1
|
van der Werf't Lam AS, Helderman NC, Boot A, Terlouw D, Morreau H, Mei H, Esveldt-van Lange REE, Lakeman IMM, van Asperen CJ, Aten E, Hofland N, de Koning Gans PAM, Rayner E, Tops C, de Wind N, van Wezel T, Nielsen M. Assessing pathogenicity of mismatch repair variants of uncertain significance by molecular tumor analysis. Exp Mol Pathol 2024; 140:104940. [PMID: 39437510 DOI: 10.1016/j.yexmp.2024.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Functional analyses are the main method to classify mismatch repair (MMR) gene variants of uncertain significance (VUSs). However, the pathogenicity remains unclear for many variants because of conflicting results between clinical, molecular, and functional data. In this study, we evaluated whether whole exome sequencing (WES) could add another layer of evidence to elucidate the pathogenicity of MMR variants with conflicting interpretations. WES was performed on formalin-fixed paraffin-embedded tumor tissue of eight patients with a constitutional MMR VUS (seven families), including eight colorectal and two endometrial carcinomas and one ovarian carcinoma. Cell-free CIMRA assays were performed to assign Odds of Pathogenicity to these VUSs. In four families, seven tumors showed MMR deficiency-associated mutational signatures, supporting the pathogenicity of the VUS. Moreover, somatic (second) MMR hits identified in the WES data were found to explain MMR staining patterns when the MMR staining was discordant with the reported germline MMR gene variant. In conclusion, WES did not significantly reclassify VUS in these cases but clarified some phenotypic aspects such as age of onset and explanations in case of discordant MMR stainings.
Collapse
Affiliation(s)
| | - Noah C Helderman
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnoud Boot
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Diantha Terlouw
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailian Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Inge M M Lakeman
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Emmelien Aten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nandy Hofland
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Pia A M de Koning Gans
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Emily Rayner
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Carli Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
2
|
Sowter P, Gallon R, Hayes C, Phelps R, Borthwick G, Prior S, Combe J, Buist H, Pearlman R, Hampel H, Goodfellow P, Evans DG, Crosbie EJ, Ryan N, Burn J, Santibanez-Koref M, Jackson MS. Detection of Mismatch Repair Deficiency in Endometrial Cancer: Assessment of IHC, Fragment Length Analysis, and Amplicon Sequencing Based MSI Testing. Cancers (Basel) 2024; 16:3970. [PMID: 39682157 DOI: 10.3390/cancers16233970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Mismatch repair (MMR) deficiency can be indicative of Lynch syndrome (LS) and guide treatment with immune checkpoint inhibitors. Colorectal cancers (CRCs) and endometrial cancers (ECs) are routinely screened to identify LS, primarily using immunohistochemistry (IHC) or microsatellite instability (MSI) testing, but concordance between these methods is variable in ECs. Here, we investigate this variability in 361 ECs from the Ohio OCCPI/OPTEC (n = 196) and Manchester PETALS (n = 165) trials, where concordance between assays differed significantly. Methods: Samples were re-tested using the amplicon-sequencing-based Newcastle MSI assay (NCL_MSI), and analysed with respect to existing IHC, MSI and MLH1 promoter hypermethylation data. Results: NCL_MSI showed consistency with the Ohio results (94% and 97% concordance with IHC and original MSI assays, respectively) and increased concordance within the Manchester cohort from 78% to 86% (MSI) and 84% (IHC). Among discordant Manchester samples, NCL_MSI was significantly associated with MLH1 promoter methylation status (p = 0.0028) and had the highest concordance with methylation, (62/69 samples, 90%), indicating utility as a screening tool in this tumour type. However, tumours with germline MSH6 defects were only detected efficiently with IHC; seven out of eight LS tumours classified as MSS by either MSI assay had isolated MSH6 loss, compared to four out of twelve classified as MSI-H by both (p = 0.028). Furthermore, reduced MSI signal was observed in tumours with isolated MSH6 loss (p = 0.009 Ohio, p = 6.2 × 10-5 Manchester) and in both ECs and CRCs with germline defects, although this only reached significance in CRCs (p = 0.002). Conclusions: These results provide further evidence that ECs with MSH6 loss in particular and LS tumours in general have an attenuated MSI signal, providing support for current guidelines specifically recommending IHC for LS detection and immune checkpoint therapy assessment in EC.
