1
|
Yu F, Chen J, Wang X, Cai Q, Luo J, Wang L, Chen K, He Y. Establishment of a novel mouse peritoneal dialysis-associated peritoneal injury model. Clin Exp Nephrol 2022; 26:649-658. [PMID: 35353282 DOI: 10.1007/s10157-022-02208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Peritoneal fibrosis induced by various factors during peritoneal dialysis (PD) can eventually lead to ultrafiltration failure and termination of PD treatment. The existing animal models are caused by a single stimulus, and cannot accurately simulate complex pathogenesis of peritoneal injury and fibrosis. We aim to develop an efficient and realistic mouse model of PD-associated peritoneal injury using daily intraperitoneal injection (I.P.) of human peritonitis PD effluent. METHODS Eight-week-old male C57BL/6 mice were classified into six groups: saline control; 2.5% PD fluid; 2.5% PD fluid + lipopolysaccharide (LPS); 4.25% PD fluid; 4.25% PD fluid + LPS; and peritonitis effluent. Mice received daily I.P. for 6 weeks, and were sacrificed to determine peritoneal structural and functional damage, inflammation, and fibrosis. RESULTS Mice in the peritonitis effluent group had low mortality. The submesothelial thickness in the peritonitis effluent group was significantly greater than that in the 2.5% PD fluid group. The peritonitis effluent group had increased expression of fibrosis markers (α-SMA, Collagen I, etc.), neutrophil granulocytes (MPO), and macrophages (CD68, F4/80) in the peritoneum based on immunohistochemical staining; and significantly higher expression of inflammation markers (IL-1β, IL-6, etc.) and fibrosis markers (TGF-β1, α-SMA, etc.) based on real-time qPCR. Modified peritoneal equilibration tests (PET) demonstrated that I.P. of peritonitis effluent reduced peritoneal ultrafiltration. CONCLUSION Our novel animal model of PD-associated peritoneal injury faithfully simulates the clinical pathophysiological process. This animal model may be useful for study of the pathogenesis of PD-associated peritoneal injury and identification of novel treatments.
Collapse
Affiliation(s)
- Fang Yu
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China
| | - Xiaoyue Wang
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China
| | - Qingli Cai
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China
| | - Jia Luo
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China
| | - Liming Wang
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China
| | - Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China.
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China.
| |
Collapse
|
2
|
Analysis of α-dicarbonyl compounds and 4-methylimidazole in coffee made with various roasting and brewing conditions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
van Gelder MK, Vollenbroek JC, Lentferink BH, Hazenbrink DHM, Besseling PJ, Simonis F, Giovanella S, Ligabue G, Bajo Rubio MA, Cappelli G, Joles JA, Verhaar MC, Gerritsen KGF. Safety of electrooxidation for urea removal in a wearable artificial kidney is compromised by formation of glucose degradation products. Artif Organs 2021; 45:1422-1428. [PMID: 34251693 PMCID: PMC8597045 DOI: 10.1111/aor.14040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/08/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022]
Abstract
A major challenge for the development of a wearable artificial kidney (WAK) is the removal of urea from the spent dialysate, as urea is the waste solute with the highest daily molar production and is difficult to adsorb. Here we present results on glucose degradation products (GDPs) formed during electrooxidation (EO), a technique that applies a current to the dialysate to convert urea into nitrogen, carbon dioxide, and hydrogen gas. Uremic plasma and peritoneal effluent were dialyzed for 8 hours with a WAK with and without EO‐based dialysate regeneration. Samples were taken regularly during treatment. GDPs (glyoxal, methylglyoxal, and 3‐deoxyglucosone) were measured in EO‐ and non‐EO‐treated fluids. Glyoxal and methylglyoxal concentrations increased 26‐ and 11‐fold, respectively, in uremic plasma (at [glucose] 7 mmol/L) and 209‐ and 353‐fold, respectively, in peritoneal effluent (at [glucose] 100 mmol/L) during treatment with EO, whereas no change was observed in GDP concentrations during dialysate regeneration without EO. EO for dialysate regeneration in a WAK is currently not safe due to the generation of GDPs which are not biocompatible.
