques and implementation of further studies will be critical for the future incorporation of these biomarkers into clinical practice for advanced HCC.
Collapse
Affiliation(s)
- Erfan Taherifard
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Krystal Tran
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Ali Saeed
- Department of Medicine, Ochsner Lafayette General Medical Center, Lafayette, LA 70503, USA
| | - Jehad Amer Yasin
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
9
|
Zhou MT, Zhang P, Mao Q, Wei XQ, Yang L, Zhang XM. Current research status of transarterial therapies for hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:3752-3760. [PMID: 39350995 PMCID: PMC11438772 DOI: 10.4251/wjgo.v16.i9.3752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 09/09/2024] Open
Abstract
With continuous advancements in interventional radiology, considerable progress has been made in transarterial therapies for hepatocellular carcinoma (HCC) in recent years, and an increasing number of research papers on transarterial therapies for HCC have been published. In this editorial, we comment on the article by Ma et al published in the recent issue of the World Journal of Gastro intestinal Oncology: "Efficacy and predictive factors of transarterial chemoembolization combined with lenvatinib plus programmed cell death protein-1 inhibition for unresectable HCC". We focus specifically on the current research status and future directions of transarterial therapies. In the future, more studies are needed to determine the optimal transarterial local treatment for HCC. With the emergence of checkpoint immunotherapy modalities, it is expected that the results of trials of transarterial local therapy combined with systemic therapy will bring new hope to HCC patients.
Collapse
Affiliation(s)
- Mao-Ting Zhou
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Peng Zhang
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Qi Mao
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Qin Wei
- School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
10
|
Dantzer C, Dif L, Vaché J, Basbous S, Billottet C, Moreau V. Specific features of ß-catenin-mutated hepatocellular carcinomas. Br J Cancer 2024:10.1038/s41416-024-02849-7. [PMID: 39261716 DOI: 10.1038/s41416-024-02849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
CTNNB1, encoding the ß-catenin protein, is a key oncogene contributing to liver carcinogenesis. Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer in adult, representing the third leading cause of cancer-related death. Aberrant activation of the Wnt/ß-catenin pathway, mainly due to mutations of the CTNNB1 gene, is observed in a significant subset of HCC. In this review, we first resume the major recent advances in HCC classification with a focus on CTNNB1-mutated HCC subclass. We present the regulatory mechanisms involved in β-catenin stabilisation, transcriptional activity and binding to partner proteins. We then describe specific phenotypic characteristics of CTNNB1-mutated HCC thanks to their unique gene expression patterns. CTNNB1-mutated HCC constitute a full-fledged subclass of HCC with distinct pathological features such as well-differentiated cells with low proliferation rate, association to cholestasis, metabolic alterations, immune exclusion and invasion. Finally, we discuss therapeutic approaches to target ß-catenin-mutated liver tumours and innovative perspectives for future drug developments.
Collapse
Affiliation(s)
| | - Lydia Dif
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Justine Vaché
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Sara Basbous
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | | | | |
Collapse
|
11
|
Testa U. Recent developments in molecular targeted therapies for hepatocellular carcinoma in the genomic era. Expert Rev Mol Diagn 2024; 24:803-827. [PMID: 39194003 DOI: 10.1080/14737159.2024.2392278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Primary liver cancer is a major health problem being the sixth most frequent cancer in the world and the third cause of cancer-related death in the world. The most common histological type of liver cancer is hepatocellular carcinoma (HCC, 75-80%). AREAS COVERED Based on primary literature, this review provides an updated analysis of studies of genetic characterization of HCC at the level of gene mutation profiling, copy number alterations, and gene expression, with the definition of molecular subgroups and the identification of some molecular biomarkers and therapeutic targets. Recent therapeutic developments are also highlighted. EXPERT OPINION Deepening the understanding of the molecular complexity of HCC is progressively paving the way for the development of more personalized treatment approaches. Two important strategies involve the definition and validation of molecularly defined therapeutic targets in a subset of HCC patients and the identification of suitable biomarkers for approved systematic therapies (multikinase inhibitors and immunotherapies). The extensive molecular characterization of patients at the genomic and transcriptomic levels and the inclusion of detailed and relevant translational studies in clinical trials will represent a fundamental tool for improving the benefit of systemic therapies in HCC.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
12
|
Chen K, Shuen TWH, Chow PKH. The association between tumour heterogeneity and immune evasion mechanisms in hepatocellular carcinoma and its clinical implications. Br J Cancer 2024; 131:420-429. [PMID: 38760445 PMCID: PMC11300599 DOI: 10.1038/s41416-024-02684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. The emergence of combination therapy, atezolizumab (anti-PDL1, immune checkpoint inhibitor) and bevacizumab (anti-VEGF) has revolutionised the management of HCC. Despite this breakthrough, the best overall response rate with first-line systemic therapy is only about 30%, owing to intra-tumoural heterogeneity, complex tumour microenvironment and the lack of predictive biomarkers. Many groups have attempted to classify HCC based on the immune microenvironment and have consistently observed better outcomes in immunologically "hot" HCC. We summarised possible mechanisms of tumour immune evasion based on the latest literature and the rationale for combination/sequential therapy to improve treatment response. Lastly, we proposed future strategies and therapies to overcome HCC immune evasion to further improve treatment outcomes of HCC.
Collapse
Affiliation(s)
- Kaina Chen
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Timothy W H Shuen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Pierce K H Chow
- Duke-NUS Medical School, Singapore, Singapore.
- Department of Hepato-pancreato-biliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore, Singapore.
- Program in Translational and Clinical Liver Cancer Research, National Cancer Centre Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Jayakrishnan T, Yadav D, Huffman BM, Cleary JM. Immunological Checkpoint Blockade in Anal Squamous Cell Carcinoma: Dramatic Responses Tempered By Frequent Resistance. Curr Oncol Rep 2024; 26:967-976. [PMID: 38861124 DOI: 10.1007/s11912-024-01564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
PURPOSE OF REVIEW Squamous cell carcinoma of the anus (SCCA) is an HPV-associated malignancy that has limited treatment options. Immunotherapy has expanded these options and here we review current and emerging immunotherapeutic approaches. RECENT FINDINGS Multiple studies of single-agent anti-PD1/PD-L1 immunotherapy have demonstrated a modest response rate of approximately 10% to 15%. While a minority of patients (~5%) with SCCA experience durable complete responses, most advanced SCCAs are resistant to anti-PD1/PD-L1 monotherapy. Given the need for more broadly effective immunotherapies, novel strategies, such as adaptive cell therapies and therapeutic vaccination, are being explored. To reduce the recurrence risk of localized high-risk SCCA, strategies combining immunotherapy with chemoradiation are also being investigated. While a small subset of patients with SCCA have prolonged responses to PD1-directed immunotherapy, the majority do not derive clinical benefit, and new immunotherapeutic strategies are needed. Better understanding of the immune microenvironment and predictive biomarkers could accelerate therapeutic advances.
Collapse
Affiliation(s)
- Thejus Jayakrishnan
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA
| | - Devvrat Yadav
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD, 21215, USA
| | - Brandon M Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
14
|
Rossari F, Foti S, Camera S, Persano M, Casadei-Gardini A, Rimini M. Treatment options for advanced hepatocellular carcinoma: the potential of biologics. Expert Opin Biol Ther 2024; 24:455-470. [PMID: 38913107 DOI: 10.1080/14712598.2024.2363234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Advanced hepatocellular carcinoma (HCC) represents a significant global health burden, whose treatment has been recently revolutionized by the advent of biologic treatments. Despite that, innovative therapeutic regimens and approaches, especially immune-based, remain to be explored aiming at extending the therapeutic benefits to a wider population of patients. AREAS COVERED This review comprehensively discusses the evolving landscape of biological treatment modalities for advanced HCC, including immune checkpoint inhibitors, antiangiogenic monoclonal antibodies, tumor-targeting monoclonal antibodies either naked or drug-conjugated, therapeutic vaccines, oncolytic viruses, adoptive cell therapies, and cytokine-based therapies. Key clinical trials and preclinical studies are examined, highlighting the actual or potential impact of these interventions in reshaping treatment paradigms for HCC. EXPERT OPINION Tailored and rational combination strategies, leveraging the synergistic effects of different modalities, represent a promising approach to maximize treatment efficacy in advanced HCC, which should aim at conversion endpoints to increase the fraction of patients eligible for curative approaches. The identification of predictive biomarkers holds the key to optimizing patient selection and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Foti
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Camera
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
15
|
Wang P, Xu MH, Xu WX, Dong ZY, Shen YH, Qin WZ. CXCL9 Overexpression Predicts Better HCC Response to Anti-PD-1 Therapy and Promotes N1 Polarization of Neutrophils. J Hepatocell Carcinoma 2024; 11:787-800. [PMID: 38737384 PMCID: PMC11088828 DOI: 10.2147/jhc.s450468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/18/2024] [Indexed: 05/14/2024] Open
Abstract
Background Anti-programmed death-1 (PD1) antibodies have changed the treatment landscape for hepatocellular carcinoma (HCC) and exhibit promising treatment efficacy. However, the majority of HCCs still do not respond to anti-PD-1 therapy. Methods We analyzed the expression of CXCL9 in blood samples from patients who received anti-PD-1 therapy and evaluated its correlation with clinicopathological characteristics and treatment outcomes. Based on the results of Cox regression analysis, a nomogram was established for predicting HCC response to anti-PD-1 therapy. qRT‒PCR and multiple immunofluorescence assays were utilized to analyze the proportions of N1-type neutrophils in vitro and in tumor samples, respectively. Results The nomogram showed good predictive efficacy in the training and validation cohorts and may be useful for guiding clinical treatment of HCC patients. We also found that HCC cell-derived CXCL9 promoted N1 polarization of neutrophils in vitro and that AMG487, a specific CXCR3 inhibitor, significantly blocked this process. Moreover, multiple immunofluorescence (mIF) showed that patients with higher serum CXCL9 levels had greater infiltration of the N1 phenotype of tumor-associated neutrophils (TANs). Conclusion Our study highlights the critical role of CXCL9 as an effective biomarker of immunotherapy efficacy and in promoting the polarization of N1-type neutrophils; thus, targeting the CXCL9-CXCR3 axis could represent a novel pharmaceutical strategy to enhance immunotherapy for HCC.
