1
|
Zhou X, Xu R, Wu Y, Zhou L, Xiang T. The role of proteasomes in tumorigenesis. Genes Dis 2024; 11:101070. [PMID: 38523673 PMCID: PMC10958230 DOI: 10.1016/j.gendis.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 03/26/2024] Open
Abstract
Protein homeostasis is the basis of normal life activities, and the proteasome family plays an extremely important function in this process. The proteasome 20S is a concentric circle structure with two α rings and two β rings overlapped. The proteasome 20S can perform both ATP-dependent and non-ATP-dependent ubiquitination proteasome degradation by binding to various subunits (such as 19S, 11S, and 200 PA), which is performed by its active subunit β1, β2, and β5. The proteasome can degrade misfolded, excess proteins to maintain homeostasis. At the same time, it can be utilized by tumors to degrade over-proliferate and unwanted proteins to support their growth. Proteasomes can affect the development of tumors from several aspects including tumor signaling pathways such as NF-κB and p53, cell cycle, immune regulation, and drug resistance. Proteasome-encoding genes have been found to be overexpressed in a variety of tumors, providing a potential novel target for cancer therapy. In addition, proteasome inhibitors such as bortezomib, carfilzomib, and ixazomib have been put into clinical application as the first-line treatment of multiple myeloma. More and more studies have shown that it also has different therapeutic effects in other tumors such as hepatocellular carcinoma, non-small cell lung cancer, glioblastoma, and neuroblastoma. However, proteasome inhibitors are not much effective due to their tolerance and singleness in other tumors. Therefore, further studies on their mechanisms of action and drug interactions are needed to investigate their therapeutic potential.
Collapse
Affiliation(s)
- Xiangyi Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ruqing Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tingxiu Xiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
2
|
Gobec M, Obreza A, Jukič M, Baumgartner A, Mihelčič N, Potočnik Š, Virant J, Mlinarič I, Stanislav R, Sosič GI. Design and synthesis of amino-substituted N-arylpiperidinyl-based inhibitors of the (immuno)proteasome. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:441-456. [PMID: 37708963 DOI: 10.2478/acph-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2023] [Indexed: 09/16/2023]
Abstract
The constitutive proteasome and the immunoproteasome represent validated targets for pharmacological intervention in the context of various diseases, such as cancer, inflammation, and autoimmune diseases. The development of novel chemical scaffolds of non-peptidic nature, capable of inhibiting different catalytically active subunits of both isoforms, is a viable approach against these diseases. Such compounds are also useful as leads for the development of biochemical probes that enable the studies of the roles of both isoforms in various biological contexts. Here, we present a ligand-based computational design of (immuno)proteasome inhibitors, which resulted in the amino-substituted N-arylpiperidine-based compounds that can inhibit different subunits of the (immuno)proteasome in the low micromolar range. The compounds represent a useful starting point for further structure-activity relationship studies that will, hopefully, lead to non-peptidic compounds that could be used in pharmacological and biochemical studies of both proteasomes.
Collapse
Affiliation(s)
- Martina Gobec
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Aleš Obreza
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Marko Jukič
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
- Current address: University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory of Physical Chemistry and Chemical Thermodynamics, 2000 Maribor Slovenia
| | - Ana Baumgartner
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Nja Mihelčič
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Špela Potočnik
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Julija Virant
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Irena Mlinarič
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | - Raščan Stanislav
- University of Ljubljana, Faculty of Pharmacy, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
3
|
Anchoori RK, Anchoori V, Lam B, Tseng SH, Das S, Velasquez FC, Karanam B, Poddatoori D, Patnam R, Rudek MA, Chang YN, Roden RBS. Development and anticancer properties of Up284, a spirocyclic candidate ADRM1/RPN13 inhibitor. PLoS One 2023; 18:e0285221. [PMID: 37315065 PMCID: PMC10266688 DOI: 10.1371/journal.pone.0285221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/03/2023] [Indexed: 06/16/2023] Open
Abstract
Bortezomib has been successful for treatment of multiple myeloma, but not against solid tumors, and toxicities of neuropathy, thrombocytopenia and the emergence of resistance have triggered efforts to find alternative proteasome inhibitors. Bis-benzylidine piperidones such as RA190 covalently bind ADRM1/RPN13, a ubiquitin receptor that supports recognition of polyubiquitinated substrates of the proteasome and their subsequent deububiqutination and degradation. While these candidate RPN13 inhibitors (iRPN13) show promising anticancer activity in mouse models of cancer, they have suboptimal drug-like properties. Here we describe Up284, a novel candidate iRPN13 possessing a central spiro-carbon ring in place of RA190's problematic piperidone core. Cell lines derived from diverse cancer types (ovarian, triple negative breast, colon, cervical and prostate cancers, multiple myeloma and glioblastoma) were sensitive to Up284, including several lines resistant to bortezomib or cisplatin. Up284 and cisplatin showed synergistic cytotoxicity in vitro. Up284-induced cytotoxicity was associated with mitochondrial dysfunction, elevated levels of reactive oxygen species, accumulation of very high molecular weight polyubiquitinated protein aggregates, an unfolded protein response and the early onset of apoptosis. Up284 and RA190, but not bortezomib, enhanced antigen presentation in vitro. Up284 cleared from plasma in a few hours and accumulated in major organs by 24 h. A single dose of Up284, when administered to mice intra peritoneally or orally, inhibited proteasome function in both muscle and tumor for >48 h. Up284 was well tolerated by mice in repeat dose studies. Up284 demonstrated therapeutic activity in xenograft, syngeneic and genetically-engineered murine models of ovarian cancer.
Collapse
Affiliation(s)
- Ravi K. Anchoori
- Department of Oncology, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States of America
- Up Therapeutics LLC, Frederick, MD, United States of America
| | - Vidyasagar Anchoori
- Up Therapeutics LLC, Frederick, MD, United States of America
- SV Chem Biotech, Edmonton, AB, Canada
| | - Brandon Lam
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fernanda Carrizo Velasquez
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama, United States of America
| | | | - Ramesh Patnam
- Prochem Organics, IDA Pashamylaram, Isnapur, Medak, Telangana, India
| | - Michelle A. Rudek
- Department of Oncology, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Yung-Nien Chang
- Up Therapeutics LLC, Frederick, MD, United States of America
| | - Richard B. S. Roden
- Department of Oncology, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
4
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
5
|
Di Francesco B, Verzella D, Capece D, Vecchiotti D, Di Vito Nolfi M, Flati I, Cornice J, Di Padova M, Angelucci A, Alesse E, Zazzeroni F. NF-κB: A Druggable Target in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:3557. [PMID: 35884618 PMCID: PMC9319319 DOI: 10.3390/cancers14143557] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is an aggressive hematological malignancy that relies on highly heterogeneous cytogenetic alterations. Although in the last few years new agents have been developed for AML treatment, the overall survival prospects for AML patients are still gloomy and new therapeutic options are still urgently needed. Constitutive NF-κB activation has been reported in around 40% of AML patients, where it sustains AML cell survival and chemoresistance. Given the central role of NF-κB in AML, targeting the NF-κB pathway represents an attractive strategy to treat AML. This review focuses on current knowledge of NF-κB's roles in AML pathogenesis and summarizes the main therapeutic approaches used to treat NF-κB-driven AML.
Collapse
|
6
|
Immunoproteasome Activity in Chronic Lymphocytic Leukemia as a Target of the Immunoproteasome-Selective Inhibitors. Cells 2022; 11:cells11050838. [PMID: 35269460 PMCID: PMC8909520 DOI: 10.3390/cells11050838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
Targeting proteasome with proteasome inhibitors (PIs) is an approved treatment strategy in multiple myeloma that has also been explored pre-clinically and clinically in other hematological malignancies. The approved PIs target both the constitutive and the immunoproteasome, the latter being present predominantly in cells of lymphoid origin. Therapeutic targeting of the immunoproteasome in cells with sole immunoproteasome activity may be selectively cytotoxic in malignant cells, while sparing the non-lymphoid tissues from the on-target PIs toxicity. Using activity-based probes to assess the proteasome activity profile and correlating it with the cytotoxicity assays, we identified B-cell chronic lymphocytic leukemia (B-CLL) to express predominantly immunoproteasome activity, which is associated with high sensitivity to approved proteasome inhibitors and, more importantly, to the immunoproteasome selective inhibitors LU005i and LU035i, targeting all immunoproteasome active subunits or only the immunoproteasome β5i, respectively. At the same time, LU102, a proteasome β2 inhibitor, sensitized B-CLL or immunoproteasome inhibitor-inherently resistant primary cells of acute myeloid leukemia, B-cell acute lymphoblastic leukemia, multiple myeloma and plasma cell leukemia to low doses of LU035i. The immunoproteasome thus represents a novel therapeutic target, which warrants further testing with clinical stage immunoproteasome inhibitors in monotherapy or in combinations.