Collapse
Affiliation(s)
- Maaike K van Gelder
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen C Vollenbroek
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Babette H Lentferink
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Diënty H M Hazenbrink
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J Besseling
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Silvia Giovanella
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Ligabue
- Surgical, Medical and Dental Department of Morphological Sciences, Section of Nephrology, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria A Bajo Rubio
- Nephrology Service, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital and IRSIN, Madrid, Spain
| | - Gianni Cappelli
- Surgical, Medical and Dental Department of Morphological Sciences, Section of Nephrology, University of Modena and Reggio Emilia, Modena, Italy
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karin G F Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Wang Q, Yang X, Xu Y, Shen Z, Cheng H, Cheng F, Liu X, Wang R. RhoA/Rho-kinase triggers epithelial-mesenchymal transition in mesothelial cells and contributes to the pathogenesis of dialysis-related peritoneal fibrosis. Oncotarget 2018; 9:14397-14412. [PMID: 29581852 PMCID: PMC5865678 DOI: 10.18632/oncotarget.24208] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Peritoneal fibrosis (PF) with associated peritoneal dysfunction is almost invariably observed in long-term peritoneal dialysis (PD) patients. Advanced glycation end products (AGEs) are pro-oxidant compounds produced in excess during the metabolism of glucose and are present in high levels in standard PD solutions. The GTPase RhoA has been implicated in PF, but its specific role remains poorly understood. Here, we studied the effects of RhoA/Rho-kinase signaling in AGEs-induced epithelial-mesenchymal transition (EMT) in human peritoneal mesothelial cells (HPMCs), and evaluated morphological and molecular changes in a rat model of PD-related PF. Activation of RhoA/Rho-kinase and activating protein-1 (AP-1) was assessed in HPMCs using pull-down and electrophoretic mobility shift assays, respectively, while expression of transforming growth factor-β, fibronectin, α-smooth muscle actin, vimentin, N-cadherin, and E-cadherin expression was assessed using immunohistochemistry and western blot. AGEs exposure activated Rho/Rho-kinase in HPMCs and upregulated EMT-related genes via AP-1. These changes were prevented by the Rho-kinase inhibitors fasudil and Y-27632, and by the AP-1 inhibitor curcumin. Importantly, fasudil normalized histopathological and molecular alterations and preserved peritoneal function in rats. These data support the therapeutic potential of Rho-kinase inhibitors in PD-related PF.
Collapse
Affiliation(s)
- Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaowei Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhenwei Shen
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
| | - Hongxia Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Fajuan Cheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiang Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
5
|
Yang CY, Chau YP, Chen A, Lee OKS, Tarng DC, Yang AH. Targeting cannabinoid signaling for peritoneal dialysis-induced oxidative stress and fibrosis. World J Nephrol 2017; 6:111-118. [PMID: 28540200 PMCID: PMC5424432 DOI: 10.5527/wjn.v6.i3.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/20/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
Long-term exposure to bioincompatible peritoneal dialysis (PD) solutions frequently results in peritoneal fibrosis and ultrafiltration failure, which limits the life-long use of and leads to the cessation of PD therapy. Therefore, it is important to elucidate the pathogenesis of peritoneal fibrosis in order to design therapeutic strategies to prevent its occurrence. Peritoneal fibrosis is associated with a chronic inflammatory status as well as an elevated oxidative stress (OS) status. Beyond uremia per se, OS also results from chronic exposure to high glucose load, glucose degradation products, advanced glycation end products, and hypertonic stress. Therapy targeting the cannabinoid (CB) signaling pathway has been reported in several chronic inflammatory diseases with elevated OS. We recently reported that the intra-peritoneal administration of CB receptor ligands, including CB1 receptor antagonists and CB2 receptor agonists, ameliorated dialysis-related peritoneal fibrosis. As targeting the CB signaling pathway has been reported to be beneficial in attenuating the processes of several chronic inflammatory diseases, we reviewed the interaction among the cannabinoid system, inflammation, and OS, through which clinicians ultimately aim to prolong the peritoneal survival of PD patients.