Collapse
Affiliation(s)
- Pei Wang
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Digestive Medicine, Wuwei People’s Hospital, Wuwei City, Gansu Province, 733000, People’s Republic of China
| | - Ming-Hao Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Wen-Xin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Zi-Ying Dong
- Department of CT/MRI Center, Wuwei People’s Hospital, Wuwei City, Gansu Province, 733000, People’s Republic of China
| | - Ying-Hao Shen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Wen-Zheng Qin
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
16
|
Zhengdong A, Xiaoying X, Shuhui F, Rui L, Zehui T, Guanbin S, Li Y, Xi T, Wanqian L. Identification of fatty acids synthesis and metabolism-related gene signature and prediction of prognostic model in hepatocellular carcinoma. Cancer Cell Int 2024; 24:130. [PMID: 38584256 PMCID: PMC11000322 DOI: 10.1186/s12935-024-03306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Fatty acids synthesis and metabolism (FASM)-driven lipid mobilization is essential for energy production during nutrient shortages. However, the molecular characteristics, physiological function and clinical prognosis value of FASM-associated gene signatures in hepatocellular carcinoma (HCC) remain elusive. METHODS The Gene Expression Omnibus database (GEO), the Cancer Genome Atlas (TCGA), and International Cancer Genome Consortium (ICGC) database were utilized to acquire transcriptome data and clinical information of HCC patients. The ConsensusClusterPlus was employed for unsupervised clustering. Subsequently, immune cell infiltration, stemness index and therapeutic response among distinct clusters were decoded. The tumor immune dysfunction and exclusion (TIDE) algorithm was utilized to anticipate the response of patients towards immunotherapy, and the genomics of drug sensitivity in cancer (GDSC) tool was employed to predict their response to antineoplastic medications. Least absolute shrinkage and selection operator (LASSO) regression analysis and protein-protein interaction (PPI) network were employed to construct prognostic model and identity hub gene. Single cell RNA sequencing (scRNA-seq) and CellChat were used to analyze cellular interactions. The hub gene of FASM effect on promoting tumor progression was confirmed through a series of functional experiments. RESULTS Twenty-six FASM-related genes showed differential expression in HCC. Based on these FASM-related differential genes, two molecular subtypes were established, including Cluster1 and Cluster2 subtype. Compared with cluster2, Cluster1 subtype exhibited a worse prognosis, higher risk, higher immunosuppressive cells infiltrations, higher immune escape, higher cancer stemness and enhanced treatment-resistant. PPI network identified Acetyl-CoA carboxylase1 (ACACA) as central gene of FASM and predicted a poor prognosis. A strong interaction between cancer stem cells (CSCs) with high expression of ACACA and macrophages through CD74 molecule (CD74) and integrin subunit beta 1 (ITGB1) signaling was identified. Finally, increased ACACA expression was observed in HCC cells and patients, whereas depleted ACACA inhibited the stemness straits and drug resistance of HCC cells. CONCLUSIONS This study provides a resource for understanding FASM heterogeneity in HCC. Evaluating the FASM patterns can help predict the prognosis and provide new insights into treatment response in HCC patients.
Collapse
Affiliation(s)
- Ai Zhengdong
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China
| | - Xing Xiaoying
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China
| | - Fu Shuhui
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China
| | - Liang Rui
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China
| | - Tang Zehui
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China
| | - Song Guanbin
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China
| | - Yang Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China
| | - Tang Xi
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400000, People's Republic of China.
| | - Liu Wanqian
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China.
| |
Collapse
|
17
|
Llovet JM, Pinyol R, Yarchoan M, Singal AG, Marron TU, Schwartz M, Pikarsky E, Kudo M, Finn RS. Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma. Nat Rev Clin Oncol 2024; 21:294-311. [PMID: 38424197 DOI: 10.1038/s41571-024-00868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Liver cancer, specifically hepatocellular carcinoma (HCC), is the sixth most common cancer and the third leading cause of cancer mortality worldwide. The development of effective systemic therapies, particularly those involving immune-checkpoint inhibitors (ICIs), has substantially improved the outcomes of patients with advanced-stage HCC. Approximately 30% of patients are diagnosed with early stage disease and currently receive potentially curative therapies, such as resection, liver transplantation or local ablation, which result in median overall survival durations beyond 60 months. Nonetheless, up to 70% of these patients will have disease recurrence within 5 years of resection or local ablation. To date, the results of randomized clinical trials testing adjuvant therapy in patients with HCC have been negative. This major unmet need has been addressed with the IMbrave 050 trial, demonstrating a recurrence-free survival benefit in patients with a high risk of relapse after resection or local ablation who received adjuvant atezolizumab plus bevacizumab. In parallel, studies testing neoadjuvant ICIs alone or in combination in patients with early stage disease have also reported efficacy. In this Review, we provide a comprehensive overview of the current approaches to manage patients with early stage HCC. We also describe the tumour immune microenvironment and the mechanisms of action of ICIs and cancer vaccines in this setting. Finally, we summarize the available evidence from phase II/III trials of neoadjuvant and adjuvant approaches and discuss emerging clinical trials, identification of biomarkers and clinical trial design considerations for future studies.
Collapse
Affiliation(s)
- Josep M Llovet
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| | - Roser Pinyol
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mark Yarchoan
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amit G Singal
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas U Marron
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myron Schwartz
- Department of Liver Surgery, Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Richard S Finn
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
18
|
Huang J, Tsang WY, Fang XN, Zhang Y, Luo J, Gong LQ, Zhang BF, Wong CN, Li ZH, Liu BL, Huang JL, Yang YM, Liu S, Ban LX, Chan YH, Guan XY. FASN Inhibition Decreases MHC-I Degradation and Synergizes with PD-L1 Checkpoint Blockade in Hepatocellular Carcinoma. Cancer Res 2024; 84:855-871. [PMID: 38486485 DOI: 10.1158/0008-5472.can-23-0966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/20/2023] [Accepted: 01/08/2024] [Indexed: 03/19/2024]
Abstract
Immune checkpoint inhibitors (ICI) transformed the treatment landscape of hepatocellular carcinoma (HCC). Unfortunately, patients with attenuated MHC-I expression remain refractory to ICIs, and druggable targets for upregulating MHC-I are limited. Here, we found that genetic or pharmacologic inhibition of fatty acid synthase (FASN) increased MHC-I levels in HCC cells, promoting antigen presentation and stimulating antigen-specific CD8+ T-cell cytotoxicity. Mechanistically, FASN inhibition reduced palmitoylation of MHC-I that led to its lysosomal degradation. The palmitoyltransferase DHHC3 directly bound MHC-I and negatively regulated MHC-I protein levels. In an orthotopic HCC mouse model, Fasn deficiency enhanced MHC-I levels and promoted cancer cell killing by tumor-infiltrating CD8+ T cells. Moreover, the combination of two different FASN inhibitors, orlistat and TVB-2640, with anti-PD-L1 antibody robustly suppressed tumor growth in vivo. Multiplex IHC of human HCC samples and bioinformatic analysis of The Cancer Genome Atlas data further illustrated that lower expression of FASN was correlated with a higher percentage of cytotoxic CD8+ T cells. The identification of FASN as a negative regulator of MHC-I provides the rationale for combining FASN inhibitors and immunotherapy for treating HCC. SIGNIFICANCE Inhibition of FASN increases MHC-I protein levels by suppressing its palmitoylation and lysosomal degradation, which stimulates immune activity against hepatocellular carcinoma and enhances the efficacy of immune checkpoint inhibition.
Collapse
Affiliation(s)
- Jiao Huang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wai Ying Tsang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong
| | - Xiao-Na Fang
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yu Zhang
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Jie Luo
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Lan-Qi Gong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Bai-Feng Zhang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ching Ngar Wong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Zhi-Hong Li
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong
| | - Bei-Lei Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jin-Lin Huang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yu-Ma Yang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Shan Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Liu-Xian Ban
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yiu Hong Chan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Cappuyns S, Corbett V, Yarchoan M, Finn RS, Llovet JM. Critical Appraisal of Guideline Recommendations on Systemic Therapies for Advanced Hepatocellular Carcinoma: A Review. JAMA Oncol 2024; 10:395-404. [PMID: 37535375 PMCID: PMC10837331 DOI: 10.1001/jamaoncol.2023.2677] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Importance The combination of immune checkpoint inhibitors with antiangiogenic agents has revolutionized the treatment landscape of advanced hepatocellular carcinoma (HCC). However, due to rapid publication of new studies that attained their predefined primary end points, a lack of robust cross-trial comparison of first-line therapies, and diverging clinical guidelines, no clear-cut treatment flowchart and sequence of therapies are available. This critical analysis of the recommendations for the management of advanced HCC from the main scientific societies in the US and Europe adopted an integrated approach to provide information on the clinical benefit (overall survival and progression-free survival) and safety profile of these therapies using the European Society for Medical Oncology (ESMO)-Magnitude of Clinical Benefit Scale (MCBS) score and an ad hoc network meta-analysis. Observations There is a major consensus among guidelines that atezolizumab plus bevacizumab has a primacy as the recommended first-line treatment of choice in advanced HCC. On progression after immunotherapy-containing regimens and for patients with contraindications for immunotherapies, most guidelines maintain the established treatment hierarchy, recommending lenvatinib or sorafenib as the preferred options, followed by either regorafenib, cabozantinib, or ramucirumab. Thus far, the first-line immune-based regimen of tremelimumab plus durvalumab has been integrated only in the American Association for the Study of Liver Diseases guidance document and the latest National Comprehensive Cancer Network guidelines and has particular utility for patients with a high risk of gastrointestinal bleeding. Overall, in the first-line setting, both atezolizumab plus bevacizumab and sintilimab plus IBI305 (a bevacizumab biosimilar) and durvalumab plus tremelimumab received the highest ESMO-MCBS score of 5, indicating a substantial magnitude of clinical benefit. In a network meta-analysis, no significant differences in overall survival were found among the various combination regimens. However, the newly reported combination of camrelizumab plus rivoceranib was associated with a significantly higher risk of treatment-related adverse events compared with atezolizumab plus bevacizumab (relative risk, 1.59; 95% CI, 1.25-2.03; P < .001). Conclusions and Relevance This narrative review found that atezolizumab plus bevacizumab is regarded as the primary standard of care for advanced HCC in the first-line setting. These findings from integrating the recommendations from scientific societies' guidelines for managing advanced HCC along with new data from cross-trial comparisons may aid clinicians in decision-making and guide them through a rapidly evolving and complex treatment landscape.