Collapse
|
7
|
Nishimura S, Hitora Y, Kawahara T, Tanabe M, Ogata E, Kato H, Srikoon P, Watanabe T, Tsukamoto S. Cell-based screening of extracts of natural sources to search for inhibitors of the ubiquitin–proteasome system and identification of proteasome inhibitors from the fungus Remotididymella sp. Bioorg Med Chem Lett 2022; 59:128566. [DOI: 10.1016/j.bmcl.2022.128566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
|
8
|
Lahman MC, Schmitt TM, Paulson KG, Vigneron N, Buenrostro D, Wagener FD, Voillet V, Martin L, Gottardo R, Bielas J, McElrath JM, Stirewalt DL, Pogosova-Agadjanyan EL, Yeung CC, Pierce RH, Egan DN, Bar M, Hendrie PC, Kinsella S, Vakil A, Butler J, Chaffee M, Linton J, McAfee MS, Hunter DS, Bleakley M, Rongvaux A, Van den Eynde BJ, Chapuis AG, Greenberg PD. Targeting an alternate Wilms' tumor antigen 1 peptide bypasses immunoproteasome dependency. Sci Transl Med 2022; 14:eabg8070. [PMID: 35138909 DOI: 10.1126/scitranslmed.abg8070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Designing effective antileukemic immunotherapy will require understanding mechanisms underlying tumor control or resistance. Here, we report a mechanism of escape from immunologic targeting in an acute myeloid leukemia (AML) patient, who relapsed 1 year after immunotherapy with engineered T cells expressing a human leukocyte antigen A*02 (HLA-A2)-restricted T cell receptor (TCR) specific for a Wilms' tumor antigen 1 epitope, WT1126-134 (TTCR-C4). Resistance occurred despite persistence of functional therapeutic T cells and continuous expression of WT1 and HLA-A2 by the patient's AML cells. Analysis of the recurrent AML revealed expression of the standard proteasome, but limited expression of the immunoproteasome, specifically the beta subunit 1i (β1i), which is required for presentation of WT1126-134. An analysis of a second patient treated with TTCR-C4 demonstrated specific loss of AML cells coexpressing β1i and WT1. To determine whether the WT1 protein continued to be processed and presented in the absence of immunoproteasome processing, we identified and tested a TCR targeting an alternative, HLA-A2-restricted WT137-45 epitope that was generated by immunoproteasome-deficient cells, including WT1-expressing solid tumor lines. T cells expressing this TCR (TTCR37-45) killed the first patients' relapsed AML resistant to WT1126-134 targeting, as well as other primary AML, in vitro. TTCR37-45 controlled solid tumor lines lacking immunoproteasome subunits both in vitro and in an NSG mouse model. As proteasome composition can vary in AML, defining and preferentially targeting these proteasome-independent epitopes may maximize therapeutic efficacy and potentially circumvent AML immune evasion by proteasome-related immunoediting.
Collapse
Affiliation(s)
- Miranda C Lahman
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Thomas M Schmitt
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kelly G Paulson
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research, 1200 Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Denise Buenrostro
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Felecia D Wagener
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Hutchinson Centre Research Institute of South Africa, Cape Town 8001, South Africa
| | - Lauren Martin
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jason Bielas
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julie M McElrath
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Derek L Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | | | - Cecilia C Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Robert H Pierce
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Daniel N Egan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Merav Bar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Paul C Hendrie
- University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Sinéad Kinsella
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aesha Vakil
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonah Butler
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mary Chaffee
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonathan Linton
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Megan S McAfee
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel S Hunter
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Marie Bleakley
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Anthony Rongvaux
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Immunology, University of Washington, Seattle, WA 98115, USA
| | - Benoit J Van den Eynde
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| | - Aude G Chapuis
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Philip D Greenberg
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA.,Department of Immunology, University of Washington, Seattle, WA 98115, USA
| |
Collapse
|
9
|
Development of isoquinolinone derivatives as immunoproteasome inhibitors. Bioorg Med Chem Lett 2022; 55:128478. [PMID: 34838650 DOI: 10.1016/j.bmcl.2021.128478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022]
Abstract
The inhibition of immunoproteasome is considered nowadays a promising strategy for the treatment of hematologic malignancies. In this paper we report the design, synthesis, and biological evaluation as immunoproteasome inhibitors of a new series of isoquinolinone derivatives characterized by a (E)-prop-1-ene fragment that connects the heterocycle to a distal amide functionality. Among all the synthesized compounds, we identified an inhibitor with Ki values in the low micromolar or submicromolar range towards the chymotrypsin-like activities of both proteasome and immunoproteasome (β5c, β5i and β1i subunits). Molecular modeling studies suggest that the most potent compound of the series may act a single-site binder. In particular, through its isopentyl group, it might dock into P1 site in the case of the β1i catalytic subunit, while in the case of β5c and β5i subunits, the P3 site might be the preferred binding site.
Collapse
|
10
|
Gavriatopoulou M, Malandrakis P, Ntanasis-Stathopoulos I, Dimopoulos MA. Non-selective proteasome inhibitors in multiple myeloma and future perspectives. Expert Opin Pharmacother 2021; 23:335-347. [PMID: 34761710 DOI: 10.1080/14656566.2021.1999411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION : The ubiquitination system is the most important cascade of protein degradation independently of lysosomal function. The proteasome system is actively involved in cell cycle regulation. Therefore, proteasome inhibition can lead to inhibition of tumor cell proliferation, and therefore it constitutes a potential therapeutic anticancer approach especially in the therapeutic algorithm of patients with multiple myeloma. AREAS COVERED Three different proteasome inhibitors are currently approved, bortezomib, carfilzomib and ixazomib, and they have been investigated in multiple myeloma and other hematological malignancies. Multiple myeloma cells are extremely sensitive to this inhibition which leads to accumulation of proteins and endoplasmic reticulum stress, leading finally to apoptosis. However, these agents lack specificity, since they target both the constitutive proteasome and the immunoproteasome. Targeting the constitutive proteasome is the main reason for side toxicity due to the effect on normal tissues. In contrary, immunoproteasome inhibition may reduce the adverse events while maintaining the therapeutic efficacy. In this review the authors present the role of the available proteasome inhibitors in myeloma therapeutics and future perspectives of both selective and non-selective proteasome inhibitors. EXPERT OPINION The available non-selective proteasome inhibitors have changed the therapeutics of multiple myeloma the last 10 years and have significantly improved the clinical outcomes of the patients. Furthermore, selective proteasome inhibitors are now under preclinical investigation and there is hope that their optimization will come with an improved safety profile with at least comparable efficacy.
Collapse
Affiliation(s)
- Maria Gavriatopoulou
- Plasma cell dyscrasias unit, Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Malandrakis
- Plasma cell dyscrasias unit, Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Plasma cell dyscrasias unit, Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios Athanasios Dimopoulos
- Plasma cell dyscrasias unit, Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
High Immunoproteasome Activity and sXBP1 in Pediatric Precursor B-ALL Predicts Sensitivity towards Proteasome Inhibitors. Cells 2021; 10:cells10112853. [PMID: 34831075 PMCID: PMC8616377 DOI: 10.3390/cells10112853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Proteasome inhibitors (PIs) are approved backbone treatments in multiple myeloma. More recently, inhibition of proteasome activity with the PI bortezomib has been clinically evaluated as a novel treatment strategy in pediatric acute lymphoblastic leukemia (ALL). However, we lack a marker that could identify ALL patients responding to PI-based therapy. By using a set of activity-based proteasome probes in conjunction with cytotoxicity assays, we show that B-cell precursor ALL (BCP-ALL), in contrast to T-ALL, demonstrates an increased activity of immunoproteasome over constitutive proteasome, which correlates with high ex vivo sensitivity to the PIs bortezomib and ixazomib. The novel selective PI LU015i-targeting immunoproteasome β5i induces cytotoxicity in BCP-ALL containing high β5i activity, confirming immunoproteasome activity as a novel therapeutic target in BCP-ALL. At the same time, cotreatment with β2-selective proteasome inhibitors can sensitize T-ALL to currently available PIs, as well as to β5i selective PI. In addition, levels of total and spliced forms of XBP1 differ between BCP-ALL and T-ALL, and only in BCP-ALL does high-spliced XBP1 correlate with sensitivity to bortezomib. Thus, in BCP-ALL, high immunoproteasome activity may serve as a predictive marker for PI-based treatment options, potentially combined with XBP1 analyses.
Collapse
|
12
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
13
|
Wu D, Miao J, Hu J, Li F, Gao D, Chen H, Feng Y, Shen Y, He A. PSMB7 Is a Key Gene Involved in the Development of Multiple Myeloma and Resistance to Bortezomib. Front Oncol 2021; 11:684232. [PMID: 34367968 PMCID: PMC8343178 DOI: 10.3389/fonc.2021.684232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma (MM), the second most commonly diagnosed hematologic neoplasm, is the most significant clinical manifestation in a series of plasma cell (PC) dyscrasia. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM), approximately 1% or 10% of which, respectively, can progress to MM per year, are the premalignant stages of MM. The overall survival (OS) of MM is significantly improved by the introduction of proteasome inhibitors (PIs), but almost all MM patients eventually relapse and resist anti-MM drugs. Therefore, it is crucial to explore the progression of MM and the mechanisms related to MM drug resistance. In this study, we used weighted gene co-expression network analysis (WGCNA) to analyze the gene expression of the dynamic process from normal plasma cells (NPC) to malignant profiling PC, and found that the abnormal gene expression was mainly concentrated in the proteasome. We also found that the expression of one of the proteasomal subunits PSMB7 was capable of distinguishing the different stages of PC dyscrasia and was the highest in ISS III. In the bortezomib (BTZ) treated NDMM patients, higher PSMB7 expression was associated with shorter survival time, and the expression of PSMB7 in the BTZ treatment group was significantly higher than in the thalidomide (Thai) treatment group. In summary, we found that PSMB7 is the key gene associated with MM disease progression and drug resistance.