Collapse
|
6
|
Poon PYK, Lan HY, Kwan BCH, Huang XR, Chow KM, Szeto CC, Li PKT. Peritoneal inflammation and fibrosis in C-reactive protein transgenic mice undergoing peritoneal dialysis solution treatment. Nephrology (Carlton) 2017; 22:125-132. [DOI: 10.1111/nep.12741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Peter Yam-Kau Poon
- Li Ka Shing Institute of Health Sciences; The Chinese University of Hong Kong; Shatin Hong Kong China
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences; The Chinese University of Hong Kong; Shatin Hong Kong China
| | - Bonnie Ching-Ha Kwan
- Li Ka Shing Institute of Health Sciences; The Chinese University of Hong Kong; Shatin Hong Kong China
| | - Xiao-Ru Huang
- Li Ka Shing Institute of Health Sciences; The Chinese University of Hong Kong; Shatin Hong Kong China
| | - Kai-Ming Chow
- From Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics; Prince of Wales Hospital; Shatin Hong Kong China
| | - Cheuk-Chun Szeto
- Li Ka Shing Institute of Health Sciences; The Chinese University of Hong Kong; Shatin Hong Kong China
| | - Philip Kam-Tao Li
- From Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics; Prince of Wales Hospital; Shatin Hong Kong China
| |
Collapse
|
7
|
Pischetsrieder M, Gensberger-Reigl S, Atzenbeck L, Weigel I. Chemistry and clinical relevance of carbohydrate degradation in drugs. Drug Discov Today 2016; 21:1620-1631. [PMID: 27320689 DOI: 10.1016/j.drudis.2016.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/29/2016] [Accepted: 06/08/2016] [Indexed: 11/15/2022]
Abstract
Carbohydrate degradation products are formed during heat sterilization in drugs containing (poly-)glucose as osmotic agents. Given this situation, peritoneal dialysis fluids (PDFs) and infusion fluids are of particular clinical relevance, because these drugs deliver process contaminants either over a longer period or directly into the circulation of patients who are critically ill. For the development of suitable mitigation strategies, it is important to understand the reaction mechanisms of carbohydrate degradation during sterilization and how the resulting products interact with physiological targets at the molecular level. Furthermore, reliable, comprehensive, and highly sensitive quantification methods are required for product control and toxicological evaluation.
Collapse
Affiliation(s)
- Monika Pischetsrieder
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052, Erlangen, Germany.
| | - Sabrina Gensberger-Reigl
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052, Erlangen, Germany
| | - Lisa Atzenbeck
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052, Erlangen, Germany
| | - Ingrid Weigel
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052, Erlangen, Germany
| |
Collapse
|
8
|
Löbner J, Degen J, Henle T. Creatine is a scavenger for methylglyoxal under physiological conditions via formation of N-(4-methyl-5-oxo-1-imidazolin-2-yl)sarcosine (MG-HCr). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2249-56. [PMID: 25655840 DOI: 10.1021/jf505998z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Following incubation of methylglyoxal and creatine under physiological conditions, N-(4-methyl-5-oxo-1-imidazolin-2-yl)sarcosine (MG-HCr) was isolated and identified by NMR and mass spectrometry. Due to its rapid formation, MG-HCr represents a specific product following "scavenging" of methylglyoxal by creatine. Using hydrophilic interaction chromatography coupled to mass spectrometry, MG-HCr was analyzed in urine samples of healthy volunteers. Daily MG-HCr excretion of nonvegetarians ranged from 0.35 to 3.84 μmol/24 h urine (median: 0.90 μmol/24 h urine) and of vegetarians from 0.11 to 0.31 μmol/24 h urine (median: 0.19 μmol/24 h urine), indicating that formation of MG-HCr in vivo is influenced by the dietary intake of creatine. The trapping of methylglyoxal by creatine may delay the formation of advanced glycation compounds in vivo and, therefore, could be of special importance in situations in which the body has to deal with pathophysiologically increased amounts of dicarbonyl compounds ("carbonyl stress"), for instance in diabetic patients.