Collapse
Affiliation(s)
- Sarah Cappuyns
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Digestive Oncology, Department of Gastroenterology, Universitair Ziekenhuis Leuven/Katholieke Universiteit Leuven, Leuven, Belgium
| | - Virginia Corbett
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard S Finn
- Department of Medicine, Hematology/Oncology, Geffen School of Medicine at UCLA (University of California, Los Angeles), Los Angeles
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
20
|
Haber PK, Krenzien F, Sarıbeyoğlu K, Pratschke J, Schöning W. Integrating the new systemic treatment landscape and surgical therapy in hepatocellular carcinoma. Turk J Surg 2024; 40:1-10. [PMID: 39036000 PMCID: PMC11257723 DOI: 10.47717/turkjsurg.2024.6375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 07/23/2024]
Abstract
The treatment landscape of hepatocellular carcinoma has evolved rapidly within the last decade. Minimally-invasive techniques have reached a new level of safety, affording surgeons to pursue more aggressive treatment strategies to ultimately improve oncological outcomes. These procedures have been increasingly applied to treat patients with more progressed tumors and in select case even patients with advanced stage disease confined to the liver. Concomitantly, a dramatic increase in research into immunotherapy has altered the treatment paradigm in advanced disease stages, where the emerging treatment regimens can provide durable responses in a subset of the patient population for whom prognosis is dramatically improved. These treatments are now tested in early-stage disease to address the pressing unmet need of high recurrence rates after resection and in intermediate stage to complement the proven efficacy of intraarterial embolization in delaying progression. This review provides an in-depth discussion of these trends and describes how the treatment landscape has already changed and which impediments remain.
Collapse
Affiliation(s)
| | - Felix Krenzien
- Department of Surgery, Charité University, Berlin, Germany
| | | | | | | |
Collapse
|
21
|
Chew V, Chuang CH, Hsu C. Translational research on drug development and biomarker discovery for hepatocellular carcinoma. J Biomed Sci 2024; 31:22. [PMID: 38368324 PMCID: PMC10874078 DOI: 10.1186/s12929-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/10/2024] [Indexed: 02/19/2024] Open
Abstract
Translational research plays a key role in drug development and biomarker discovery for hepatocellular carcinoma (HCC). However, unique challenges exist in this field because of the limited availability of human tumor samples from surgery, the lack of homogenous oncogenic driver mutations, and the paucity of adequate experimental models. In this review, we provide insights into these challenges and review recent advancements, with a particular focus on the two main agents currently used as mainstream therapies for HCC: anti-angiogenic agents and immunotherapy. First, we examine the pre-clinical and clinical studies to highlight the challenges of determining the optimal therapeutic combinations with biologically effective dosage for HCC. Second, we discuss biomarker studies focusing on anti-PD1/anti-PD-L1-based combination therapy. Finally, we discuss the progress made in our collective understanding of tumor immunology and in multi-omics analysis technology, which enhance our understanding of the mechanisms underlying immunotherapy, characterize different patient subgroups, and facilitate the development of novel combination approaches to improve treatment efficacy. In summary, this review provides a comprehensive overview of efforts in translational research aiming at advancing our understanding of and improving the treatment of HCC.
Collapse
Affiliation(s)
- Valerie Chew
- Translational Immunology Institute, SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Chien-Huai Chuang
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chiun Hsu
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan.
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
22
|
Yang X, Yang C, Zhang S, Geng H, Zhu AX, Bernards R, Qin W, Fan J, Wang C, Gao Q. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell 2024; 42:180-197. [PMID: 38350421 DOI: 10.1016/j.ccell.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
The past decade has witnessed significant advances in the systemic treatment of advanced hepatocellular carcinoma (HCC). Nevertheless, the newly developed treatment strategies have not achieved universal success and HCC patients frequently exhibit therapeutic resistance to these therapies. Precision treatment represents a paradigm shift in cancer treatment in recent years. This approach utilizes the unique molecular characteristics of individual patient to personalize treatment modalities, aiming to maximize therapeutic efficacy while minimizing side effects. Although precision treatment has shown significant success in multiple cancer types, its application in HCC remains in its infancy. In this review, we discuss key aspects of precision treatment in HCC, including therapeutic biomarkers, molecular classifications, and the heterogeneity of the tumor microenvironment. We also propose future directions, ranging from revolutionizing current treatment methodologies to personalizing therapy through functional assays, which will accelerate the next phase of advancements in this area.
Collapse
Affiliation(s)
- Xupeng Yang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Haigang Geng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andrew X Zhu
- I-Mab Biopharma, Shanghai, China; Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Cheung TT, Wai-Hung Ho D, Lyu SX, Zhang Q, Tsui YM, Ching-Yun Yu T, Man-Fong Sze K, Man-Fong Lee J, Lau VWH, Yin-Lun Chu E, Hing-Yin Tsang S, She WH, Ching-Yu Leung R, Chung-Cheung Yau T, Ng IOL. Multimodal Integrative Genomics and Pathology Analyses in Neoadjuvant Nivolumab Treatment for Intermediate and Locally Advanced Hepatocellular Carcinoma. Liver Cancer 2024; 13:70-88. [PMID: 38344450 PMCID: PMC10857832 DOI: 10.1159/000531176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/18/2023] [Indexed: 10/17/2024] Open
Abstract
Introduction Immunotherapy has resulted in pathologic responses in hepatocellular carcinoma (HCC), but the benefits and molecular mechanisms of neoadjuvant immune checkpoint blockade are largely unknown. Methods In this study, we evaluated the efficacy and safety of preoperative nivolumab (anti-PD-1) in patients with intermediate and locally advanced HCC and determined the molecular markers for predicting treatment response. Results Between July 2020 and November 2021, 20 treatment-naive HCC patients with intermediate and locally advanced tumors received preoperative nivolumab at 3 mg/kg for 3 cycles prior to surgical resection. Nineteen patients underwent surgical resection on trial. Seven (36.8%) of the 19 patients had major pathologic tumor necrosis (≥60%) in the post-nivolumab resection specimens, with 3 having almost complete (>90%) tumor necrosis. The tumor necrosis was hemorrhagic and often accompanied by increased or dense immune cell infiltrate at the border of the tumors. None of the patients developed major adverse reactions contradicting hepatectomy. RNA-sequencing analysis on both pre-nivolumab tumor biopsies and post-nivolumab resected specimens showed that, in cases with major pathologic necrosis, the proportion of CD8 T cells in the HCC tissues predominantly increased after treatment. Moreover, to investigate noninvasive biomarker for nivolumab response, we evaluated the copy number variation (CNV) using target-panel sequencing on plasma cell-free DNA of the patients and derived a CNV-based anti-PD-1 score. The score correlated with the extent of tumor necrosis and was validated in a Korean patient cohort with anti-PD-1 treatment. Conclusion Neoadjuvant nivolumab demonstrated promising clinical activity in intermediate and locally advanced HCC patients. We also identified useful noninvasive biomarker predicting responsiveness.
Collapse
Affiliation(s)
- Tan-To Cheung
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Daniel Wai-Hung Ho
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Shirley Xueying Lyu
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Qingyang Zhang
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yu-Man Tsui
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Tiffany Ching-Yun Yu
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Karen Man-Fong Sze
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Joyce Man-Fong Lee
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Vince Wing-hang Lau
- Department of Diagnostic Radiology, Queen Mary Hospital, Hong Kong, Hong Kong SAR
| | - Edward Yin-Lun Chu
- Department of Diagnostic Radiology, Queen Mary Hospital, Hong Kong, Hong Kong SAR
| | - Simon Hing-Yin Tsang
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Wong-Hoi She
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Roland Ching-Yu Leung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Thomas Chung-Cheung Yau
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
24
|
Papadakos SP, Arvanitakis K, Stergiou IE, Koutsompina ML, Germanidis G, Theocharis S. γδ T Cells: A Game Changer in the Future of Hepatocellular Carcinoma Immunotherapy. Int J Mol Sci 2024; 25:1381. [PMID: 38338658 PMCID: PMC10855397 DOI: 10.3390/ijms25031381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge with limited treatment options and a poor prognosis for advanced-stage patients. Recent advancements in cancer immunotherapy have generated significant interest in exploring novel approaches to combat HCC. One such approach involves the unique and versatile subset of T cells known as γδ T cells. γδ T cells represent a distinct subset of T lymphocytes that differ from conventional αβ T cells in terms of antigen recognition and effector functions. They play a crucial role in immunosurveillance against various malignancies, including HCC. Recent studies have demonstrated that γδ T cells can directly recognize and target HCC cells, making them an attractive candidate for immunotherapy. In this article, we aimed to explore the role exerted by γδ T cells in the context of HCC. We investigate strategies designed to maximize the therapeutic effectiveness of these cells and examine the challenges and opportunities inherent in applying these research findings to clinical practice. The potential to bring about a revolutionary shift in HCC immunotherapy by capitalizing on the unique attributes of γδ T cells offers considerable promise for enhancing patient outcomes, warranting further investigation.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.)