Collapse
Affiliation(s)
- Dong Wu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiyu Miao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinsong Hu
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Fangmei Li
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dandan Gao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongli Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuandong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Shen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Klein M, Busch M, Friese-Hamim M, Crosignani S, Fuchss T, Musil D, Rohdich F, Sanderson MP, Seenisamy J, Walter-Bausch G, Zanelli U, Hewitt P, Esdar C, Schadt O. Structure-Based Optimization and Discovery of M3258, a Specific Inhibitor of the Immunoproteasome Subunit LMP7 (β5i). J Med Chem 2021; 64:10230-10245. [PMID: 34228444 DOI: 10.1021/acs.jmedchem.1c00604] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteasomes are broadly expressed key components of the ubiquitin-dependent protein degradation pathway containing catalytically active subunits (β1, β2, and β5). LMP7 (β5i) is a subunit of the immunoproteasome, an inducible isoform that is predominantly expressed in hematopoietic cells. Clinically effective pan-proteasome inhibitors for the treatment of multiple myeloma (MM) nonselectively target LMP7 and other subunits of the constitutive proteasome and immunoproteasome with comparable potency, which can limit the therapeutic applicability of these drugs. Here, we describe the discovery and structure-based hit optimization of novel amido boronic acids, which selectively inhibit LMP7 while sparing all other subunits. The exploitation of structural differences between the proteasome subunits culminated in the identification of the highly potent, exquisitely selective, and orally available LMP7 inhibitor 50 (M3258). Based on the strong antitumor activity observed with M3258 in MM models and a favorable preclinical data package, a phase I clinical trial was initiated in relapsed/refractory MM patients.
Collapse
Affiliation(s)
- Markus Klein
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Michael Busch
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | | | - Thomas Fuchss
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Djordje Musil
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Felix Rohdich
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | | | | | - Ugo Zanelli
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Philip Hewitt
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | - Oliver Schadt
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| |
Collapse
|
15
|
Immunoproteasome and Non-Covalent Inhibition: Exploration by Advanced Molecular Dynamics and Docking Methods. Molecules 2021; 26:molecules26134046. [PMID: 34279386 PMCID: PMC8271555 DOI: 10.3390/molecules26134046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The selective inhibition of immunoproteasome is a valuable strategy to treat autoimmune, inflammatory diseases, and hematologic malignancies. Recently, a new series of amide derivatives as non-covalent inhibitors of the β1i subunit with Ki values in the low/submicromolar ranges have been identified. Here, we investigated the binding mechanism of the most potent and selective inhibitor, N-benzyl-2-(2-oxopyridin-1(2H)-yl)propanamide (1), to elucidate the steps from the ligand entrance into the binding pocket to the ligand-induced conformational changes. We carried out a total of 400 ns of MD-binding analyses, followed by 200 ns of plain MD. The trajectories clustering allowed identifying three representative poses evidencing new key interactions with Phe31 and Lys33 together in a flipped orientation of a representative pose. Further, Binding Pose MetaDynamics (BPMD) studies were performed to evaluate the binding stability, comparing 1 with four other inhibitors of the β1i subunit: N-benzyl-2-(2-oxopyridin-1(2H)-yl)acetamide (2), N-cyclohexyl-3-(2-oxopyridin-1(2H)-yl)propenamide (3), N-butyl-3-(2-oxopyridin-1(2H)-yl)propanamide (4), and (S)-2-(2-oxopyridin-1(2H)-yl)-N,4-diphenylbutanamide (5). The obtained results in terms of free binding energy were consistent with the experimental values of inhibition, confirming 1 as a lead compound of this series. The adopted methods provided a full dynamic description of the binding events, and the information obtained could be exploited for the rational design of new and more active inhibitors.
Collapse
|
16
|
Li X, Hong D, Zhang M, Xu L, Zhou Y, Li J, Liu T. Development of peptide epoxyketones as selective immunoproteasome inhibitors. Eur J Med Chem 2021; 221:113556. [PMID: 34087498 DOI: 10.1016/j.ejmech.2021.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 11/15/2022]
Abstract
A series of epoxyketone analogues with varying N-caps and P3-configurations were designed, synthesized and evaluated. We found that D-Ala in P3 was crucial for β5i selectivity over β5c. Notably, compounds 20j (β5i IC50 = 26.0 nM, 25-fold selectivity) and 20l (β5i IC50 = 25.1 nM, 24-fold selectivity) with the D-configuration at P3 were the most selective inhibitors. Although 20j and 20l showed only moderate anti-proliferative activity against RPMI-8226 and MM.1S cell lines, based on our experiments, it indicates that the inhibition of β5i alone is not sufficient to exert anticancer effects and may rely on the complementary inhibition of β1i, β5c and β5i. These data further increase our understanding of immunoproteasome inhibitors in hematologic malignancies.
Collapse
Affiliation(s)
- Xuemei Li
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Duidui Hong
- Jiangsu Shengdia Industrial Co. Ltd., NO. 161 Shaoxing Road, Xiacheng District, Hangzhou, 310004, PR China
| | - Mengmeng Zhang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Lei Xu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, PR China
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China.
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
17
|
Kollár L, Gobec M, Szilágyi B, Proj M, Knez D, Ábrányi-Balogh P, Petri L, Imre T, Bajusz D, Ferenczy GG, Gobec S, Keserű GM, Sosič I. Discovery of selective fragment-sized immunoproteasome inhibitors. Eur J Med Chem 2021; 219:113455. [PMID: 33894528 DOI: 10.1016/j.ejmech.2021.113455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Proteasomes contribute to maintaining protein homeostasis and their inhibition is beneficial in certain types of cancer and in autoimmune diseases. However, the inhibition of the proteasomes in healthy cells leads to unwanted side-effects and significant effort has been made to identify inhibitors specific for the immunoproteasome, especially to treat diseases which manifest increased levels and activity of this proteasome isoform. Here, we report our efforts to discover fragment-sized inhibitors of the human immunoproteasome. The screening of an in-house library of structurally diverse fragments resulted in the identification of benzo[d]oxazole-2(3H)-thiones, benzo[d]thiazole-2(3H)-thiones, benzo[d]imidazole-2(3H)-thiones, and 1-methylbenzo[d]imidazole-2(3H)-thiones (with a general term benzoXazole-2(3H)-thiones) as inhibitors of the chymotrypsin-like (β5i) subunit of the immunoproteasome. A subsequent structure-activity relationship study provided us with an insight regarding growing vectors. Binding to the β5i subunit was shown and selectivity against the β5 subunit of the constitutive proteasome was determined. Thorough characterization of these compounds suggested that they inhibit the immunoproteasome by forming a disulfide bond with the Cys48 available specifically in the β5i active site. To obtain fragments with biologically more tractable covalent interactions, we performed a warhead scan, which yielded benzoXazole-2-carbonitriles as promising starting points for the development of selective immunoproteasome inhibitors with non-peptidic scaffolds.
Collapse
Affiliation(s)
- Levente Kollár
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Martina Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Bence Szilágyi
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Matic Proj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Tímea Imre
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - Izidor Sosič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
18
|
Kasahara M. Role of immunoproteasomes and thymoproteasomes in health and disease. Pathol Int 2021; 71:371-382. [PMID: 33657242 DOI: 10.1111/pin.13088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
The proteasome is a multisubunit protease that degrades intracellular proteins into small peptides. Besides playing a pivotal role in many cellular processes indispensable for survival, it is involved in the production of peptides presented by major histocompatibility complex class I molecules. In addition to the standard proteasome shared in all eukaryotes, jawed vertebrates have two specialized forms of proteasome known as immunoproteasomes and thymoproteasomes. The immunoproteasome, which contains cytokine-inducible catalytic subunits with distinct cleavage specificities, produces peptides presented by class I molecules more efficiently than the standard proteasome. The thymoproteasome, which contains a unique catalytic subunit β5t, is a tissue-specific proteasome expressed exclusively in cortical thymic epithelial cells. It plays a critical role in CD8+ cytotoxic T cell development via positive selection. This review provides a brief overview on the structure and function of these specialized forms of proteasome and their involvement in human disease.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
19
|
Breczko W, Lemancewicz D, Dzięcioł J, Kłoczko J, Bołkun Ł. High immunoproteasome concentration in the plasma of patients with newly diagnosed multiple myeloma treated with bortezomib is predictive of longer OS. Adv Med Sci 2021; 66:21-27. [PMID: 33246214 DOI: 10.1016/j.advms.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/23/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Proteasome inhibitors (PI) bortezomib or carfilzomib among them, play a crucial role in the modern standard therapy for multiple myeloma (MM). In this study, we intended to evaluate whether immunoproteasome (IMP) concentration could act as an effective biomarker which determines the probability of response to treatment with bortezomib, in order to detect groups of patients who are more likely to respond to treatment with PI. MATERIALS AND METHODS In our study, we evaluated IMP concentration in the plasma of 40 patients with monoclonal gammopathy of undetermined significance (MGUS) and 116 patients with newly diagnosed MM during treatment with or without PI. RESULTS The values of all the studied parameters after the applied chemotherapy in the responders' group of patients declined considerably during the consecutive cycles of chemotherapy compared to their initial levels. On the contrary, in the group of non-responders, we observed no change in the measured IMP parameters during the consecutive cycles of therapy. We also showed that higher baseline IMP concentration might indicate longer overall survival (OS) in all patients. CONCLUSIONS Our results indicate that assessing plasma IMP concentration can be applied as a strong biomarker for predicting clinical response to treatment and OS in patients with newly diagnosed MM.