Collapse
Affiliation(s)
- Peter Sowter
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Richard Gallon
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Christine Hayes
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Rachel Phelps
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Gillian Borthwick
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Shaun Prior
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jenny Combe
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Holly Buist
- Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Rachel Pearlman
- Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Heather Hampel
- Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Paul Goodfellow
- Department of Obstetrics and Gynecology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - D Gareth Evans
- Division of Evolution Infection and Genomic Science, University of Manchester, Manchester M13 9PL, UK
| | - Emma J Crosbie
- Division of Gynaecology, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Cancer Sciences, St Mary's Hospital, University of Manchester, Manchester M13 9WL, UK
| | - Neil Ryan
- College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH16 4SB, UK
| | - John Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | | | - Michael S Jackson
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
3
|
Pflüger MJ, Brosens LAA, Hruban RH. Precursor lesions in familial and hereditary pancreatic cancer. Fam Cancer 2024; 23:267-278. [PMID: 38319536 DOI: 10.1007/s10689-024-00359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Infiltrating ductal adenocarcinoma of the pancreas, referred to here as "pancreatic cancer," is one of the deadliest of all of the solid malignancies. The five-year survival rate in the United States for individuals diagnosed today with pancreatic cancer is a dismal 12%. Many invasive cancers, including pancreatic cancer, however, arise from histologically and genetically well-characterized precursor lesions, and these precancers are curable. Precursor lesions therefore are an attractive target for early detection and treatment. This is particularly true for individuals with an increased risk of developing invasive cancer, such as individuals with a strong family history of pancreatic cancer, and individuals with a germline variant known to increase the risk of developing pancreatic cancer. There is therefore a need to understand the precursor lesions that can give rise to invasive pancreatic cancer in these individuals.
Collapse
Affiliation(s)
- Michael J Pflüger
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Carnegie Room 415, 600 North Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
4
|
Geurts BS, Zeverijn LJ, van Berge Henegouwen JM, van der Wijngaart H, Hoes LR, de Wit GF, Spiekman IA, Battaglia TW, van Beek DM, Roepman P, Jansen AM, de Leng WW, Broeks A, Labots M, van Herpen CM, Gelderblom H, Verheul HM, Snaebjornsson P, Voest EE. Characterization of discordance between mismatch repair deficiency and microsatellite instability testing may prevent inappropriate treatment with immunotherapy. J Pathol 2024; 263:288-299. [PMID: 38747304 DOI: 10.1002/path.6279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 06/12/2024]
Abstract
In the Drug Rediscovery Protocol (DRUP), patients with cancer are treated based on their tumor molecular profile with approved targeted and immunotherapies outside the labeled indication. Importantly, patients undergo a tumor biopsy for whole-genome sequencing (WGS) which allows for a WGS-based evaluation of routine diagnostics. Notably, we observed that not all biopsies of patients with dMMR/MSI-positive tumors as determined by routine diagnostics were classified as microsatellite-unstable by subsequent WGS. Therefore, we aimed to evaluate the discordance rate between routine dMMR/MSI diagnostics and WGS and to further characterize discordant cases. We assessed patients enrolled in DRUP with dMMR/MSI-positive tumors identified by routine diagnostics, who were treated with immune checkpoint blockade (ICB) and for whom WGS data were available. Patient and tumor characteristics, study treatment outcomes, and material from routine care were retrieved from the patient medical records and via Palga (the Dutch Pathology Registry), and were compared with WGS results. Initially, discordance between routine dMMR/MSI diagnostics and WGS was observed in 13 patients (13/121; 11%). The majority of these patients did not benefit from ICB (11/13; 85%). After further characterization, we found that in six patients (5%) discordance was caused by dMMR tumors that did not harbor an MSI molecular phenotype by WGS. In six patients (5%), discordance was false due to the presence of multiple primary tumors (n = 3, 2%) and misdiagnosis of dMMR status by immunohistochemistry (n = 3, 2%). In one patient (1%), the exact underlying cause of discordance could not be identified. Thus, in this group of patients limited to those initially diagnosed with dMMR/MSI tumors by current routine diagnostics, the true assay-based discordance rate between routine dMMR/MSI-positive diagnostics and WGS was 5%. To prevent inappropriate ICB treatment, clinicians and pathologists should be aware of the risk of multiple primary tumors and the limitations of different tests. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Birgit S Geurts