| | - Maria-Loukia Koutsompina
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
25
|
Núñez KG, Sandow T, Gimenez J, Hibino M, Fort D, Cohen AJ, Thevenot PT. Lineage-specific regulation of PD-1 expression in early-stage hepatocellular carcinoma following 90yttrium transarterial radioembolization - Implications in treatment outcomes. Eur J Cancer 2024; 196:113442. [PMID: 37988841 DOI: 10.1016/j.ejca.2023.113442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related deaths in the world. Liver-directed therapies, including 90Yttrium (90Y) radioembolization, play an integral role in the management of HCC with excellent response rates. This has led to clinical trials of immunotherapy in combination with 90Y. Elevated PD-1 expression and lymphopenia were recently shown as risk factors for disease progression in early-stage HCC treated with liver-directed therapies. The aim of this study was to investigate PD-1 expression dynamics in bridge/downstage to transplant in HCC patients receiving first-cycle 90Y and evaluate the impact of these changes on response rates and time-to-progression (TTP). METHODS Patients with HCC receiving first-cycle 90Y as a bridge to liver transplantation (n = 99) were prospectively enrolled. Blood specimens were collected before 90Y and again during routine imagining follow-up to analyze PD-1 expression via flow cytometry. Complete and objective response rates (CR and ORR) were determined using mRECIST. RESULTS In 84/88 patients with available follow-up imaging, 83% had a localized ORR with 63% having localized CR. For overall response, 71% and 54% experienced ORR and CR, respectively. Post-90Y PD-1 upregulation in CD8 + associated with HCC progression and decreased TTP. Treatment with 90Y was associated with an anticipated significant post-treatment drop in lymphocytes (P < 0.001) that was independent of PD-1 expression for either CD4+ or CD8+ T cells (P = 0.751 and P = 0.375) and not associated with TTP risk. The change in lymphocytes was not correlated with PD-1 expression following treatment nor TTP. CONCLUSIONS Elevated PD-1 expression on peripheral T cells is associated with increased risk of HCC progression and shorter time to progression in bridging/downstaging to transplant HCC patients undergoing first-cycle 90Y. Treatment-induced lymphopenia was not associated with treatment response, or increased progression risk, suggesting this anticipated adverse event does not impact short-term HCC outcomes.
Collapse
Affiliation(s)
- Kelley G Núñez
- Institute of Translational Research, Ochsner Health System, New Orleans, LA, United States
| | - Tyler Sandow
- Interventional Radiology, Ochsner Health System, New Orleans, LA, United States
| | - Juan Gimenez
- Interventional Radiology, Ochsner Health System, New Orleans, LA, United States
| | - Mina Hibino
- Institute of Translational Research, Ochsner Health System, New Orleans, LA, United States
| | - Daniel Fort
- Center for Outcomes Research, Ochsner Health System, New Orleans, LA, United States
| | - Ari J Cohen
- Multi-Organ Transplant Institute, Ochsner Health System, New Orleans, LA, United States; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Paul T Thevenot
- Institute of Translational Research, Ochsner Health System, New Orleans, LA, United States.
| |
Collapse
|
26
|
Wang Y, Weng W, Liang R, Zhou Q, Hu H, Li M, Chen L, Chen S, Peng S, Kuang M, Xiao H, Wang W. Predicting T Cell-Inflamed Gene Expression Profile in Hepatocellular Carcinoma Based on Dynamic Contrast-Enhanced Ultrasound Radiomics. J Hepatocell Carcinoma 2023; 10:2291-2303. [PMID: 38143911 PMCID: PMC10742767 DOI: 10.2147/jhc.s437415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose The T cell-inflamed gene expression profile (GEP) quantifies 18 genes' expression indicative of a T-cell immune tumor microenvironment, playing a crucial role in the immunotherapy of hepatocellular carcinoma (HCC). Our study aims to develop a radiomics-based machine learning model using contrast-enhanced ultrasound (CEUS) for predicting T cell-inflamed GEP in HCC. Methods The primary cohort of HCC patients with preoperative CEUS and RNA sequencing data of tumor tissues at the single center was used to construct the model. A total of 5936 radiomics features were extracted from the regions of interest in representative images of each phase, and the least absolute shrinkage and selection operator and logistic regression were used to construct four models including three phase-specific models and an integrated model. The area under the curve (AUC) was calculated to evaluate the performance of the model. The independent cohort of HCC patients with preoperative CEUS and Immunoscore based on immunohistochemistry and digital pathology was used to validate the correlation between model prediction value and T-cell infiltration. Results There were 268 patients enrolled in the primary cohort and 46 patients enrolled in the independent cohort. Compared with the other three models, the AP model constructed by 36 arterial phase (AP) features showed good performance with a mean AUC of 0.905 in the 5-fold cross-validation and was easier to apply in the clinical setting. The decision curve and calibration curve confirmed the clinical utility of the model. In the independent cohort, patients with high Immunoscores showed significantly higher GEP prediction values than those with low Immunoscores (t=-2.359, p=0.029). Conclusion The CEUS-based model is a reliable predictive tool for T cell-inflamed GEP in HCC, and might facilitate individualized immunotherapy decision-making.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Weixiang Weng
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ruiming Liang
- Clinical Trials Unit, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Qian Zhou
- Clinical Trials Unit, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Hangtong Hu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Mingde Li
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Lida Chen
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shuling Chen
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Sui Peng
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
- Clinical Trials Unit, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
- Cancer Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Han Xiao
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Wei Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
27
|
Wu J, Liu W, Qiu X, Li J, Song K, Shen S, Huo L, Chen L, Xu M, Wang H, Jia N, Chen L. A Noninvasive Approach to Evaluate Tumor Immune Microenvironment and Predict Outcomes in Hepatocellular Carcinoma. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:549-564. [PMID: 38223688 PMCID: PMC10781918 DOI: 10.1007/s43657-023-00136-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 01/16/2024]
Abstract
It is widely recognized that tumor immune microenvironment (TIME) plays a crucial role in tumor progression, metastasis, and therapeutic response. Despite several noninvasive strategies have emerged for cancer diagnosis and prognosis, there are still lack of effective radiomic-based model to evaluate TIME status, let alone predict clinical outcome and immune checkpoint inhibitor (ICIs) response for hepatocellular carcinoma (HCC). In this study, we developed a radiomic model to evaluate TIME status within the tumor and predict prognosis and immunotherapy response. A total of 301 patients who underwent magnetic resonance imaging (MRI) examinations were enrolled in our study. The intra-tumoral expression of 17 immune-related molecules were evaluated using co-detection by indexing (CODEX) technology, and we construct Immunoscore (IS) with the least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression method to evaluate TIME. Of 6115 features extracted from MRI, five core features were filtered out, and the Radiomic Immunoscore (RIS) showed high accuracy in predicting TIME status in testing cohort (area under the curve = 0.753). More importantly, RIS model showed the capability of predicting therapeutic response to anti-programmed cell death 1 (PD-1) immunotherapy in an independent cohort with advanced HCC patients (area under the curve = 0.731). In comparison with previously radiomic-based models, our integrated RIS model exhibits not only higher accuracy in predicting prognosis but also the potential guiding significance to HCC immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00136-8.
Collapse
Affiliation(s)
- Jianmin Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438 China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438 China
- National Center for Liver Cancer, Shanghai, 201805 China
| | - Wanmin Liu
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200333 China
| | - Xinyao Qiu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438 China
- National Center for Liver Cancer, Shanghai, 201805 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jing Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kairong Song
- Department of Radiology, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438 China
| | - Siyun Shen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438 China
- National Center for Liver Cancer, Shanghai, 201805 China
| | - Lei Huo
- Department of Radiology, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438 China
| | - Lu Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438 China
- National Center for Liver Cancer, Shanghai, 201805 China
| | - Mingshuang Xu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438 China
- National Center for Liver Cancer, Shanghai, 201805 China
| | - Hongyang Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438 China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438 China
- National Center for Liver Cancer, Shanghai, 201805 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Ningyang Jia
- Department of Radiology, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438 China
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438 China
- National Center for Liver Cancer, Shanghai, 201805 China
| |
Collapse
|
28
|
Greten TF, Villanueva A, Korangy F, Ruf B, Yarchoan M, Ma L, Ruppin E, Wang XW. Biomarkers for immunotherapy of hepatocellular carcinoma. Nat Rev Clin Oncol 2023; 20:780-798. [PMID: 37726418 DOI: 10.1038/s41571-023-00816-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Immune-checkpoint inhibitors (ICIs) are now widely used for the treatment of patients with advanced-stage hepatocellular carcinoma (HCC). Two different ICI-containing regimens, atezolizumab plus bevacizumab and tremelimumab plus durvalumab, are now approved standard-of-care first-line therapies in this setting. However, and despite substantial improvements in survival outcomes relative to sorafenib, most patients with advanced-stage HCC do not derive durable benefit from these regimens. Advances in genome sequencing including the use of single-cell RNA sequencing (both of tumour material and blood samples), as well as immune cell identification strategies and other techniques such as radiomics and analysis of the microbiota, have created considerable potential for the identification of novel predictive biomarkers enabling the accurate selection of patients who are most likely to derive benefit from ICIs. In this Review, we summarize data on the immunology of HCC and the outcomes in patients receiving ICIs for the treatment of this disease. We then provide an overview of current biomarker use and developments in the past 5 years, including gene signatures, circulating tumour cells, high-dimensional flow cytometry, single-cell RNA sequencing as well as approaches involving the microbiome, radiomics and clinical markers. Novel concepts for further biomarker development in HCC are then discussed including biomarker-driven trials, spatial transcriptomics and integrated 'big data' analysis approaches. These concepts all have the potential to better identify patients who are most likely to benefit from ICIs and to promote the development of new treatment approaches.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Augusto Villanueva
- Divisions of Liver Disease and Hematology/Medical Oncology, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Yarchoan
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xin W Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
29
|
Tang J, Long G, Hu K, Xiao D, Liu S, Xiao L, Zhou L, Tao Y. Targeting USP8 Inhibits O-GlcNAcylation of SLC7A11 to Promote Ferroptosis of Hepatocellular Carcinoma via Stabilization of OGT. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302953. [PMID: 37867237 PMCID: PMC10667802 DOI: 10.1002/advs.202302953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/10/2023] [Indexed: 10/24/2023]