Collapse
Affiliation(s)
- Wioletta Breczko
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Dorota Lemancewicz
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland; Department of Human Anatomy, Medical University of Bialystok, Bialystok, Poland
| | - Janusz Dzięcioł
- Department of Human Anatomy, Medical University of Bialystok, Bialystok, Poland
| | - Janusz Kłoczko
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Łukasz Bołkun
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
20
|
Schiffrer ES, Proj M, Gobec M, Rejc L, Šterman A, Mravljak J, Gobec S, Sosič I. Synthesis and Biochemical Evaluation of Warhead-Decorated Psoralens as (Immuno)Proteasome Inhibitors. Molecules 2021; 26:molecules26020356. [PMID: 33445542 PMCID: PMC7826781 DOI: 10.3390/molecules26020356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
The immunoproteasome is a multicatalytic protease that is predominantly expressed in cells of hematopoietic origin. Its elevated expression has been associated with autoimmune diseases, various types of cancer, and inflammatory diseases. Selective inhibition of its catalytic activities is therefore a viable approach for the treatment of these diseases. However, the development of immunoproteasome-selective inhibitors with non-peptidic scaffolds remains a challenging task. We previously reported 7H-furo[3,2-g]chromen-7-one (psoralen)-based compounds with an oxathiazolone warhead as selective inhibitors of the chymotrypsin-like (β5i) subunit of immunoproteasome. Here, we describe the influence of the electrophilic warhead variations at position 3 of the psoralen core on the inhibitory potencies. Despite mapping the chemical space with different warheads, all compounds showed decreased inhibition of the β5i subunit of immunoproteasome in comparison to the parent oxathiazolone-based compound. Although suboptimal, these results provide crucial information about structure–activity relationships that will serve as guidance for the further design of (immuno)proteasome inhibitors.
Collapse
Affiliation(s)
- Eva Shannon Schiffrer
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Luka Rejc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| | - Andrej Šterman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Janez Mravljak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (E.S.S.); (M.P.); (M.G.); (A.Š.); (J.M.); (S.G.)
- Correspondence: ; Tel.: +386-1-4769-569
| |
Collapse
|
21
|
Zhang X, Linder S, Bazzaro M. Drug Development Targeting the Ubiquitin-Proteasome System (UPS) for the Treatment of Human Cancers. Cancers (Basel) 2020; 12:cancers12040902. [PMID: 32272746 PMCID: PMC7226376 DOI: 10.3390/cancers12040902] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells are characterized by a higher rate of protein turnover and greater demand for protein homeostasis compared to normal cells. In this scenario, the ubiquitin-proteasome system (UPS), which is responsible for the degradation of over 80% of cellular proteins within mammalian cells, becomes vital to cancer cells, making the UPS a critical target for the discovery of novel cancer therapeutics. This review systematically categorizes all current reported small molecule inhibitors of the various essential components of the UPS, including ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin ligases (E3s), the 20S proteasome catalytic core particle (20S CP) and the 19S proteasome regulatory particles (19S RP), as well as their mechanism/s of action and limitations. We also discuss the immunoproteasome which is considered as a prospective therapeutic target of the next generation of proteasome inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Medical and Health Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
22
|
Xi J, Zhuang R, Kong L, He R, Zhu H, Zhang J. Immunoproteasome-selective inhibitors: An overview of recent developments as potential drugs for hematologic malignancies and autoimmune diseases. Eur J Med Chem 2019; 182:111646. [PMID: 31521028 DOI: 10.1016/j.ejmech.2019.111646] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
The immunoproteasome, a specialized form of proteasome, is mainly expressed in lymphocytes and monocytes of jawed vertebrates and responsible for the generation of antigenic peptides for cell-mediated immunity. Overexpression of immunoproteasome have been detected in a wide range of diseases including malignancies, autoimmune and inflammatory diseases. Following the successful approval of constitutive proteasome inhibitors bortezomib, carfilzomib and Ixazomib, and with the clarification of immunoproteasome crystal structure and functions, a variety of immunoproteasome inhibitors were discovered or rationally developed. Not only the inhibitory activities, the selectivities for immunoproteasome over constitutive proteasome are essential for the clinical potential of these analogues, which has been validated by the clinical evaluation of immunoproteasome-selective inhibitor KZR-616 for the treatment of systemic lupus erythematosus. In this review, structure, function as well as the current developments of various inhibitors against immunoproteasome are going to be summarized, which help to fully understand the target for drug discovery.
Collapse
Affiliation(s)
- Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Limin Kong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang Province, China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang Province, China.
| |
Collapse
|
23
|
Allardyce DJ, Bell CM, Loizidou EZ. Argyrin B, a non-competitive inhibitor of the human immunoproteasome exhibiting preference for β1i. Chem Biol Drug Des 2019; 94:1556-1567. [PMID: 31074944 DOI: 10.1111/cbdd.13539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 12/14/2022]
Abstract
Inhibitors of the proteasome have found broad therapeutic applications; however, they show severe toxicity due to the abundance of proteasomes in healthy cells. In contrast, inhibitors of the immunoproteasome, which is upregulated during disease states, are less toxic and have increased therapeutic potential including against autoimmune disorders. In this project, we report argyrin B, a natural product cyclic peptide to be a reversible, non-competitive inhibitor of the immunoproteasome. Argyrin B showed selective inhibition of the β5i and β1i sites of the immunoproteasome over the β5c and β1c sites of the constitutive proteasome with nearly 20-fold selective inhibition of β1i over the homologous β1c. Molecular modelling attributes the β1i over β1c selectivity to the small hydrophobic S1 pocket of β1i and β5i over β5c to site-specific amino acid variations that enable additional bonding interactions and stabilization of the binding conformation. These findings facilitate the design of immunoproteasome selective and reversible inhibitors that may have a greater therapeutic potential and lower toxicity.
Collapse
Affiliation(s)
- Duncan J Allardyce
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK
| | - Celia M Bell
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK
| | - Eriketi Z Loizidou
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK
| |
Collapse
|
24
|
Ettari R, Cerchia C, Maiorana S, Guccione M, Novellino E, Bitto A, Grasso S, Lavecchia A, Zappalà M. Development of Novel Amides as Noncovalent Inhibitors of Immunoproteasomes. ChemMedChem 2019; 14:842-852. [PMID: 30829448 DOI: 10.1002/cmdc.201900028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/04/2019] [Indexed: 01/02/2023]
Abstract
The development of immunoproteasome-selective inhibitors is a promising strategy for treating hematologic malignancies, autoimmune and inflammatory diseases. In this context, we report the design, synthesis, and biological evaluation of a new series of amide derivatives as immunoproteasome inhibitors. Notably, the designed compounds act as noncovalent inhibitors, which might be a promising therapeutic option because of the lack of drawbacks and side effects associated with irreversible inhibition. Among the synthesized compounds, we identified a panel of active inhibitors with Ki values in the low micromolar or sub-micromolar ranges toward the β5i and/or β1i subunits of immunoproteasomes. One of the active compounds was shown to be the most potent and selective inhibitor with a Ki value of 21 nm against the single β1i subunit. Docking studies allowed us to determine the mode of binding of the molecules in the catalytic site of immunoproteasome subunits.
Collapse
Affiliation(s)
- Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| | - Carmen Cerchia
- Department of Pharmacy, Drug Discovery Laboratory, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Santina Maiorana
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| | - Manuela Guccione
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| | - Ettore Novellino
- Department of Pharmacy, Drug Discovery Laboratory, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Silvana Grasso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| | - Antonio Lavecchia
- Department of Pharmacy, Drug Discovery Laboratory, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| |
Collapse
|
25
|
Zerfas BL, Trader DJ. Monitoring the Immunoproteasome in Live Cells Using an Activity-Based Peptide-Peptoid Hybrid Probe. J Am Chem Soc 2019; 141:5252-5260. [PMID: 30862160 DOI: 10.1021/jacs.8b12873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Activity-based probes have greatly improved our understanding of the intrinsic roles and expression levels of various proteins within cells. To be useful in live cells, probes must be cell permeable and provide a read-out that can be measured without disrupting the cells or the activity of the target. Unfortunately, probes for the various forms of the proteasome that can be utilized in intact cells are limited; commercially available probes are most effectively used with purified protein or cell lysate. The proteasome, both the 26S and various isoforms of the 20S CP, is an important target with reported roles in cancer, autoimmune disorders, and neurodegenerative diseases. Here, we present the development of a selective probe for the immunoproteasome, a specialized isoform of the 20S proteasome, that becomes expressed in cells that encounter an inflammatory signal. Using a one-bead, one-compound library of small peptides, we discovered a trimer sequence efficiently cleaved by the immunoproteasome with significant selectivity over the standard proteasome. Upon conjugating this sequence to rhodamine 110 and a peptoid, we generated a probe with a considerable improvement in sensitivity compared to that of current aminomethylcoumarin-based proteasome probes. Importantly, our probe was capable of labeling immunoproteasome-expressing cells while maintaining its selectivity over other cellular proteases in live cell cultures. We anticipate this probe to find wide utility for those that wish to study the immunoproteasome's activity in a variety of cell lines and to be used as a reporter to discover small molecules that can perturb the activity of this proteasome isoform.