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Laurien J Zeverijn
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | - Hanneke van der Wijngaart
- Department of Medical Oncology, GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Louisa R Hoes
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Gijs F de Wit
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Ilse Ac Spiekman
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thomas W Battaglia
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - Anne Ml Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wendy Wj de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Carla Ml van Herpen
- Department of Medical Oncology, Radboud Medical Center, Nijmegen, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk Mw Verheul
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Petur Snaebjornsson
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Emile E Voest
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
5
|
Møller P, Haupt S, Ahadova A, Kloor M, Sampson JR, Sunde L, Seppälä T, Burn J, Bernstein I, Capella G, Evans DG, Lindblom A, Winship I, Macrae F, Katz L, Laish I, Vainer E, Monahan K, Half E, Horisberger K, da Silva LA, Heuveline V, Therkildsen C, Lautrup C, Klarskov LL, Cavestro GM, Möslein G, Hovig E, Dominguez-Valentin M. Incidences of colorectal adenomas and cancers under colonoscopy surveillance suggest an accelerated "Big Bang" pathway to CRC in three of the four Lynch syndromes. Hered Cancer Clin Pract 2024; 22:6. [PMID: 38741120 DOI: 10.1186/s13053-024-00279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Colorectal cancers (CRCs) in the Lynch syndromes have been assumed to emerge through an accelerated adenoma-carcinoma pathway. In this model adenomas with deficient mismatch repair have an increased probability of acquiring additional cancer driver mutation(s) resulting in more rapid progression to malignancy. If this model was accurate, the success of colonoscopy in preventing CRC would be a function of the intervals between colonoscopies and mean sojourn time of detectable adenomas. Contrary to expectations, colonoscopy did not decrease incidence of CRC in the Lynch syndromes and shorter colonoscopy intervals have not been effective in reducing CRC incidence. The prospective Lynch Syndrome Database (PLSD) was designed to examine these issues in carriers of pathogenic variants of the mis-match repair (path_MMR) genes. MATERIALS AND METHODS We examined the CRC and colorectal adenoma incidences in 3,574 path_MLH1, path_MSH2, path_MSH6 and path_PMS2 carriers subjected to regular colonoscopy with polypectomy, and considered the results based on sojourn times and stochastic probability paradigms. RESULTS Most of the path_MMR carriers in each genetic group had no adenomas. There was no association between incidences of CRC and the presence of adenomas. There was no CRC observed in path_PMS2 carriers. CONCLUSIONS Colonoscopy prevented CRC in path_PMS2 carriers but not in the others. Our findings are consistent with colonoscopy surveillance blocking the adenoma-carcinoma pathway by removing identified adenomas which might otherwise become CRCs. However, in the other carriers most CRCs likely arised from dMMR cells in the crypts that have an increased mutation rate with increased stochastic chaotic probabilities for mutations. Therefore, this mechanism, that may be associated with no or only a short sojourn time of MSI tumours as adenomas, could explain the findings in our previous and current reports.
Collapse
Affiliation(s)
- Pål Møller
- Department of Tumour Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, 0379, Norway.
| | - Saskia Haupt
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Lone Sunde
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, 9000, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, DK-8000, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Toni Seppälä
- Faculty of Medicine and Health Technology, Tays Cancer Center, Tampere University, Tampere University Hospital, Tampere, Finland
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- Applied Tumour Genomics, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - John Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Inge Bernstein
- Dept. of Quality and Coherence, Aalborg University Hospital, Aalborg, 9000, Denmark
- Department of Clinical Medicine, Aalborg University Hospital, Aalborg University, Aalborg, 9100, Denmark
| | - Gabriel Capella
- Hereditary Cancer Program, Institut Català d'Oncologia-IDIBELL, L; Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Division of Evolution, Infection and Genomic Sciences, University of Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, 171 76, Sweden
- Dept Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Ingrid Winship
- Genomic Medicine, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Finlay Macrae
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Lior Katz
- Department of Gastroenterology, Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah, Israel
| | - Ido Laish
- Gastroenerolgy institute, Sheba medical center and Faculty of medicine Tel Aviv university, Tel Aviv, Israel