Abstract
Hepatocellular carcinoma (HCC) is a lethal and aggressive human malignancy. The present study examins the anti-tumor effects of deubiquitylating enzymes (DUB) inhibitors in HCC. It is found that the inhibitor of ubiquitin specific peptidase 8 (USP8) and DUB-IN-3 shows the most effective anti-cancer responses. Targeting USP8 inhibits the proliferation of HCC and induces cell ferroptosis. In vivo xenograft and metastasis experiments indicate that inhibition of USP8 suppresses tumor growth and lung metastasis. DUB-IN-3 treatment or USP8 depletion decrease intracellular cystine levels and glutathione biosynthesis while increasing the accumulation of reactive oxygen species (ROS). Mechanistical studies reveal that USP8 stabilizes O-GlcNAc transferase (OGT) via inhibiting K48-specific poly-ubiquitination process on OGT protein at K117 site, and STE20-like kinase (SLK)-mediated S716 phosphorylation of USP8 is required for the interaction with OGT. Most importantly, OGT O-GlcNAcylates solute carrier family 7, member 11 (SLC7A11) at Ser26 in HCC cells, which is essential for SLC7A11 to import the cystine from the extracellular environment. Collectively, this study demonstrates that pharmacological inhibition or knockout of USP8 can inhibit the progression of HCC and induce ferroptosis via decreasing the stability of OGT, which imposes a great challenge that targeting of USP8 is a potential approach for HCC treatment.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Liver SurgeryXiangya HospitalCentral South University110 Xiangya RoadChangshaHunan410078China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Guo Long
- Department of Liver SurgeryXiangya HospitalCentral South University110 Xiangya RoadChangshaHunan410078China
| | - Kuan Hu
- Department of Liver SurgeryXiangya HospitalCentral South University110 Xiangya RoadChangshaHunan410078China
| | - Desheng Xiao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunan410078China
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410078China
| | - Liang Xiao
- Department of Liver SurgeryXiangya HospitalCentral South University110 Xiangya RoadChangshaHunan410078China
| | - Ledu Zhou
- Department of Liver SurgeryXiangya HospitalCentral South University110 Xiangya RoadChangshaHunan410078China
| | - Yongguang Tao
- Department of PathologyKey Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Xiangya HospitalCentral South University110 Xiangya RoadChangshaHunan410078China
- NHC Key Laboratory of Carcinogenesis (Central South University)Cancer Research Institute and School of Basic MedicineCentral South University110 Xiangya RoadChangshaHunan410078China
- Department of Thoracic SurgeryHunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer and Hunan Key Laboratory of Tumor Models and Individualized MedicineSecond Xiangya HospitalCentral South University110 Xiangya RoadChangshaHunan410011China
- Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University110 Xiangya RoadChangshaHunan410078China
| |
Collapse
|
30
|
Hsu HM, Tsai HI, Lee WC, Wang CC, Yu MC, Lin SM, Lin CY, Wu CH, Lee CW. The Extended Surgical Concepts for Hepatocellular Carcinoma in the Era of Immune Checkpoint Inhibitors. J Hepatocell Carcinoma 2023; 10:1873-1880. [PMID: 37901716 PMCID: PMC10612521 DOI: 10.2147/jhc.s433598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023] Open
Abstract
Surgical resection remains one of the most effective curative therapies for HCC. However, the majority of patients have advanced unresectable diseases upon presentation. It is of paramount importance to raise the resectability of patients with HCC. The remarkable objective response rate reported by Phase III IMbrave150 trial has led to the concept of "Atezo/Bev followed by curative conversion (ABC conversion)" for initially unresectable HCC. With this revolutionary treatment strategy, the concept of surgical resection for HCC should be amended. The current opinion illustrated three extended surgical concepts, which could be integrated into clinical practice in the era of immune checkpoint inhibitors (ICI).
Collapse
Affiliation(s)
- Hsiao-Mei Hsu
- Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsin-I Tsai
- Department of Anesthesiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Chen Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of General Surgery, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Chi Wang
- Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Division of General Surgery, Department of Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ming-Chin Yu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Surgery, New Taipei Municipal Tu-Cheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Shi-Ming Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yen Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Huan Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chao-Wei Lee
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of General Surgery, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
31
|
Zhang B, Chen X, Wang Z, Guo F, Zhang X, Huang B, Ma S, Xia S, Shang D. Identifying endoplasmic reticulum stress-related molecular subtypes and prognostic model for predicting the immune landscape and therapy response in pancreatic cancer. Aging (Albany NY) 2023; 15:10549-10579. [PMID: 37815881 PMCID: PMC10599750 DOI: 10.18632/aging.205094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/09/2023] [Indexed: 10/12/2023]
Abstract
Endoplasmic reticulum stress (ERS) is caused by the accumulation of intracellular misfolded or unfolded proteins and is associated with cancer development. In this study, pan-cancer analysis revealed complex genetic variations, including copy number variation, methylation, and somatic mutations for ERS-related genes (ERGs) in 33 kinds of cancer. Consensus clustering divided pancreatic cancer (PC) patients from TCGA and GEO databases into two ERS-related subtypes: ERGcluster A and B. Compared with ERGcluster A, ERGcluster B had a more active ERS state and worse prognosis. Subsequently, the ERS-related prognostic model was established to quantify the ERS score for a single sample. The patient with a low ERS score had remarkably longer survival times. ssGSEA and CIBERSORT algorithms revealed that activated B cells and CD8+ T cells had higher infiltration in the low ERS score group, but higher infiltration of activated CD4+ T cells, activated dendritic cells, macrophages, and neutrophils in the high ERS score group. Drug sensitivity analysis indicated the low ERS score group had a better response to gemcitabine, paclitaxel, 5-fluorouracil, oxaliplatin, and irinotecan. RT-qPCR validated that MET, MUC16, and KRT7 in the model had higher expression levels in pancreatic tumour tissues. Single-cell analysis further revealed that MET, MUC16, and KRT7 were mainly expressed in cancer cells in PC tumour microenvironment. In all, we first constructed the ERS-related molecular subtypes and prognostic model in PC. Our research highlighted the vital role of ERS in PC and contributed to further research on molecular mechanisms and novel therapeutic strategies for PC in the future.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xu Chen
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhizhou Wang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiaonan Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Shurong Ma
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Shilin Xia
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Raj R, Aykun N, Wehrle CJ, Maspero M, Krishnamurthi S, Estfan B, Kamath S, Aucejo F. Immunotherapy for Advanced Hepatocellular Carcinoma-a Large Tertiary Center Experience. J Gastrointest Surg 2023; 27:2126-2134. [PMID: 37464142 DOI: 10.1007/s11605-023-05783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Combination of immune-checkpoint inhibitor (ICI) and vascular endothelial growth factor (VEGF) antagonist has become the first line systemic treatment for advanced hepatocellular carcinoma (HCC). However, two-thirds of patients do not respond to ICI-based treatments and biomarkers for response remain elusive. METHODS Patients with advanced HCC who received Atezolizumab/Bevacizumab combination or Nivolumab during 2016-2022 were identified in our Liver Cancer Database. Retrospective review of their clinical data was performed to investigate parameters that could be predictive of immunotherapy response. RESULTS 96 patients received Atezolizumab/Bevacizumab (n=60) or Nivolumab (n=36). Median age at diagnosis was 67.1 years. 70 patients had received treatment and 26 patients were treatment naïve before starting immunotherapy. Mean pre-treatment AFP was 9780.7 (±32035) ng/mL. Confirmed objective response (complete or partial) was seen in 29% of the population (n=27). Disease remained stable in 12% (n=11) and progressed in 60% (n=56). On univariate analysis, pre-treatment AFP>400 ng/mL was associated with objective response (OR=4.5, 95% CI:1.7-11.9, p=0.0015), while white race (OR=0.35, 95% CI:0.13-0.92, p=0.030) and prior radiotherapy (OR=0.14, 95% CI:0.01-1.1, p=0.033) or systemic therapy with TKIs (OR=0.25, 95% CI:0.08-0.81, p=0.017) were associated with poor response. On multivariate analysis only AFP>400 ng/mL remained associated with response (OR=3.7, 95% CI:1.3-10.5, p=0.014). Overall survival (OS) at one and three years was 86% and 43% in responders, and 45% and 29% in non-responders, respectively. CONCLUSION In our institutional experience, treatment naivety and pre-treatment AFP>400 ng/mL were associated with objective response. Prospective studies aimed at identifying factors associated with response to immunotherapy will aide patient selection.
Collapse
Affiliation(s)
- Roma Raj
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA.
| | - Nihal Aykun
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA
| | - Chase J Wehrle
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA
| | - Marianna Maspero
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA
| | - Smitha Krishnamurthi
- Cleveland Clinic Foundation, Taussig Cancer Institute, Department of Hematology and Oncology, Cleveland, OH, USA
| | - Bassam Estfan
- Cleveland Clinic Foundation, Taussig Cancer Institute, Department of Hematology and Oncology, Cleveland, OH, USA
| | - Suneel Kamath
- Cleveland Clinic Foundation, Taussig Cancer Institute, Department of Hematology and Oncology, Cleveland, OH, USA
| | - Federico Aucejo
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA.
| |
Collapse
|
33
|
Chen Y, Yang C, Sheng L, Jiang H, Song B. The Era of Immunotherapy in Hepatocellular Carcinoma: The New Mission and Challenges of Magnetic Resonance Imaging. Cancers (Basel) 2023; 15:4677. [PMID: 37835371 PMCID: PMC10572030 DOI: 10.3390/cancers15194677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, significant advancements in immunotherapy for hepatocellular carcinoma (HCC) have shown the potential to further improve the prognosis of patients with advanced HCC. However, in clinical practice, there is still a lack of effective biomarkers for identifying the patient who would benefit from immunotherapy and predicting the tumor response to immunotherapy. The immune microenvironment of HCC plays a crucial role in tumor development and drug responses. However, due to the complexity of immune microenvironment, currently, no single pathological or molecular biomarker can effectively predict tumor responses to immunotherapy. Magnetic resonance imaging (MRI) images provide rich biological information; existing studies suggest the feasibility of using MRI to assess the immune microenvironment of HCC and predict tumor responses to immunotherapy. Nevertheless, there are limitations, such as the suboptimal performance of conventional MRI sequences, incomplete feature extraction in previous deep learning methods, and limited interpretability. Further study needs to combine qualitative features, quantitative parameters, multi-omics characteristics related to the HCC immune microenvironment, and various deep learning techniques in multi-center research cohorts. Subsequently, efforts should also be undertaken to construct and validate a visual predictive tool of tumor response, and assess its predictive value for patient survival benefits. Additionally, future research endeavors must aim to provide an accurate, efficient, non-invasive, and highly interpretable method for predicting the effectiveness of immune therapy.