Collapse
Affiliation(s)
- Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue University , 575 West Stadium Avenue , West Lafayette , Indiana 47907 , United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue University , 575 West Stadium Avenue , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
26
|
Xie J, Wan N, Liang Z, Zhang T, Jiang J. Ixazomib – the first oral proteasome inhibitor. Leuk Lymphoma 2019; 60:610-618. [DOI: 10.1080/10428194.2018.1523398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jingmei Xie
- College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Ning Wan
- Department of Pharmacy, Guangzhou General Hospital of Guangzhou Military Command, PR China
- Guangzhou Huabo Biopharmaceutical Research Institute, PR China
| | - Zhuoru Liang
- College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Tiantian Zhang
- College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Jie Jiang
- College of Pharmacy, Jinan University, Guangzhou, PR China
- Dongguan Institute of Jinan University, Dongguan, PR China
| |
Collapse
|
27
|
Tetradehydrohalicyclamine B, a new proteasome inhibitor from the marine sponge Acanthostrongylophora ingens. Bioorg Med Chem Lett 2019; 29:8-10. [DOI: 10.1016/j.bmcl.2018.11.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 11/16/2022]
|
28
|
Guerrero-Garcia TA, Gandolfi S, Laubach JP, Hideshima T, Chauhan D, Mitsiades C, Anderson KC, Richardson PG. The power of proteasome inhibition in multiple myeloma. Expert Rev Proteomics 2018; 15:1033-1052. [PMID: 30427223 DOI: 10.1080/14789450.2018.1543595] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Proteasome inhibitors (PIs) are therapeutic backbones of multiple myeloma treatment, with PI-based therapies being standards of care throughout the treatment algorithm. Proteasome inhibition affects multiple critical signaling pathways in myeloma cells and interacts synergistically with mechanisms of action of other conventional and novel agents, resulting in substantial anti-myeloma activity and at least additive effects. Areas covered: This review summarizes the biologic effects of proteasome inhibition in myeloma and provides an overview of the importance of proteasome inhibition to the current treatment algorithm. It reviews key clinical data on three PIs, specifically bortezomib, carfilzomib, and ixazomib; assesses ongoing phase 3 trials with these agents; and looks ahead to the increasingly broad role of both approved PIs and PIs under investigation in the frontline and relapsed settings. Expert commentary: Progress to date with PIs in multiple myeloma has been impressive, but there remain unmet needs and challenges, as well as increasing opportunities to optimize the use of these agents. Understanding discrepancies between PIs in terms of efficacy and safety profile is a key goal of ongoing research, along with proteomics-based efforts to identify potential biomarkers of sensitivity and resistance, thereby enabling increasingly personalized treatment approaches in the future.
Collapse
Affiliation(s)
| | - Sara Gandolfi
- b Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Jacob P Laubach
- b Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Teru Hideshima
- b Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | | | | | | | - Paul G Richardson
- b Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
29
|
Astakhova TM, Morozov AV, Erokhov PA, Mikhailovskaya MI, Akopov SB, Chupikova NI, Safarov RR, Sharova NP. Combined Effect of Bortezomib and Menadione Sodium Bisulfite on Proteasomes of Tumor Cells: The Dramatic Decrease of Bortezomib Toxicity in a Preclinical Trial. Cancers (Basel) 2018; 10:E351. [PMID: 30257462 PMCID: PMC6209890 DOI: 10.3390/cancers10100351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/22/2018] [Indexed: 11/16/2022] Open
Abstract
Tumor growth is associated with elevated proteasome expression and activity. This makes proteasomes a promising target for antitumor drugs. Current antitumor drugs such as bortezomib that inhibit proteasome activity have significant side effects. The purpose of the present study was to develop effective low-toxic antitumor compositions with combined effects on proteasomes. For compositions, we used bortezomib in amounts four and ten times lower than its clinical dose, and chose menadione sodium bisulfite (MSB) as the second component. MSB is known to promote oxidation of NADH, generate superoxide radicals, and as a result damage proteasome function in cells that ensure the relevance of MSB use for the composition development. The proteasome pool was investigated by the original native gel electrophoresis method, proteasome chymotrypsin-like activity-by Suc-LLVY-AMC-hydrolysis. For the compositions, we detected 10 and 20 μM MSB doses showing stronger proteasome-suppressing and cytotoxic in cellulo effects on malignant cells than on normal ones. MSB indirectly suppressed 26S-proteasome activity in cellulo, but not in vitro. At the same time, MSB together with bortezomib displayed synergetic action on the activity of all proteasome forms in vitro as well as synergetic antitumor effects in cellulo. These findings determine the properties of the developed compositions in vivo: antitumor efficiency, higher (against hepatocellular carcinoma and mammary adenocarcinoma) or comparable to bortezomib (against Lewis lung carcinoma), and drastically reduced toxicity (LD50) relative to bortezomib. Thus, the developed compositions represent a novel generation of bortezomib-based anticancer drugs combining high efficiency, low general toxicity, and a potentially expanded range of target tumors.
Collapse
Affiliation(s)
- Tatiana M Astakhova
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
| | - Alexey V Morozov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia.
| | - Pavel A Erokhov
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
| | - Maria I Mikhailovskaya
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
| | - Sergey B Akopov
- Laboratory of Human Genes Structure and Functions, Shemyakin⁻Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 16/10 Miklukho-Maklay Street, 117997 Moscow, Russia.
| | - Natalia I Chupikova
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
| | - Ruslan R Safarov
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
| | - Natalia P Sharova
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
| |
Collapse
|
30
|
Proteasome inhibition induces IKK-dependent interleukin-8 expression in triple negative breast cancer cells: Opportunity for combination therapy. PLoS One 2018; 13:e0201858. [PMID: 30089134 PMCID: PMC6082561 DOI: 10.1371/journal.pone.0201858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancer (TNBC) cells express increased levels of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8), which promotes their proliferation and migration. Because TNBC patients are unresponsive to current targeted therapies, new therapeutic strategies are urgently needed. While proteasome inhibition by bortezomib (BZ) or carfilzomib (CZ) has been effective in treating hematological malignancies, it has been less effective in solid tumors, including TNBC, but the mechanisms are incompletely understood. Here we report that proteasome inhibition significantly increases expression of IL-8, and its receptors CXCR1 and CXCR2, in TNBC cells. Suppression or neutralization of the BZ-induced IL-8 potentiates the BZ cytotoxic and anti-proliferative effect in TNBC cells. The IL-8 expression induced by proteasome inhibition in TNBC cells is mediated by IκB kinase (IKK), increased nuclear accumulation of p65 NFκB, and by IKK-dependent p65 recruitment to IL-8 promoter. Importantly, inhibition of IKK activity significantly decreases proliferation, migration, and invasion of BZ-treated TNBC cells. These data provide the first evidence demonstrating that proteasome inhibition increases the IL-8 signaling in TNBC cells, and suggesting that IKK inhibitors may increase effectiveness of proteasome inhibitors in treating TNBC.
Collapse
|
31
|
Chen Y, Zhang Y, Guo X. Proteasome dysregulation in human cancer: implications for clinical therapies. Cancer Metastasis Rev 2018; 36:703-716. [PMID: 29039081 DOI: 10.1007/s10555-017-9704-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer cells show heightened dependency on the proteasome for their survival, growth, and spread. Proteasome dysregulation is therefore commonly selected in favor of the development of many types of cancer. The vast abnormalities in a cancer cell, on top of the complexity of the proteasome itself, have enabled a plethora of mechanisms gearing the proteasome to the oncogenic process. Here, we use selected examples to highlight some general mechanisms underlying proteasome dysregulation in cancer, including copy number variations, transcriptional control, epigenetic regulation, and post-translational modifications. Research in this field has greatly advanced our understanding of proteasome regulation and will shed new light on proteasome-based combination therapies for cancer treatment.
Collapse
Affiliation(s)
- Yulin Chen
- Life Sciences Institute of Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Yanan Zhang
- Life Sciences Institute of Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Xing Guo
- Life Sciences Institute of Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Cloos J, Roeten MS, Franke NE, van Meerloo J, Zweegman S, Kaspers GJ, Jansen G. (Immuno)proteasomes as therapeutic target in acute leukemia. Cancer Metastasis Rev 2018; 36:599-615. [PMID: 29071527 PMCID: PMC5721123 DOI: 10.1007/s10555-017-9699-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The clinical efficacy of proteasome inhibitors in the treatment of multiple myeloma has encouraged application of proteasome inhibitor containing therapeutic interventions in (pediatric) acute leukemia. Here, we summarize the positioning of bortezomib, as first-generation proteasome inhibitor, and second-generation proteasome inhibitors in leukemia treatment from a preclinical and clinical perspective. Potential markers for proteasome inhibitor sensitivity and/or resistance emerging from leukemia cell line models and clinical sample studies will be discussed focusing on the role of immunoproteasome and constitutive proteasome (subunit) expression, PSMB5 mutations, and alternative mechanisms of overcoming proteolytic stress.