| | - Elez Vainer
- Department of Gastroenterology, Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah, Israel
| | - Kevin Monahan
- Lynch Syndrome & Family Cancer Clinic, Centre for Familial Intestinal Caner, St Mark's Hospital, London, UK
| | - Elizabeth Half
- Gastrointestinal Cancer Prevention Unit, Gastroenterology Department, Rambam Health Care Campus, Haifa, Israel
| | | | | | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Christina Therkildsen
- Gastro Unit, The Danish HNPCC Register, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Charlotte Lautrup
- Department of Clinical Genetics, Aarhus University Hospital, DK 8000, Aarhus, Denmark
| | - Louise L Klarskov
- Dept of Pathology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - Gabriela Möslein
- Surgical Center for Hereditary Tumors, University Düsseldorf, Ev. Bethesda Khs, Duisburg, Germany
| | - Eivind Hovig
- Department of Tumour Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, 0379, Norway
- Centre for bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Mev Dominguez-Valentin
- Department of Tumour Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, 0379, Norway
| |
Collapse
|
6
|
Helderman NC, van Leerdam ME, Kloor M, Ahadova A, Nielsen M. Emerge of colorectal cancer in Lynch syndrome despite colonoscopy surveillance: A challenge of hide and seek. Crit Rev Oncol Hematol 2024; 197:104331. [PMID: 38521284 DOI: 10.1016/j.critrevonc.2024.104331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
Even with colonoscopy surveillance, Lynch syndromes (LS) carriers still develop colorectal cancer (CRC). The cumulative incidence of CRCs under colonoscopy surveillance varies depending on the affected mismatch repair (MMR) gene. However, the precise mechanisms driving these epidemiological patterns remain incompletely understood. In recent years, several potential mechanisms explaining the occurrence of CRCs during colonoscopy surveillance have been proposed in individuals with and without LS. These encompass biological factors like concealed/accelerated carcinogenesis through a bypassed adenoma stage and accelerated progression from adenomas. Alongside these, various colonoscopy-related factors may contribute to formation of CRCs under colonoscopy surveillance, like missed yet detectable (pre)cancerous lesions, detected yet incompletely removed (pre)cancerous lesions, and colonoscopy-induced carcinogenesis due to tumor cell reimplantation. In this comprehensive literature update, we reviewed these potential factors and evaluated their relevance to each MMR group in an attempt to raise further awareness and stimulate research regarding this conflicting phenomenon.
Collapse
Affiliation(s)
- Noah C Helderman
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands; Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Matthias Kloor
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
7
|
Kiran N, Yashaswini C, Maheshwari R, Bhattacharya S, Prajapati BG. Advances in Precision Medicine Approaches for Colorectal Cancer: From Molecular Profiling to Targeted Therapies. ACS Pharmacol Transl Sci 2024; 7:967-990. [PMID: 38633600 PMCID: PMC11019743 DOI: 10.1021/acsptsci.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Precision medicine is transforming colorectal cancer treatment through the integration of advanced technologies and biomarkers, enhancing personalized and effective disease management. Identification of key driver mutations and molecular profiling have deepened our comprehension of the genetic alterations in colorectal cancer, facilitating targeted therapy and immunotherapy selection. Biomarkers such as microsatellite instability (MSI) and DNA mismatch repair deficiency (dMMR) guide treatment decisions, opening avenues for immunotherapy. Emerging technologies such as liquid biopsies, artificial intelligence, and machine learning promise to revolutionize early detection, monitoring, and treatment selection in precision medicine. Despite these advancements, ethical and regulatory challenges, including equitable access and data privacy, emphasize the importance of responsible implementation. The dynamic nature of colorectal cancer, with its tumor heterogeneity and clonal evolution, underscores the necessity for adaptive and personalized treatment strategies. The future of precision medicine in colorectal cancer lies in its potential to enhance patient care, clinical outcomes, and our understanding of this intricate disease, marked by ongoing evolution in the field. The current reviews focus on providing in-depth knowledge on the various and diverse approaches utilized for precision medicine against colorectal cancer, at both molecular and biochemical levels.
Collapse
Affiliation(s)
- Neelakanta
Sarvashiva Kiran
- Department
of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064, India
| | - Chandrashekar Yashaswini
- Department
of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064, India
| | - Rahul Maheshwari
- School
of Pharmacy and Technology Management, SVKM’s
Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC,, Jadcherla, Hyderabad 509301, India
| | - Sankha Bhattacharya
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Bhupendra G. Prajapati
- Shree.