Collapse
Affiliation(s)
- Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Chongtu Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Liuji Sheng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
- Department of Radiology, Sanya People’s Hospital, Sanya 572000, China
| |
Collapse
|
34
|
Foy V, McNamara MG, Valle JW, Lamarca A, Edeline J, Hubner RA. Current Evidence for Immune Checkpoint Inhibition in Advanced Hepatocellular Carcinoma. Curr Oncol 2023; 30:8665-8685. [PMID: 37754543 PMCID: PMC10529518 DOI: 10.3390/curroncol30090628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
The treatment of advanced unresectable HCC (aHCC) remains a clinical challenge, with limited therapeutic options and poor prognosis. The results of IMbrave150 and HIMALAYA have changed the treatment paradigm for HCC and established immune checkpoint inhibition (ICI), either combined with anti-angiogenic therapy or dual ICI, as preferred first-line therapy for eligible patients with aHCC. Numerous other combination regimens involving ICI are under investigation with the aim of improving the tumour response and survival of patients with all stages of HCC. This review will explore the current evidence for ICI in patients with advanced HCC and discuss future directions, including the unmet clinical need for predictive biomarkers to facilitate patient selection, the effects of cirrhosis aetiology on response to ICI, and the safety of its use in patients with impaired liver function.
Collapse
Affiliation(s)
- Victoria Foy
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd., Manchester M20 4BX, UK
| | - Mairéad G. McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd., Manchester M20 4BX, UK
- Division of Cancer Sciences, University of Manchester, Oxford Rd., Manchester M13 9PL, UK
| | - Juan W. Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd., Manchester M20 4BX, UK
- Division of Cancer Sciences, University of Manchester, Oxford Rd., Manchester M13 9PL, UK
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd., Manchester M20 4BX, UK
- Division of Cancer Sciences, University of Manchester, Oxford Rd., Manchester M13 9PL, UK
- Department of Oncology, OncoHealth Institute, Fundación Jiménez Díaz University Hospital, Avenida de los Reyes Catolicos 2, 28040 Madrid, Spain
| | - Julien Edeline
- Centre Eugène Marquis, Av. de la Bataille Flandres Dunkerque-CS 44229, CEDEX, 35042 Rennes, France;
| | - Richard A. Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd., Manchester M20 4BX, UK
- Division of Cancer Sciences, University of Manchester, Oxford Rd., Manchester M13 9PL, UK
| |
Collapse
|
35
|
Choi JH, Thung SN. Advances in Histological and Molecular Classification of Hepatocellular Carcinoma. Biomedicines 2023; 11:2582. [PMID: 37761023 PMCID: PMC10526317 DOI: 10.3390/biomedicines11092582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer characterized by hepatocellular differentiation. HCC is molecularly heterogeneous with a wide spectrum of histopathology. The prognosis of patients with HCC is generally poor, especially in those with advanced stages. HCC remains a diagnostic challenge for pathologists because of its morphological and phenotypic diversity. However, recent advances have enhanced our understanding of the molecular genetics and histological subtypes of HCC. Accurate diagnosis of HCC is important for patient management and prognosis. This review provides an update on HCC pathology, focusing on molecular genetics, histological subtypes, and diagnostic approaches.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Swan N. Thung
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA;
| |
Collapse
|
36
|
Liu Y, Zheng Z, Han J, Lin C, Liu C, Ma Y, Zhao Y. Delivery of sPD1 gene by anti-CD133 antibody conjugated microbubbles combined with ultrasound for the treatment of cervical cancer in mice. Toxicol Appl Pharmacol 2023; 474:116605. [PMID: 37355104 DOI: 10.1016/j.taap.2023.116605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
To explore new therapeutic options for cervical cancer, the inhibitory effect on cervical cancer of targeted CD133-loaded sPD1 gene microbubbles (MBs) combined with low-frequency ultrasound was studied and its mechanism was explored. We prepared microbubbles conjugated with anti-CD133 antibody to deliver the sPD1 gene and determined concentration, particle size, and potentials of MBs. In addition, we verified that CD133 targeted-MBs could specifically bind to U14 cervical cancer cells in vitro. A mouse model of subcutaneous xenograft cervical cancer was established and mice were divided into a control group, an non-targeted microbubble group, a CD133-MBs group, an sPD1-MBs group and a CD133/sPD1-MBs group. Compared with the control group, tumor growth was inhibited in each group, with the CD133/sPD1 group showing the strongest inhibitory effect after treatment. The tumor volume and weight inhibition rates in the CD133/sPD1-MBs group were 78.01% and 72.25% respectively, which were statistically different from the other groups (P < 0.05), and HE staining and TUNEL immunofluorescence showed necrosis and apoptosis in tumor tissue. Flow cytometry, lactate dehydrogenase, and indirect immunofluorescence experiments showed that T lymphocytes were activated and a large number of CD8-positive T cells infiltrated the tumor tissue after treatment, with the CD133/sPD1-MBs group showing the most prominent effects (P < 0.05). The combination of ultrasound with anti- CD133 antibody-conjugated microbubbles loaded with the sPD1 gene can inhibit the growth of cervical cancer, suggesting that the immunosuppressive microenvironment of the tumor is improved after treatment.
Collapse
Affiliation(s)
- Yun Liu
- Department of Ultrasound Imaging, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443008, China
| | - Zhiwei Zheng
- Medical College of China Three Gorges University, Yichang 443002, China; Department of Ultrasound, Wuhan No.1 Hospital, Wuhan 430022, China
| | - Jiaxuan Han
- Medical College of China Three Gorges University, Yichang 443002, China
| | - Chen Lin
- Medical College of China Three Gorges University, Yichang 443002, China
| | - Chaoqi Liu
- Medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of tumor microenvironment and immunotherapy, Yichang 334002, China
| | - Yao Ma
- Department of Ultrasound Imaging, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443008, China.
| | - Yun Zhao
- Medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of tumor microenvironment and immunotherapy, Yichang 334002, China.
| |
Collapse
|
37
|
Yu J, Li M, Ren B, Cheng L, Wang X, Ma Z, Yong WP, Chen X, Wang L, Goh BC. Unleashing the efficacy of immune checkpoint inhibitors for advanced hepatocellular carcinoma: factors, strategies, and ongoing trials. Front Pharmacol 2023; 14:1261575. [PMID: 37719852 PMCID: PMC10501787 DOI: 10.3389/fphar.2023.1261575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer, representing approximately 85% of cases. The diagnosis is often made in the middle and late stages, necessitating systemic treatment as the primary therapeutic option. Despite sorafenib being the established standard of care for advanced HCC in the past decade, the efficacy of systemic therapy remains unsatisfactory, highlighting the need for novel treatment modalities. Recent breakthroughs in immunotherapy have shown promise in HCC treatment, particularly with immune checkpoint inhibitors (ICIs). However, the response rate to ICIs is currently limited to approximately 15%-20% of HCC patients. Recently, ICIs demonstrated greater efficacy in "hot" tumors, highlighting the urgency to devise more effective approaches to transform "cold" tumors into "hot" tumors, thereby enhancing the therapeutic potential of ICIs. This review presented an updated summary of the factors influencing the effectiveness of immunotherapy in HCC treatment, identified potential combination therapies that may improve patient response rates to ICIs, and offered an overview of ongoing clinical trials focusing on ICI-based combination therapy.
Collapse
Affiliation(s)
- Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Boxu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wei Peng Yong
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Motomura K, Kuwano A, Tanaka K, Koga Y, Masumoto A, Yada M. Potential Predictive Biomarkers of Systemic Drug Therapy for Hepatocellular Carcinoma: Anticipated Usefulness in Clinical Practice. Cancers (Basel) 2023; 15:4345. [PMID: 37686621 PMCID: PMC10486942 DOI: 10.3390/cancers15174345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In the systemic drug treatment of hepatocellular carcinoma, only the tyrosine kinase inhibitor (TKI) sorafenib was available for a period. This was followed by the development of regorafenib as a second-line treatment after sorafenib, and then lenvatinib, a new TKI, proved non-inferiority to sorafenib and became available as a first-line treatment. Subsequently, cabozantinib, another TKI, was introduced as a second-line treatment, along with ramucirumab, the only drug proven to be predictive of therapeutic efficacy when AFP levels are >400 ng/mL. It is an anti-VEGF receptor antibody. More recently, immune checkpoint inhibitors have become the mainstay of systemic therapy and can now be used as a first-line standard treatment for HCC. However, the objective response rate for these drugs is currently only 30% to 40%, and there is a high incidence of side effects. Additionally, there are no practical biomarkers to predict their therapeutic effects. Therefore, this review provides an overview of extensive research conducted on potential HCC biomarkers from blood, tissue, or imaging information that can be used in practice to predict the therapeutic efficacy of systemic therapy before its initiation.
Collapse
Affiliation(s)
- Kenta Motomura
- Department of Hepatology, Iizuka Hospital, 3-83 Yoshio-machi, Iizuka, Fukuoka 820-8505, Japan; (A.K.); (K.T.); (Y.K.); (A.M.); (M.Y.)
| | | | | | | | | | | |
Collapse
|
39
|
Brown ZJ, Ruff SM, Pawlik TM. The effect of liver disease on hepatic microenvironment and implications for immune therapy. Front Pharmacol 2023; 14:1225821. [PMID: 37608898 PMCID: PMC10441240 DOI: 10.3389/fphar.2023.1225821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the fourth leading cause of cancer-related death worldwide. HCC often occurs in the setting of chronic liver disease or cirrhosis. Recent evidence has highlighted the importance of the immune microenvironment in the development and progression of HCC, as well as its role in the potential response to therapy. Liver disease such as viral hepatitis, alcohol induced liver disease, and non-alcoholic fatty liver disease is a major risk factor for the development of HCC and has been demonstrated to alter the immune microenvironment. Alterations in the immune microenvironment may markedly influence the response to different therapeutic strategies. As such, research has focused on understanding the complex relationship among tumor cells, immune cells, and the surrounding liver parenchyma to treat HCC more effectively. We herein review the immune microenvironment, as well as the relative effect of liver disease on the immune microenvironment. In addition, we review how changes in the immune microenvironment can lead to therapeutic resistance, as well as highlight future strategies aimed at developing the next-generation of therapies for HCC.