Collapse
Affiliation(s)
- Jacqueline Cloos
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Margot Sf Roeten
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels E Franke
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Johan van Meerloo
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sonja Zweegman
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan Jl Kaspers
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Princess Màxima Center, Utrecht, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Gandolfi S, Laubach JP, Hideshima T, Chauhan D, Anderson KC, Richardson PG. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev 2018; 36:561-584. [PMID: 29196868 DOI: 10.1007/s10555-017-9707-8] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteasome inhibitors are one of the most important classes of agents to have emerged for the treatment of multiple myeloma in the past two decades, and now form one of the backbones of treatment. Three agents in this class have been approved by the United States Food and Drug Administration-the first-in-class compound bortezomib, the second-generation agent carfilzomib, and the first oral proteasome inhibitor, ixazomib. The success of this class of agents is due to the exquisite sensitivity of myeloma cells to the inhibition of the 26S proteasome, which plays a critical role in the pathogenesis and proliferation of the disease. Proteasome inhibition results in multiple downstream effects, including the inhibition of NF-κB signaling, the accumulation of misfolded and unfolded proteins, resulting in endoplasmic reticulum stress and leading to the unfolded protein response, the downregulation of growth factor receptors, suppression of adhesion molecule expression, and inhibition of angiogenesis; resistance to proteasome inhibition may arise through cellular responses mediating these downstream effects. These multiple biologic consequences of proteasome inhibition result in synergistic or additive activity with other chemotherapeutic and targeted agents for myeloma, and proteasome inhibitor-based combination regimens have become established as a cornerstone of therapy throughout the myeloma treatment algorithm, incorporating agents from the other key classes of antimyeloma agents, including the immunomodulatory drugs, monoclonal antibodies, and histone deacetylase inhibitors. This review gives an overview of the critical role of the proteasome in myeloma and the characteristics of the different proteasome inhibitors and provides a comprehensive summary of key clinical efficacy and safety data with the currently approved proteasome inhibitors.
Collapse
Affiliation(s)
- Sara Gandolfi
- Dana-Farber Cancer Institute, 44 Binney Street, Dana 1B02, Boston, MA, 02115, USA
| | - Jacob P Laubach
- Dana-Farber Cancer Institute, 44 Binney Street, Dana 1B02, Boston, MA, 02115, USA
| | - Teru Hideshima
- Dana-Farber Cancer Institute, 44 Binney Street, Dana 1B02, Boston, MA, 02115, USA
| | - Dharminder Chauhan
- Dana-Farber Cancer Institute, 44 Binney Street, Dana 1B02, Boston, MA, 02115, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, 44 Binney Street, Dana 1B02, Boston, MA, 02115, USA
| | - Paul G Richardson
- Dana-Farber Cancer Institute, 44 Binney Street, Dana 1B02, Boston, MA, 02115, USA.
| |
Collapse
|
34
|
Yong K, Gonzalez-McQuire S, Szabo Z, Schoen P, Hajek R. The start of a new wave: Developments in proteasome inhibition in multiple myeloma. Eur J Haematol 2018; 101:220-236. [PMID: 29603798 DOI: 10.1111/ejh.13071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) accounts for 10% of hematological cancers. Stem cell transplantation remains the cornerstone of first-line treatment for eligible patients, but historically, pharmaceutical treatment options for MM have been limited. The proteasome was identified as a target for MM therapy in the early 2000s and, in 2004, the boronic acid proteasome inhibitor bortezomib gained European approval. Bortezomib now plays a major role in MM treatment, but the duration of its use can be limited by toxicities such as peripheral neuropathy and the development of resistance. A new generation of proteasome inhibitors has since entered the treatment landscape: carfilzomib, an epoxyketone-based agent with a distinct mode of action, high clinical efficacy, and lower levels of peripheral neuropathy compared with bortezomib, received approval in 2015 for use in patients with relapsed and/or refractory MM (RRMM). Ixazomib, a second-generation, orally administered, boronic acid proteasome inhibitor, has also been approved for use in patients with RRMM. In just over a decade, proteasome inhibitor-based regimens have become an integral component of MM treatment; with more proteasome inhibitors in development, this remains a vibrant research area with potential to improve the lives of patients with MM in the years to come.
Collapse
Affiliation(s)
- Kwee Yong
- Department of Haematology, University College Hospital, London, UK
| | | | | | | | - Roman Hajek
- University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
35
|
Nabissi M, Morelli MB, Offidani M, Amantini C, Gentili S, Soriani A, Cardinali C, Leoni P, Santoni G. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration. Oncotarget 2018; 7:77543-77557. [PMID: 27769052 PMCID: PMC5363603 DOI: 10.18632/oncotarget.12721] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/05/2016] [Indexed: 02/06/2023] Open
Abstract
Several studies showed a potential anti-tumor role for cannabinoids, by modulating cell signaling pathways involved in cancer cell proliferation, chemo-resistance and migration. Cannabidiol (CBD) was previously noted in multiple myeloma (MM), both alone and in synergy with the proteasome inhibitor bortezomib, to induce cell death. In other type of human cancers, the combination of CBD with Δ9-tetrahydrocannabinol (THC) was found to act synergistically with other chemotherapeutic drugs suggesting their use in combination therapy. In the current study, we evaluated the effects of THC alone and in combination with CBD in MM cell lines. We found that CBD and THC, mainly in combination, were able to reduce cell viability by inducing autophagic-dependent necrosis. Moreover, we showed that the CBD-THC combination was able to reduce MM cells migration by down-regulating expression of the chemokine receptor CXCR4 and of the CD147 plasma membrane glycoprotein. Furthermore, since the immuno-proteasome is considered a new target in MM and also since carfilzomib (CFZ) is a new promising immuno-proteasome inhibitor that creates irreversible adducts with the β5i subunit of immuno-proteasome, we evaluated the effect of CBD and THC in regulating the expression of the β5i subunit and their effect in combination with CFZ. Herein, we also found that the CBD and THC combination is able to reduce expression of the β5i subunit as well as to act in synergy with CFZ to increase MM cell death and inhibits cell migration. In summary, these results proved that this combination exerts strong anti-myeloma activities.
Collapse
Affiliation(s)
- Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | | | - Massimo Offidani
- Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Silvia Gentili
- Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| | | | | | - Pietro Leoni
- Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| | - Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| |
Collapse
|
36
|
Oerlemans R, Berkers CR, Assaraf YG, Scheffer GL, Peters GJ, Verbrugge SE, Cloos J, Slootstra J, Meloen RH, Shoemaker RH, Dijkmans BAC, Scheper RJ, Ovaa H, Jansen G. Proteasome inhibition and mechanism of resistance to a synthetic, library-based hexapeptide. Invest New Drugs 2018; 36:797-809. [PMID: 29442210 PMCID: PMC6153520 DOI: 10.1007/s10637-018-0569-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/31/2018] [Indexed: 12/14/2022]
Abstract
Background The hexapeptide 4A6 (Ac-Thr(tBu)-His(Bzl)-Thr(Bzl)-Nle-Glu(OtBu)-Gly-Bza) was isolated from a peptide library constructed to identify peptide-based transport inhibitors of multidrug resistance (MDR) efflux pumps including P-glycoprotein and Multidrug Resistance-associated Protein 1. 4A6 proved to be a substrate but not an inhibitor of these MDR efflux transporters. In fact, 4A6 and related peptides displayed potent cytotoxic activity via an unknown mechanism. Objective To decipher the mode of cytotoxic activity of 4A6. Methods Screening of 4A6 activity was performed against the NCI60 panel of cancer cell lines. Possible interactions of 4A6 with the 26S proteasome were assessed via proteasome activity and affinity labeling, and cell growth inhibition studies with leukemic cells resistant to the proteasome inhibitor bortezomib (BTZ). Results The NCI60 panel COMPARE analysis revealed that 4A6 had an activity profile overlapping with BTZ. Consistently, 4A6 proved to be a selective and reversible inhibitor of β5 subunit (PSMB5)-associated chymotrypsin-like activity of the 26S proteasome. This conclusion is supported by several lines of evidence: (i) inhibition of chymotrypsin-like proteasome activity by 4A6 and related peptides correlated with their cell growth inhibition potencies; (ii) 4A6 reversibly inhibited functional β5 active site labeling with the affinity probe BodipyFL-Ahx3L3VS; and (iii) human myeloid THP1 cells with acquired BTZ resistance due to mutated PSMB5 were highly (up to 287-fold) cross-resistant to 4A6 and its related peptides. Conclusion 4A6 is a novel specific inhibitor of the β5 subunit-associated chymotrypsin-like proteasome activity. Further exploration of 4A6 as a lead compound for development as a novel proteasome-targeted drug is warranted.