Collapse
Affiliation(s)
- Jürgen Löbner
- Institute of Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| | | | | |
Collapse
|
9
|
Distler L, Georgieva A, Kenkel I, Huppert J, Pischetsrieder M. Structure- and concentration-specific assessment of the physiological reactivity of α-dicarbonyl glucose degradation products in peritoneal dialysis fluids. Chem Res Toxicol 2014; 27:1421-30. [PMID: 25033248 DOI: 10.1021/tx500153n] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In peritoneal dialysis (PD), glucose degradation products (GDPs), which are formed during heat sterilization of dialysis fluids, lead to structural and functional changes in the peritoneal membrane, which eventually result in the loss of its ultrafiltration capacity. To determine the molecular mechanisms behind these processes, the present study tested the influence of the six major α-dicarbonyl GDPs in PD fluids, namely, glyoxal, methylglyoxal, 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), 3,4-dideoxyglucosone-3-ene (3,4-DGE), and glucosone with respect to their potential to impair the enzymatic activity of RNase A as well as their effects on cell viability. For comprehensive risk assessment, the α-dicarbonyl GDPs were applied separately and in concentrations as present in conventional PD fluids. Thus, it was shown that after 5 days, glucosone impaired RNase A activity most distinctly (58% remaining activity, p < 0.001 compared to that of the control), followed by 3,4-DGE (62%, p < 0.001), 3-DGal (66%, p < 0.001), and 3-DG (76%, p < 0.01). Methylglyoxal and glyoxal caused weaker inactivation with significant effects only after 10 days of incubation (79%, 81%, p < 0.001). Profiling of the advanced glycation end products formed during the incubation of RNase A with methylglyoxal revealed predominant formation of the arginine modifications imidazolinone, CEA/dihydroxyimidazoline, and tetrahydropyrimidine at Arg10, Arg33, Arg39, and Arg85. Particularly, modification at Arg39 may severely affect the active site of the enzyme. Additionally, structure- and concentration-specific assessment of the cytotoxicity of the α-dicarbonyl GDPs was performed. Although present at very low concentration, the cytotoxic effect of PD fluids after 2 days of incubation was exclusively caused by 3,4-DGE (14% cell viability, p < 0.001). After 4 days of incubation, 3-DGal (13% cell viability, p < 0.001), 3-DG (24%, p < 0.001), and, to a lower extent, glyoxal and methylglyoxal (both 57%, p < 0.01) also reduced cell viability significantly. In conclusion, 3,4-DGE, 3-DGal, and glucosone appear to be the most relevant parameters for the biocompatibility of PD fluids.
Collapse
Affiliation(s)
- Leonie Distler
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) , Schuhstraße 19, 91052 Erlangen, Germany
| | | | | | | | | |
Collapse
|
10
|
Arena S, Salzano AM, Renzone G, D'Ambrosio C, Scaloni A. Non-enzymatic glycation and glycoxidation protein products in foods and diseases: an interconnected, complex scenario fully open to innovative proteomic studies. MASS SPECTROMETRY REVIEWS 2014; 33:49-77. [PMID: 24114996 DOI: 10.1002/mas.21378] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/09/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
The Maillard reaction includes a complex network of processes affecting food and biopharmaceutical products; it also occurs in living organisms and has been strictly related to cell aging, to the pathogenesis of several (chronic) diseases, such as diabetes, uremia, cataract, liver cirrhosis and various neurodegenerative pathologies, as well as to peritoneal dialysis treatment. Dozens of compounds are involved in this process, among which a number of protein-adducted derivatives that have been simplistically defined as early, intermediate and advanced glycation end-products. In the last decade, various bottom-up proteomic approaches have been successfully used for the identification of glycation/glycoxidation protein targets as well as for the characterization of the corresponding adducts, including assignment of the modified amino acids. This article provides an updated overview of the mass spectrometry-based procedures developed to this purpose, emphasizing their partial limits with respect to current proteomic approaches for the analysis of other post-translational modifications. These limitations are mainly related to the concomitant sheer diversity, chemical complexity, and variable abundance of the various derivatives to be characterized. Some challenges to scientists are finally proposed for future proteomic investigations to solve main drawbacks in this research field.