Collapse
Affiliation(s)
- Zachary J. Brown
- Department of Surgery, New York University Long Island School of Medicine, Mineola, NY, United States
| | - Samantha M. Ruff
- James Comprehensive Cancer Center, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Timothy M. Pawlik
- James Comprehensive Cancer Center, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
40
|
Gordan JD, Keenan BP, Lim HC, Yarchoan M, Kelley RK. New Opportunities to Individualize Frontline Therapy in Advanced Stages of Hepatocellular Carcinoma. Drugs 2023; 83:1091-1109. [PMID: 37402062 DOI: 10.1007/s40265-023-01907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death globally and is rising in incidence. Until recently, treatment options for patients with advanced stages of HCC have been limited to antiangiogenic therapies with modest improvements in overall survival. The emerging role of immunotherapy with immune checkpoint inhibitors (ICI) in oncology has led to a rapid expansion in treatment options and improvements in outcomes for patients with advanced stages of HCC. Recent clinical trials have shown meaningful survival improvement in patients treated with the combination of bevacizumab and atezolizumab, as well as with the combination of tremelimumab with durvalumab, resulting in regulatory approvals of these regimens as frontline therapy. Beyond improvements in overall survival, ICI-based combination regimens achieve higher rates of durable treatment response than multikinase inhibitors and have favorable side effect profiles. With the emergence of doublet anti-angiogenic and immune checkpoint inhibitor (ICI) and dual ICI combinations, individualized therapy is now possible for patients based on co-morbidity profiles and other factors. These more potent systemic therapies are also being tested in earlier stages of disease and in combination with loco-regional therapies such as trans-arterial chemoembolization and stereotactic body radiotherapy. We summarize these advances and emerging therapeutic combinations currently in clinical trials.
Collapse
Affiliation(s)
- John D Gordan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, UC San Francisco, San Francisco, CA, USA.
| | - Bridget P Keenan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
- Cancer Immunotherapy Program, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
| | - Huat Chye Lim
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, UC San Francisco, San Francisco, CA, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Katie Kelley
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
- Cancer Immunotherapy Program, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Guerra P, Martini A, Pontisso P, Angeli P. Novel Molecular Targets for Immune Surveillance of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:3629. [PMID: 37509293 PMCID: PMC10377787 DOI: 10.3390/cancers15143629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common and aggressive cancer with a high mortality rate. The incidence of HCC is increasing worldwide, and the lack of effective screening programs often results in delayed diagnosis, making it a challenging disease to manage. Immunotherapy has emerged as a promising treatment option for different kinds of cancers, with the potential to stimulate the immune system to target cancer cells. However, the current immunotherapeutic approaches for HCC have shown limited efficacy. Since HCC arises within a complex tumour microenvironment (TME) characterized by the presence of various immune and stromal cell types, the understanding of this interaction is crucial for the identification of effective therapy. In this review, we highlight recent advances in our understanding of the TME of HCC and the immune cells involved in anti-tumour responses, including the identification of new possible targets for immunotherapy. We illustrate a possible classification of HCC based on the tumour immune infiltration and give evidence about the role of SerpinB3, a serine protease inhibitor involved in the regulation of the immune response in different cancers.
Collapse
Affiliation(s)
- Pietro Guerra
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35122 Padova, Italy
| | - Andrea Martini
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35122 Padova, Italy
| | - Patrizia Pontisso
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35122 Padova, Italy
| | - Paolo Angeli
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35122 Padova, Italy
| |
Collapse
|
42
|
Lin HS, Pang WP, Yuan H, Kong YZ, Long FL, Zhang RZ, Yang L, Fang QL, Pan AP, Fan XH, Li MF. Molecular subtypes based on DNA sensors predict prognosis and tumor immunophenotype in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:6798-6821. [PMID: 37451838 PMCID: PMC10415551 DOI: 10.18632/aging.204870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
DNA sensors play crucial roles in inflammation and have been indicated to be involved in antitumor or tumorigenesis, while it is still unclear whether DNA sensors have potential roles in the prognosis and immunotherapy of hepatocellular carcinoma (HCC). Herein, The Cancer Genome Atlas and Gene Expression Omnibus databases were used to analyze RNA sequencing data and clinical information. A total of 14 DNA sensors were collected and performed consensus clustering to determine their molecular mechanisms in HCC. Two distinct molecular subtypes (Clusters C1 and C2) were identified and were associated with different overall survival (OS). Immune subtype analysis revealed that C1 was mainly characterized by inflammation, while C2 was characterized by lymphocyte depletion. Immune scoring and immunomodulatory function analysis confirmed the different immune microenvironment of C1 and C2. Notably, significant differences in "Hot Tumor" Immunophenotype were observed between the two subtypes. Moreover, the prognostic model based on DNA sensors is capable of effectively predicting the OS of HCC patients. Besides, the chemotherapeutic drug analysis showed the different sensitivity of two subtypes. Taken together, our study shows that the proposed DNA sensors were a reliable signature to predict the prognosis and immunotherapy response with potential application in the clinical decision and treatment of HCC.
Collapse
Affiliation(s)
- Hong-Sheng Lin
- Department of Microbiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Wen-Peng Pang
- Department of Microbiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Hao Yuan
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Yin-Zhi Kong
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Fu-Li Long
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Rong-Zhen Zhang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Li Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Qiao-Ling Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Ai-Ping Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Xiao-Hui Fan
- Department of Microbiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Ming-Fen Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| |
Collapse
|
43
|
Papadakos SP, Stergiou IE, Gkolemi N, Arvanitakis K, Theocharis S. Unraveling the Significance of EPH/Ephrin Signaling in Liver Cancer: Insights into Tumor Progression and Therapeutic Implications. Cancers (Basel) 2023; 15:3434. [PMID: 37444544 DOI: 10.3390/cancers15133434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Liver cancer is a complex and challenging disease with limited treatment options and dismal prognosis. Understanding the underlying molecular mechanisms driving liver cancer progression and metastasis is crucial for developing effective therapeutic strategies. The EPH/ephrin system, which comprises a family of cell surface receptors and their corresponding ligands, has been implicated in the pathogenesis of HCC. This review paper aims to provide an overview of the current understanding of the role of the EPH/ephrin system in HCC. Specifically, we discuss the dysregulation of EPH/ephrin signaling in HCC and its impact on various cellular processes, including cell proliferation, migration, and invasion. Overall, the EPH/ephrin signaling system emerges as a compelling and multifaceted player in liver cancer biology. Elucidating its precise mechanisms and understanding its implications in disease progression and therapeutic responses may pave the way for novel targeted therapies and personalized treatment approaches for liver cancer patients. Further research is warranted to unravel the full potential of the EPH/ephrin system in liver cancer and its clinical translation.
Collapse
Affiliation(s)
- Stavros P Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioanna E Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolina Gkolemi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
44
|
Ruff SM, Manne A, Cloyd JM, Dillhoff M, Ejaz A, Pawlik TM. Current Landscape of Immune Checkpoint Inhibitor Therapy for Hepatocellular Carcinoma. Curr Oncol 2023; 30:5863-5875. [PMID: 37366922 PMCID: PMC10297531 DOI: 10.3390/curroncol30060439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023] Open
Abstract
The liver maintains a balance between immune tolerance and activation in its role as a filtration system. Chronic inflammation disrupts this immune microenvironment, thereby allowing for the rise and progression of cancer. Hepatocellular carcinoma (HCC) is a liver tumor generally diagnosed in the setting of chronic liver disease. When diagnosed early, the primary treatment is surgical resection, liver transplantation, or liver directed therapies. Unfortunately, patients with HCC often present at an advanced stage or with poor liver function, thereby limiting options. To further complicate matters, most systemic therapies are relatively limited and ineffective among patients with advanced disease. Recently, the IMbrave150 trial demonstrated that the combination of atezolizumab and bevacizumab was associated with better survival compared to sorafenib among patients with advanced HCC. As such, atezolizumab and bevacizumab is now recommended first-line therapy for these patients. Tumor cells work to create an immunotolerant environment by preventing the activation of stimulatory immunoreceptors and upregulating expression of proteins that bind inhibitory immunoreceptors. ICIs work to block these interactions and bolster the anti-tumor function of the immune system. We herein provide an overview of the use of ICIs in the treatment of HCC.