Collapse
Affiliation(s)
- Ruud Oerlemans
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - George L Scheffer
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sue Ellen Verbrugge
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | | | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ben A C Dijkmans
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Rik J Scheper
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Chemical Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerrit Jansen
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Cook G, Zweegman S, Mateos MV, Suzan F, Moreau P. A question of class: Treatment options for patients with relapsed and/or refractory multiple myeloma. Crit Rev Oncol Hematol 2018; 121:74-89. [DOI: 10.1016/j.critrevonc.2017.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/14/2017] [Accepted: 11/30/2017] [Indexed: 02/03/2023] Open
|
38
|
Ettari R, Zappalà M, Grasso S, Musolino C, Innao V, Allegra A. Immunoproteasome-selective and non-selective inhibitors: A promising approach for the treatment of multiple myeloma. Pharmacol Ther 2017; 182:176-192. [PMID: 28911826 DOI: 10.1016/j.pharmthera.2017.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the major non-lysosomal proteolytic system for the degradation of abnormal or damaged proteins no longer required. The proteasome is involved in degradation of numerous proteins which regulate the cell cycle, indicating a role in controlling cell proliferation and maintaining cell survival. Defects in the UPS can lead to anarchic cell proliferation and to tumor development. For these reasons UPS inhibition has become a significant new strategy for drug development in cancer treatment. In addition to the constitutive proteasome, which is expressed in all cells and tissues, higher organisms such as vertebrates possess two immune-type proteasomes, the thymoproteasome and the immunoproteasome. The thymoproteasome is specifically expressed by thymic cortical epithelial cells and has a role in positive selection of CD8+ T cells, whereas the immunoproteasome is predominantly expressed in monocytes and lymphocytes and is responsible for the generation of antigenic peptides for cell-mediated immunity. Recent studies demonstrated that the immunoproteasome has a preservative role during oxidative stress and is up-regulated in a number of pathological disorders including cancer, inflammatory and autoimmune diseases. As a consequence, immunoproteasome-selective inhibitors are currently the focus of anticancer drug design. At present, the commercially available proteasome inhibitors bortezomib and carfilzomib which have been validated in multiple myeloma and other model systems, appear to target both the constitutive and immunoproteasomes, indiscriminately. This lack of specificity may, in part, explain some of the side effects of these agents, such as peripheral neuropathy and gastrointestinal effects, which may be due to targeting of the constitutive proteasome in these tissues. In contrast, by selectively inhibiting the immunoproteasome, it may be possible to maintain the antimyeloma and antilymphoma efficacy while reducing these toxicities, thereby increasing the therapeutic index. This review article will be focused on the discussion of the most promising immunoproteasome specific inhibitors which have been developed in recent years. Particular attention will be devoted to the description of their mechanism of action, their structure-activity relationship, and their potential application in therapy.
Collapse
Affiliation(s)
- Roberta Ettari
- Dipartimento di Scienze del Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Maria Zappalà
- Dipartimento di Scienze del Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Silvana Grasso
- Dipartimento di Scienze del Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Vanessa Innao
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 90100 Messina, Italy.
| |
Collapse
|
39
|
Abstract
INTRODUCTION Despite a major positive impact of proteasome inhibitors (PI), such as bortezomib and carfilzomib, on the survival of patients with multiple myeloma (MM) over the last few years, their use in clinical practice is limited by the development of drug resistance, significant side-effects or constraining administration schedules. Ixazomib is the first, and for now the only, oral PI, which was approved by the US Food and Drug Administration in 2015 and by the European Medicines Agency in 2016. Areas covered: In this review, we provide an overview of the preclinical and early-phase studies of ixazomib used as single-agent and in combination. Furthermore, we discuss the results of a recently published pivotal trial, which evaluated the safety profile and clinical benefit of the combination of ixazomib, lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in 722 patients with relapsed/refractory MM. Expert opinion: Ixazomib combines the comfort of oral administration, substantial clinical efficacy and a good safety profile with manageable side-effects, which mainly comprise low-grade hematological, digestive or cutaneous events, and the agent will therefore play an active part in long-term treatment strategies, both as single agent and as part of combination regimens. Ongoing phase III trials are currently defining its place in first-line, maintenance and relapse settings.
Collapse
Affiliation(s)
- Antoine Bonnet
- a Department of Hematology , University Hospital Hôtel-Dieu , Nantes , France
| | - Philippe Moreau
- a Department of Hematology , University Hospital Hôtel-Dieu , Nantes , France
| |
Collapse
|
40
|
Noonan K, Colson K. Immunomodulatory Agents and Proteasome Inhibitors in the Treatment of Multiple Myeloma. Semin Oncol Nurs 2017; 33:279-291. [PMID: 28666621 DOI: 10.1016/j.soncn.2017.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To review the current evidence on the use of immunomodulatory agents (IMiDs) and proteasome inhibitors (PIs) in the treatment of multiple myeloma (MM). DATA SOURCES Journal articles, research reports, state of the science papers, and clinical guidelines. CONCLUSION There has been a tremendous increase of new agents to treat multiple myeloma in the last 15 years. The IMiDs and PIs remain essential components of many anti-myeloma regimens. IMPLICATIONS FOR NURSING PRACTICE With these advances in the therapeutic landscape, knowledge of these drugs, side effects and nursing implications are essential to improve outcomes. Patient education is also of vital importance in achieving optimal responses to treatment.
Collapse
|
41
|
Chhabra S. Novel Proteasome Inhibitors and Histone Deacetylase Inhibitors: Progress in Myeloma Therapeutics. Pharmaceuticals (Basel) 2017; 10:E40. [PMID: 28398261 PMCID: PMC5490397 DOI: 10.3390/ph10020040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 01/01/2023] Open
Abstract
The unfolded protein response is responsible for the detection of misfolded proteins and the coordination of their disposal and is necessary to maintain the cellular homoeostasis. Multiple myeloma cells secrete large amounts of immunoglobulins, proteins that need to be correctly folded by the chaperone system. If this process fails, the misfolded proteins have to be eliminated by the two main garbage-disposal systems of the cell: proteasome and aggresome. The blockade of either of these systems will result in accumulation of immunoglobulins and other toxic proteins in the cytoplasm and cell death. The simultaneous inhibition of the proteasome, by proteasome inhibitors (PIs) and the aggresome, by histone deacetylase inhibitors (HDACi) results in a synergistic increase in cytotoxicity in myeloma cell lines. This review provides an overview of mechanisms of action of second-generation PIs and HDACi in multiple myeloma (MM), the clinical results currently observed with these agents and assesses the potential therapeutic impact of the different agents in the two classes. The second-generation PIs offer benefits in terms of increased efficacy, reduced neurotoxicity as off-target effect and may overcome resistance to bortezomib because of their different chemical structure, mechanism of action and biological properties. HDACi with anti-myeloma activity in clinical development discussed in this review include vorinostat, panobinostat and selective HDAC6 inhibitor, ricolinostat.
Collapse
Affiliation(s)
- Saurabh Chhabra
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI 53226, USA.
| |
Collapse
|
42
|
A High-avidity WT1-reactive T-Cell Receptor Mediates Recognition of Peptide and Processed Antigen but not Naturally Occurring WT1-positive Tumor Cells. J Immunother 2016; 39:105-16. [PMID: 26938944 DOI: 10.1097/cji.0000000000000116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wilms tumor gene 1 (WT1) is an attractive target antigen for cancer immunotherapy because it is overexpressed in many hematologic malignancies and solid tumors but has limited, low-level expression in normal adult tissues. Multiple HLA class I and class II restricted epitopes have been identified in WT1, and multiple investigators are pursuing the treatment of cancer patients with WT1-based vaccines and adoptively transferred WT1-reactive T cells. Here we isolated an HLA-A*0201-restricted WT1-reactive T-cell receptor (TCR) by stimulating peripheral blood lymphocytes of healthy donors with the peptide WT1:126-134 in vitro. This TCR mediated peptide recognition down to a concentration of ∼0.1 ng/mL when pulsed onto T2 cells as well as recognition of HLA-A*0201 target cells transfected with full-length WT1 cDNA. However, it did not mediate consistent recognition of many HLA-A*0201 tumor cell lines or freshly isolated leukemia cells that endogeneously expressed WT1. We dissected this pattern of recognition further and observed that WT1:126-134 was more efficiently processed by immunoproteasomes compared with standard proteasomes. However, pretreatment of WT1 tumor cell lines with interferon gamma did not appreciably enhance recognition by our TCR. In addition, we highly overexpressed WT1 in several leukemia cell lines by electroporation with full-length WT1 cDNA. Some of these lines were still not recognized by our TCR suggesting possible antigen processing defects in some leukemias. These results suggest WT1:126-134 may not be a suitable target for T-cell based tumor immunotherapies.
Collapse
|
43
|
Offidani M, Corvatta L, Gentili S, Maracci L, Leoni P. Oral ixazomib maintenance therapy in multiple myeloma. Expert Rev Anticancer Ther 2016; 16:21-32. [PMID: 26588946 DOI: 10.1586/14737140.2016.1123627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Continuous therapy has proven to be an effective therapeutic strategy to improve the outcome of both young and elderly multiple myeloma patients. Remarkably, lenalidomide and bortezomib showed to play a crucial role in this setting due to their safety profile allowing long-term exposure. Ixazomib, the first oral proteasome inhibitor to be evaluated in multiple myeloma, exerts substantial anti-myeloma activity as a single agent and particularly in combination with immunomodulatory drugs and it may be an attractive option for maintenance therapy. Here we address the issue of maintenance therapy as part of a therapeutic approach of multiple myeloma patients focusing on the potential role of ixazomib.