Collapse
Affiliation(s)
- Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | | | | | | | | |
Collapse
|
11
|
Sanchez-Niño MD, Poveda J, Sanz AB, Carrasco S, Ruiz-Ortega M, Selgas R, Egido J, Ortiz A. 3,4-DGE is cytotoxic and decreases HSP27/HSPB1 in podocytes. Arch Toxicol 2013; 88:597-608. [PMID: 24337777 DOI: 10.1007/s00204-013-1181-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 12/04/2013] [Indexed: 01/19/2023]
Abstract
Hyperglycemia is the key driver of diabetic complications and increased concentrations of glucose degradation products. The study of peritoneal dialysis solution biocompatibility has highlighted the adverse biological effects of glucose degradation products. Recently, 3,4-dideoxyglucosone-3-ene (3,4-DGE) was identified as the most toxic glucose degradation product in peritoneal dialysis fluids. In addition, 3,4-DGE is present in high-fructose corn syrup, and its precursor 3-deoxyglucosone is increased in diabetes. The role of 3,4-DGE in glomerular injury had not been addressed. We studied the effects of 3,4-DGE on cultured human podocytes and in vivo in mice. 3,4-DGE induced apoptosis in podocytes in a dose- and time-dependent manner. 3,4-DGE promoted the release of cytochrome c from mitochondria and activation of caspase-3. While high glucose concentrations increased the levels of the podocyte intracellular antiapoptotic protein HSP27/HSPB1, 3,4-DGE decreased the expression of podocyte HSP27/HSPB1. Apoptosis induced by 3,4-DGE was caspase-dependent and could be prevented by the broad-spectrum caspase inhibitor zVAD-fmk. Antagonism of Bax by a Ku-70-derived peptide also prevented apoptosis. Intravenous administration of 3,4-DGE to healthy mice resulted in a decreased expression of HSP27/HSPB1 and caspase-3 activation in whole kidney and in podocytes in vivo. In conclusion, 3,4-DGE induces apoptotic cell death in cultured human podocytes, suggesting a potential role in glomerular injury resulting from metabolic disorders.
Collapse
|
12
|
Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res 2013; 47 Suppl 1:3-27. [PMID: 23767955 DOI: 10.3109/10715762.2013.815348] [Citation(s) in RCA: 542] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions; (2) to elucidate the molecular basis of their biological effects; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation.
Collapse
Affiliation(s)
- G Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, Milan, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Gensberger S, Glomb MA, Pischetsrieder M. Analysis of sugar degradation products with α-dicarbonyl structure in carbonated soft drinks by UHPLC-DAD-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10238-10245. [PMID: 23452313 DOI: 10.1021/jf3048466] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sugar-sweetened carbonated soft drinks (CSDs) are broadly consumed worldwide. The added sugar, particularly high-fructose corn syrup (HFCS), can be an important source of sugar degradation products, such as α-dicarbonyl compounds. This study recorded the α-dicarbonyl profile in CSDs by ultrahigh-performance liquid chromatography with hyphenated diode array-tandem mass spectrometry after derivatization with o-phenylenediamine. Thus, 3-deoxy-D-erythro-hexos-2-ulose (3-DG), D-lyxo-hexos-2-ulose (glucosone), 3-deoxy-D-threo-hexos-2-ulose (3-DGal), 1-deoxy-D-erythro-hexos-2,3-diulose (1-DG), 3,4-dideoxyglucosone-3-ene (3,4-DGE), methylglyoxal, and glyoxal were identified as major α-dicarbonyls and, with the exception of glyoxal, quantified (recovery rates, 85.6-103.1%; RSD, 0.8-3.6%). Total α-dicarbonyl concentration in 25 tested commercial products ranged between 0.3 and 116 μg/mL and was significantly higher in HFCS-sweetened CSDs compared to CSDs sweetened with HFCS and sucrose or with sucrose alone. Predominant was 3-DG (≤87 μg/mL) followed by glucosone (≤21 μg/mL), 3-DGal (≤7.7 μg/mL), 1-DG (≤2.8 μg/mL), methylglyoxal (≤0.62 μg/mL), and 3,4-DGE (≤0.45 μg/mL).