S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
| |
Collapse
|
8
|
Challoner BR, Woolston A, Lau D, Buzzetti M, Fong C, Barber LJ, Anandappa G, Crux R, Assiotis I, Fenwick K, Begum R, Begum D, Lund T, Sivamanoharan N, Sansano HB, Domingo-Arada M, Tran A, Pandha H, Church D, Eccles B, Ellis R, Falk S, Hill M, Krell D, Murugaesu N, Nolan L, Potter V, Saunders M, Shiu KK, Guettler S, Alexander JL, Lázare-Iglesias H, Kinross J, Murphy J, von Loga K, Cunningham D, Chau I, Starling N, Ruiz-Bañobre J, Dhillon T, Gerlinger M. Genetic and immune landscape evolution in MMR-deficient colorectal cancer. J Pathol 2024; 262:226-239. [PMID: 37964706 DOI: 10.1002/path.6228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023]
Abstract
Mismatch repair-deficient (MMRd) colorectal cancers (CRCs) have high mutation burdens, which make these tumours immunogenic and many respond to immune checkpoint inhibitors. The MMRd hypermutator phenotype may also promote intratumour heterogeneity (ITH) and cancer evolution. We applied multiregion sequencing and CD8 and programmed death ligand 1 (PD-L1) immunostaining to systematically investigate ITH and how genetic and immune landscapes coevolve. All cases had high truncal mutation burdens. Despite pervasive ITH, driver aberrations showed a clear hierarchy. Those in WNT/β-catenin, mitogen-activated protein kinase, and TGF-β receptor family genes were almost always truncal. Immune evasion (IE) drivers, such as inactivation of genes involved in antigen presentation or IFN-γ signalling, were predominantly subclonal and showed parallel evolution. These IE drivers have been implicated in immune checkpoint inhibitor resistance or sensitivity. Clonality assessments are therefore important for the development of predictive immunotherapy biomarkers in MMRd CRCs. Phylogenetic analysis identified three distinct patterns of IE driver evolution: pan-tumour evolution, subclonal evolution, and evolutionary stasis. These, but neither mutation burdens nor heterogeneity metrics, significantly correlated with T-cell densities, which were used as a surrogate marker of tumour immunogenicity. Furthermore, this revealed that genetic and T-cell infiltrates coevolve in MMRd CRCs. Low T-cell densities in the subgroup without any known IE drivers may indicate an, as yet unknown, IE mechanism. PD-L1 was expressed in the tumour microenvironment in most samples and correlated with T-cell densities. However, PD-L1 expression in cancer cells was independent of T-cell densities but strongly associated with loss of the intestinal homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and may contribute to a higher recurrence risk of MMRd CRCs with impaired CDX2 expression. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Andrew Woolston
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - David Lau
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Marta Buzzetti
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Louise J Barber
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Richard Crux
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | | | - Dipa Begum
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Tom Lund
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Nanna Sivamanoharan
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | - Amina Tran
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - David Church
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bryony Eccles
- University Hospitals Dorset NHS Foundation Trust, Bournemouth, UK
| | | | - Stephen Falk
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Mark Hill
- Maidstone and Tunbridge Wells NHS Trust, Maidstone, UK
| | - Daniel Krell
- Royal Free London NHS Foundation Trust, London, UK
| | - Nirupa Murugaesu
- St George's University Hospitals NHS Foundation Trust, London, UK
- Genomics England, London, UK
| | - Luke Nolan
- Hampshire Hospitals NHS Foundation Trust, Winchester, UK
| | - Vanessa Potter
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | - Kai-Keen Shiu
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | - Jamie Murphy
- Imperial College Healthcare NHS Trust, London, UK
| | - Katharina von Loga
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Ian Chau
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Juan Ruiz-Bañobre
- University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tony Dhillon
- Royal Surrey Hospital NHS Foundation Trust, Guildford, UK
| | - Marco Gerlinger
- Barts Cancer Institute, Queen Mary University of London, London, UK
- St Bartholomew's Hospital Cancer Centre, London, UK
| |
Collapse
|
9
|
Valle L. Lynch Syndrome: A Single Hereditary Cancer Syndrome or Multiple Syndromes Defined by Different Mismatch Repair Genes? Gastroenterology 2023; 165:20-23. [PMID: 37142200 DOI: 10.1053/j.gastro.2023.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Affiliation(s)
- Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology and, Oncobell Program, IDIBELL, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
10
|
Bernstein I, Therkildsen C, Seppälä TT. Editorial: Identification, risk stratification, and optimized management for Lynch Syndrome. Front Oncol 2023; 13:1223568. [PMID: 37361579 PMCID: PMC10287170 DOI: 10.3389/fonc.2023.1223568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Affiliation(s)
- Inge Bernstein
- Department of Surgical Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Toni T. Seppälä
- Faculty of Medicine and Health Technology, Tampere University and TAYS Cancer Centre, Tampere, Finland
| |
Collapse
|