Collapse
Affiliation(s)
- Massimo Offidani
- a Azienda Ospedaliero-Universitaria , Ospedali Riuniti di Ancona , Ancona , Italy
| | - Laura Corvatta
- b Dipartimento di Medicina, UOC Medicina , Fabriano , Italy
| | - Silvia Gentili
- a Azienda Ospedaliero-Universitaria , Ospedali Riuniti di Ancona , Ancona , Italy
| | - Laura Maracci
- a Azienda Ospedaliero-Universitaria , Ospedali Riuniti di Ancona , Ancona , Italy
| | - Pietro Leoni
- a Azienda Ospedaliero-Universitaria , Ospedali Riuniti di Ancona , Ancona , Italy
| |
Collapse
|
44
|
Singha B, Gatla HR, Phyo S, Patel A, Chen ZS, Vancurova I. IKK inhibition increases bortezomib effectiveness in ovarian cancer. Oncotarget 2016; 6:26347-58. [PMID: 26267322 PMCID: PMC4694906 DOI: 10.18632/oncotarget.4713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/08/2015] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer is associated with increased expression of the pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8), which induces tumor cell proliferation, angiogenesis, and metastasis. Even though bortezomib (BZ) has shown remarkable anti-tumor activity in hematological malignancies, it has been less effective in ovarian cancer; however, the mechanisms are not understood. We have recently shown that BZ unexpectedly induces the expression of IL-8 in ovarian cancer cells in vitro, by IκB kinase (IKK)-dependent mechanism. Here, we tested the hypothesis that IKK inhibition reduces the IL-8 production and increases BZ effectiveness in reducing ovarian tumor growth in vivo. Our results demonstrate that the combination of BZ and the IKK inhibitor Bay 117085 significantly reduces the growth of ovarian tumor xenografts in nude mice when compared to either drug alone. Mice treated with the BZ/Bay 117085 combination exhibit smallest tumors, and lowest levels of IL-8. Furthermore, the reduced tumor growth in the combination group is associated with decreased tumor levels of S536P-p65 NFκB and its decreased recruitment to IL-8 promoter in tumor tissues. These data provide the first in vivo evidence that combining BZ with IKK inhibitor is effective, and suggest that using IKK inhibitors may increase BZ effectiveness in ovarian cancer treatment.
Collapse
Affiliation(s)
- Bipradeb Singha
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | | | - Sai Phyo
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Atish Patel
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
45
|
Allen CT, Conley B, Sunwoo JB, Van Waes C. CCR 20th anniversary commentary: Preclinical study of proteasome inhibitor bortezomib in head and neck cancer. Clin Cancer Res 2016; 21:942-3. [PMID: 25733706 DOI: 10.1158/1078-0432.ccr-14-2550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In a study published in the May 1, 2001, issue of Clinical Cancer Research, Sunwoo and colleagues provided evidence for proteasome inhibition of NF-κB and tumorigenesis, supporting early-phase clinical trials in solid malignancies of the upper aerodigestive tract. Subsequent clinical studies uncovered a dichotomy of responses in patients with hematopoietic and solid malignancies, and the mechanisms of resistance.
Collapse
Affiliation(s)
- Clint T Allen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Barbara Conley
- Cancer Diagnosis Program, National Cancer Institute, NIH, Bethesda, Maryland
| | - John B Sunwoo
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.
| |
Collapse
|
46
|
Constitutive NF-κB activation in AML: Causes and treatment strategies. Crit Rev Oncol Hematol 2016; 98:35-44. [DOI: 10.1016/j.critrevonc.2015.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/12/2015] [Accepted: 10/01/2015] [Indexed: 01/01/2023] Open
|
47
|
McBride A, Klaus JO, Stockerl-Goldstein K. Carfilzomib: a second-generation proteasome inhibitor for the treatment of multiple myeloma. Am J Health Syst Pharm 2015; 72:353-60. [PMID: 25694410 DOI: 10.2146/ajhp130281] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE The pharmacology, clinical efficacy, safety, cost, dosage and administration, and place in therapy of carfilzomib for the treatment of multiple myeloma (MM) are reviewed. SUMMARY Proteasome inhibition in MM has become a cornerstone in treatment regimens. Carfilzomib, a second-generation proteasome inhibitor, has demonstrated efficacy in patients with relapsed or refractory disease who have received at least two prior therapies including bortezomib and an immunomodulatory agent. Carfilzomib is an irreversible inhibitor and binds to a different site than bortezomib on the proteasome. A Phase II study evaluated 266 heavily pretreated patients with relapsed or refractory MM who had received at least two prior therapies, including bortezomib and either thalidomide or lenalidomide. The overall response rate was 23.7%, with a median duration of response of 7.8 months. The median overall survival time was 15.6 months. Carfilzomib has a similar adverse-effect profile to bortezomib, including anemia, thrombocytopenia, fatigue, dyspnea, and nausea; however, it does not result in the development or worsening of peripheral neuropathy. Carfilzomib is infused intravenously over 2-10 minutes for 2 consecutive days every week for three out of four weeks, with a 12-day rest period. Dosing is based on the patient's actual body surface area. Carfilzomib is available in 60-mg vials for single infusion. The total cost for a year of therapy is approximately $155,852. CONCLUSION Carfilzomib, a second-generation proteasome inhibitor that irreversibly inhibits the 26S proteasome, has shown efficacy in clinical studies of patients with relapsed or refractory MM, though the drug's role in the management of MM is not yet clear.
Collapse
Affiliation(s)
- Ali McBride
- Ali McBride, Pharm.D., M.S., BCPS, is Clinical Coordinator Hematology/Oncology, Department of Pharmacy, University of Arizona Cancer Center, Tucson. Jeff O. Klaus, Pharm.D., is Clinical Pharmacist, Hematologic Malignancies/Stem Cell Transplant, Department of Pharmacy, Barnes-Jewish Hospital, St. Louis, MO. Keith Stockerl-Goldstein, M.D.,is Associate Professor, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis.
| | - Jeff O Klaus
- Ali McBride, Pharm.D., M.S., BCPS, is Clinical Coordinator Hematology/Oncology, Department of Pharmacy, University of Arizona Cancer Center, Tucson. Jeff O. Klaus, Pharm.D., is Clinical Pharmacist, Hematologic Malignancies/Stem Cell Transplant, Department of Pharmacy, Barnes-Jewish Hospital, St. Louis, MO. Keith Stockerl-Goldstein, M.D.,is Associate Professor, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis
| | - Keith Stockerl-Goldstein
- Ali McBride, Pharm.D., M.S., BCPS, is Clinical Coordinator Hematology/Oncology, Department of Pharmacy, University of Arizona Cancer Center, Tucson. Jeff O. Klaus, Pharm.D., is Clinical Pharmacist, Hematologic Malignancies/Stem Cell Transplant, Department of Pharmacy, Barnes-Jewish Hospital, St. Louis, MO. Keith Stockerl-Goldstein, M.D.,is Associate Professor, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis
| |
Collapse
|
48
|
Gentile M, Offidani M, Vigna E, Corvatta L, Recchia AG, Morabito L, Morabito F, Gentili S. Ixazomib for the treatment of multiple myeloma. Expert Opin Investig Drugs 2015; 24:1287-98. [PMID: 26138345 DOI: 10.1517/13543784.2015.1065250] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Proteasome inhibition is a mainstay in the treatment of multiple myeloma (MM). Bortezomib, the first proteasome inhibitor (PI) approved for MM therapy, has shown efficacy in relapsed/refractory patients and in the front-line setting. Among second-generation PIs, MLN9708 ( ixazomib ) is the first oral compound to be evaluated in MM treatment and has shown improvement in pharmacokinetic and pharmacodynamic parameters compared with bortezomib with a similar efficacy in the control of myeloma growth and in the prevention of bone loss. AREAS COVERED In this review, the authors discuss the rationale for use of PIs. They then summarize the clinical development of ixazomib in MM, from initial Phase I to Phase II studies as a monotherapy and in combination with other chemotherapeutics. EXPERT OPINION Preliminary data of Phase I/II trials showed that ixazomib had a good safety profile and exerted anti-myeloma activity as a single agent in relapsed/refractory patients. Furthermore, ixazomib also had efficacy in patients who were refractory to bortezomib. Its use in combination with lenalidomide and dexamethasone was shown to be an effective and well-tolerated regimen in up-front treatment leading to minimal residual disease negativity in a significant number of patients. Results of Phase III trials, evaluating ixazomib in induction or maintenance therapy, are awaited.
Collapse
Affiliation(s)
- Massimo Gentile
- Dipartimento Oncoematologico, Unità Operativa Complessa di Ematologia, Azienda Ospedaliera di Cosenza , Viale della Repubblica, 87100 Cosenza , Italy +39 0984 681329 ; +39 0984 681866 ;
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Mitsiades CS. Therapeutic landscape of carfilzomib and other modulators of the ubiquitin-proteasome pathway. J Clin Oncol 2015; 33:782-5. [PMID: 25605842 PMCID: PMC4517049 DOI: 10.1200/jco.2014.55.5748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Clinical use of proteasome inhibitors in the treatment of multiple myeloma. Pharmaceuticals (Basel) 2014; 8:1-20. [PMID: 25545164 PMCID: PMC4381198 DOI: 10.3390/ph8010001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/04/2014] [Indexed: 01/08/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy characterized by the clonal proliferation of neoplastic plasma cells. The use of proteasome inhibitors in the treatment of MM has led to significant improvements in outcomes. This article reviews data on the use of the two approved proteasome inhibitors (bortezomib and carlfilzomib), as well as newer agents under development. Emphasis is placed on the clinical use of proteasome inhibitors, including management of side effects and combination with other agents.
Collapse
|