Collapse
Affiliation(s)
- Sabrina Gensberger
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg , Schuhstrasse 19, 91052 Erlangen, Germany
| | | | | |
Collapse
|
14
|
Zhang H, Wang JW, Xu Y, Zhang K, Yi B, Sun J, Liu Y, Zhang XM, Liu JS. Effect of β-(3,4-dihydroxyphenyl)lactic acid on oxidative stress stimulated by high glucose levels in human peritoneal mesothelial cells. J Int Med Res 2013; 40:943-53. [PMID: 22906267 DOI: 10.1177/147323001204000313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To investigate the effects of β-(3,4-dihydroxyphenyl)lactic acid on oxidative stress stimulated by high glucose levels in human peritoneal mesothelial cells (HPMCs) in vitro. METHODS HPMCs were incubated with 100 mol/l glucose followed by 0.625-20 mg/ml β-(3,4-dihydroxyphenyl)lactic acid. Reactive oxygen species (ROS) were quantified by flow cytometry. Relative levels of fibronectin-1 (FN1), collagen-I α(1) (COL1A1), endothelin-1 (EDN1) and haem oxygenase-1 (HMOX1) mRNA and protein were quantified by real-time reverse transcription-polymerase chain reaction and Western blotting, respectively. Absolute levels of FN1 and COLIA1 were quantified by enzyme-linked immunosorbent assay. RESULTS β-(3,4-Dihydroxyphenyl)lactic acid significantly decreased ROS levels, and EDN1 mRNA and protein levels, in dose- and time-dependent manners. HMOX1 mRNA and protein levels were significantly increased by β-(3,4-dihydroxyphenyl)lactic acid in dose-dependent manners. COL1A1 and FN1 mRNA and protein levels were significantly decreased by β-(3,4-dihydroxyphenyl)lactic acid in dose- and time-dependent manners. CONCLUSIONS β-(3,4-Dihydroxyphenyl)lactic acid inhibited oxidative stress and reversed increases in FN1 and COLIA1 induced by high glucose levels in HPMCs. This may contribute to a protective role in peritoneal fibrosis.
Collapse
Affiliation(s)
- H Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Amoroso A, Maga G, Daglia M. Cytotoxicity of α-dicarbonyl compounds submitted to in vitro simulated digestion process. Food Chem 2012; 140:654-9. [PMID: 23692749 DOI: 10.1016/j.foodchem.2012.10.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 11/29/2022]
Abstract
α-Dicarbonyl compounds (α-DCs), such as glyoxal, methylglyoxal and 2,3-butanedione, are highly reactive substances occurring in thermally treated and fermented foods, that may react with amino and sulphydryl groups of side chains of proteins to form Maillard reaction end products, inducing a negative impact on the digestibility and on nutritional value of protein. In recent years the role of food derived α-DCs in gastroduodenal tract is under investigation to understand whether excess consumption of such dietary compounds might be a risk for human health. In this study the interactions between a mixture of glyoxal, methylglyoxal and 2,3-butanedione and the digestive enzymes (pepsin and pancreatin) were studied. The results showed that during gastroduodenal digestion α-DCs react with digestive enzymes to produce carbonylated proteins. Moreover, undigested and digested α-DC cytotoxicity against human cells, as well as their ability to inhibit the function of human enzymes responsible for DNA repair were shown.
Collapse
Affiliation(s)
- Alessandra Amoroso
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | |
Collapse
|