Collapse
Affiliation(s)
- Samantha M. Ruff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jordan M. Cloyd
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Mary Dillhoff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Aslam Ejaz
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Timothy M. Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
45
|
De Re V, Tornesello ML, Racanelli V, Prete M, Steffan A. Non-Classical HLA Class 1b and Hepatocellular Carcinoma. Biomedicines 2023; 11:1672. [PMID: 37371767 DOI: 10.3390/biomedicines11061672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A number of studies are underway to gain a better understanding of the role of immunity in the pathogenesis of hepatocellular carcinoma and to identify subgroups of individuals who may benefit the most from systemic therapy according to the etiology of their tumor. Human leukocyte antigens play a key role in antigen presentation to T cells. This is fundamental to the host's defense against pathogens and tumor cells. In addition, HLA-specific interactions with innate lymphoid cell receptors, such those present on natural killer cells and innate lymphoid cell type 2, have been shown to be important activators of immune function in the context of several liver diseases. More recent studies have highlighted the key role of members of the non-classical HLA-Ib and the transcript adjacent to the HLA-F locus, FAT10, in hepatocarcinoma. The present review analyzes the major contribution of these molecules to hepatic viral infection and hepatocellular prognosis. Particular attention has been paid to the association of natural killer and Vδ2 T-cell activation, mediated by specific HLA class Ib molecules, with risk assessment and novel treatment strategies to improve immunotherapy in HCC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131 Naples, Italy
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, 'Aldo Moro' University of Bari, 70124 Bari, Italy
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, 'Aldo Moro' University of Bari, 70124 Bari, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| |
Collapse
|
46
|
Peeters F, Dekervel J. Considerations for individualized first-line systemic treatment in advanced hepatocellular carcinoma. Curr Opin Pharmacol 2023; 70:102365. [PMID: 36972646 DOI: 10.1016/j.coph.2023.102365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 03/28/2023]
Abstract
Primary liver cancer is the third most common cause of cancer-related death worldwide and hepatocellular carcinoma (HCC) accounts for approximately 80%-90% of all primary liver malignancies. Until 2007, there was no effective treatment option available for patients diagnosed with advanced HCC, whereas today, both multireceptor tyrosine kinase inhibitors as well as immunotherapy combinations have entered clinical practice. The choice between the different options is a tailor-made decision to match the efficacy and safety data of the clinical trials with the specific patient and disease profile. This review provides clinical stepstones to make an individualized decision for every patient with its specific tumor and liver characteristics in mind.
Collapse
Affiliation(s)
- Frederik Peeters
- Digestive Oncology, University Hospitals Leuven, B-3000 Leuven, Belgium. https://twitter.com/@PeetersFre
| | - Jeroen Dekervel
- Digestive Oncology, University Hospitals Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
47
|
Papadakos SP, Arvanitakis K, Stergiou IE, Lekakis V, Davakis S, Christodoulou MI, Germanidis G, Theocharis S. The Role of TLR4 in the Immunotherapy of Hepatocellular Carcinoma: Can We Teach an Old Dog New Tricks? Cancers (Basel) 2023; 15:2795. [PMID: 37345131 DOI: 10.3390/cancers15102795] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is a leading cause of cancer-related death worldwide. Immunotherapy has emerged as the mainstay treatment option for unresectable HCC. Toll-like receptor 4 (TLR4) plays a crucial role in the innate immune response by recognizing and responding primarily to bacterial lipopolysaccharides. In addition to its role in the innate immune system, TLR4 has also been implicated in adaptive immunity, including specific anti-tumor immune responses. In particular, the TLR4 signaling pathway seems to be involved in the regulation of several cancer hallmarks, such as the continuous activation of cellular pathways that promote cell division and growth, the inhibition of programmed cell death, the promotion of several invasion and metastatic mechanisms, epithelial-to-mesenchymal transition, angiogenesis, drug resistance, and epigenetic modifications. Emerging evidence further suggests that TLR4 signaling holds promise as a potential immunotherapeutic target in HCC. The aim of this review was to explore the multilayer aspects of the TLR4 signaling pathway, regarding its role in liver diseases and HCC, as well as its potential utilization as an immunotherapy target for HCC.
Collapse
Affiliation(s)
- Stavros P Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioanna E Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasileios Lekakis
- Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Spyridon Davakis
- First Department of Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
48
|
Nishida N, Aoki T, Morita M, Chishina H, Takita M, Ida H, Hagiwara S, Minami Y, Ueshima K, Kudo M. Non-Inflamed Tumor Microenvironment and Methylation/Downregulation of Antigen-Presenting Machineries in Cholangiocarcinoma. Cancers (Basel) 2023; 15:2379. [PMID: 37190307 PMCID: PMC10136850 DOI: 10.3390/cancers15082379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a refractory cancer; a majority of CCAs represents a non-inflamed tumor phenotype that should be resistant to treatment, including immune checkpoint inhibitors (ICIs). In this study, we aimed to understand the molecular characteristics associated with non-inflamed CCAs. The genetic/epigenetic status of 36 CCAs was obtained from the Cancer Genome Atlas (PanCancerAtlas). CCAs were classified based on immune class using hierarchical clustering analysis of gene expressions related to tumor-infiltrating lymphocytes. The associations between immune class and genetic/epigenetic events were analyzed. We found that the tumors with alterations in FGFR2 and IDH1/2 had a "non-inflamed" tumor phenotype. A significant association was observed between the non-inflamed group and the downregulation of genes involved in antigen presentation (p = 0.0015). The expression of antigen-presenting machineries was inversely correlated with their DNA methylation levels, where 33.3% of tumors had an upregulation/low-methylation pattern, and 66.7% of tumors had a downregulation/high-methylation pattern. All tumors in the "inflamed" group exhibited an upregulation/low-methylation pattern. In contrast, 24 of 30 tumors in the non-inflamed group represent the downregulation/high-methylation pattern (p = 0.0005). Methylation with downregulation of antigen-presenting machineries is associated with the "non-inflamed" tumor phenotype of CCAs. This evidence provides important insights for developing new strategies for treating CCA.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, 377-2 Ohno-higashi, Osaka-sayama 589-8511, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ding R, Zhao C, Jing Y, Chen R, Meng Q. Basement membrane-related regulators for prediction of prognoses and responses to diverse therapies in hepatocellular carcinoma. BMC Med Genomics 2023; 16:81. [PMID: 37081465 PMCID: PMC10116671 DOI: 10.1186/s12920-023-01504-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a global health threat. Finding a novel biomarker for assessing the prognosis and new therapeutic targets is vital to treating this patient population. Our study aimed to explore the contribution of basement membrane-related regulators (BMR) to prognostic assessment and therapeutic response prediction in HCC. MATERIAL AND METHODS The RNA sequencing and clinical information of HCC were downloaded from TCGA-LIHC, ICGC-JP, GSE14520, GSE104580, and CCLE datasets. The BMR signature was created by the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and used to separate HCC patients into low- and high-risk groups. We conducted analyses using various R 4.1.3 software packages to compare prognoses and responses to immunotherapy, transcatheter arterial chemoembolization (TACE), and chemotherapeutic drugs between the groups. Additionally, stemness indices, molecular functions, and somatic mutation analyses were further explored in these subgroups. RESULTS The BMR signature included 3 basement membrane-related genes (CTSA, P3H1, and ADAM9). We revealed that BMR signature was an independent risk contributor to poor prognosis in HCC, and high-risk group patients presented shorter overall survival. We discovered that patients in the high-risk group might be responsive to immunotherapy, while patients in the low-risk group may be susceptible to TACE therapy. Over 300 agents were screened to identify effective drugs for the two subgroups. CONCLUSION Overall, basement membrane-related regulators represent novel biomarkers in HCC for assessing prognosis, response to immunotherapy, the effectiveness of TACE therapy, and drug susceptibility.
Collapse
Affiliation(s)
- Ruili Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuhan, 430061, Hubei Province, China
| | - Chuanbing Zhao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuhan, 430061, Hubei Province, China
| | - Yixin Jing
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuhan, 430061, Hubei Province, China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuhan, 430061, Hubei Province, China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuhan, 430061, Hubei Province, China.
| |
Collapse
|
50
|
Haghnejad V, Muller M, Blaise L, Gerolami R, Bouattour M, Assenat E, Manfredi S, Peron JM, Burcheri-Curatolo A, Lopez A, Ressiot E, Nahon P, Bronowicki JP. Atezolizumab plus bevacizumab in advanced hepatocellular carcinoma after treatment failure with multikinase inhibitors. Dig Liver Dis 2023:S1590-8658(23)00518-2. [PMID: 37019737 DOI: 10.1016/j.dld.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND AND AIMS Data on the effectiveness of atezolizumab plus bevacizumab (atezo-bev) after failure of multikinase inhibitor (MKI) therapy in patients with advanced hepatocellular carcinoma are scarce. METHODS This retrospective multicentre study included all consecutive patients treated with atezo-bev after failing one or more MKI treatments in the setting of an early access program. The primary endpoint was the objective response rate (ORR) by investigator assessment (using Response Evaluation Criteria in Solid Tumors v1.1). Overall survival (OS) and progression-free survival (PFS) were assessed using the Kaplan‒Meier method. RESULTS Fifty patients were included in this analysis. Atezo-bev was started between April 2020 and November 2021 (median follow-up, 18.21 months). The investigator-assessed ORR was 14% (95% CI 5.37-22.63%), with 7 patients displaying a tumour response, and the disease control rate was 56% (95% CI 51.21-60.8%). After starting atezo-bev, the median OS was 17.1 months (95% CI 10.58-22.01), and the median PFS was 7.99 months (95% CI 4.78-10.50). Treatment-related adverse events led to treatment discontinuation in 7 patients. CONCLUSIONS Atezo-bev every three weeks showed clinical benefit for a proportion of patients previously treated with one or multiple lines of MKIs.
Collapse
Affiliation(s)
- Vincent Haghnejad
- Department of Hepatology and Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Marie Muller
- Department of Hepatology and Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Lorraine Blaise
- Liver Unit, Bobigny; University of Sorbonne Paris Nord, F-93000 Bobigny, France
| | - Rene Gerolami
- Department of Hepatology, La Timone University Hospital, Marseille, France
| | - Mohamed Bouattour
- Liver Cancer Unit, Assistance-Publique Hôpitaux de Paris, Beaujon University Hospital, Clichy, France
| | - Eric Assenat
- Department of Oncology, St-Eloi University Hospital, Montpellier, France
| | - Sylvain Manfredi
- Department of Hepatology and Gastroenterology, Dijon University Hospital, France; INSERM U 1231, University of Bourgogne Franche Comté, Dijon, France
| | | | - Adriano Burcheri-Curatolo
- Department of Biopathology, CHRU Nancy, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Anthony Lopez
- Department of Hepatology and Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | | | - Pierre Nahon
- Liver Unit, Bobigny; University of Sorbonne Paris Nord, F-93000 Bobigny, France; Inserm, UMR-1138 "Functional Genomics of Solid Tumors", Centre de recherche des Cordeliers, University of Paris, Paris, France
| | - Jean-Pierre Bronowicki
- Department of Hepatology and Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France.
| |
Collapse
|