1
|
Gavrikova T, Nakamura N, Davydova J, Antonarakis ES, Yamamoto M. Infectivity-Enhanced, Conditionally Replicative Adenovirus for COX-2-Expressing Castration-Resistant Prostate Cancer. Viruses 2023; 15:901. [PMID: 37112881 PMCID: PMC10144787 DOI: 10.3390/v15040901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The development of conditionally replicative adenoviruses (CRAds) for castration-resistant prostate cancer (CRPC), particularly neuroendocrine prostate cancer (NEPC), has two major obstacles: choice of control element and poor infectivity. We applied fiber-modification-based infectivity enhancement and an androgen-independent promoter (cyclooxynegase-2, COX-2) to overcome these issues. METHODS The properties of the COX-2 promoter and the effect of fiber modification were tested in two CRPC cell lines (Du-145 and PC3). Fiber-modified COX-2 CRAds were tested in vitro for cytocidal effect as well as in vivo for antitumor effect with subcutaneous CRPC xenografts. RESULTS In both CRPC cell lines, the COX-2 promoter showed high activity, and Ad5/Ad3 fiber modification significantly enhanced adenoviral infectivity. COX-2 CRAds showed a potent cytocidal effect in CRPC cells with remarkable augmentation by fiber modification. In vivo, COX-2 CRAds showed an antitumor effect in Du-145 while only Ad5/Ad3 CRAd showed the strongest antitumor effect in PC3. CONCLUSION COX-2 promoter-based, infectivity-enhanced CRAds showed a potent antitumor effect in CRPC/NEPC cells.
Collapse
Affiliation(s)
- Tatyana Gavrikova
- Division of Human Gene Therapy, Department of Surgery, Medicine and Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Naohiko Nakamura
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia Davydova
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emmanuel S. Antonarakis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Masato Yamamoto
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Movahed MA, Abbasi FK, Rajabi M, Abedi N, Naderi N, Daraei B, Zarghi A. Design, synthesis, and biological evaluation of new 2-(4-(methylsulfonyl)phenyl)- N-phenylimidazo[1,2- a]pyridin-3-amine as selective COX-2 inhibitors. Med Chem Res 2023; 32:856-868. [PMID: 37056461 PMCID: PMC9977638 DOI: 10.1007/s00044-023-03041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023]
Abstract
Cyclooxygenase (COX), which plays a role in converting arachidonic acid to inflammatory mediators, could be inhibited by non-steroidal anti-inflammatory drugs (NSAIDs). Although potent NSAIDs are available for the treatment of pain, fever, and inflammation, some side effects, such as gastrointestinal ulcers, limit the use of these medications. In recent years, selective COX-2 inhibitors with a lower incidence of adverse effects attained an important position in medicinal chemistry. In order to introduce some new potent COX-2 inhibitors, a new series of 2-(4-(methylsulfonyl)phenyl)-N-phenylimidazo[1,2-a]pyridin-3-amines was designed, synthesized, and evaluated. The docking studies performed by AutoDock Vina demonstrated that docked molecules were positioned as well as a crystallographic ligand in the COX-2 active site, and SO2Me pharmacophore was inserted into the secondary pocket of COX-2 and formed hydrogen bonds with the active site. The designed compounds were synthesized through two-step reactions. In the first step, different 1-(4-(methylsulfonyl)phenyl)-2-(phenylamino)ethan-1-one derivatives were obtained by the reaction of aniline derivatives and α-bromo-4-(methylsulfonyl)acetophenone. Then, condensation of intermediates with different 2-aminopyridines gave final compounds. Enzyme inhibition assay and formalin test were performed to evaluate the activity of these compounds. Among these compounds, 8-methyl-2-(4-(methylsulfonyl)phenyl)-N-(p-tolyl)imidazo[1,2-a]pyridin-3-amine (5n) exhibited the highest potency (IC50 = 0.07 µM) and selectivity (selectivity index = 508.6) against COX-2 enzyme (selectivity index: COX-1 IC50/COX-2 IC50). The antinociceptive activity assessment via the formalin test showed that nine derivatives (5a, 5d, 5h, 5i, 5k, 5q, 5r, 5s, and 5t) possessed significant activity compared with the control group with a p value less than 0.05.
Collapse
Affiliation(s)
- Mahsa Azami Movahed
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khadem Abbasi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Rajabi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niusha Abedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Naderi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Daraei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Jiang S, Feng R, Tian Z, Zhou J, Zhang W. Metabolic dialogs between B cells and the tumor microenvironment: Implications for anticancer immunity. Cancer Lett 2023; 556:216076. [PMID: 36724837 DOI: 10.1016/j.canlet.2023.216076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Immunometabolism, a branch of biology describing the link between immunity and metabolism, is an emerging topic in cancer immunology. It is currently well accepted that B cells and tertiary lymph structures formed by them are associated with favorable outcomes when patients undergo cancer immunotherapy. Understanding the determinants of B-cell fate and function in cancer patients is necessary for improving cancer immunotherapy. Accumulating evidence points to the tumor microenvironment being a critical metabolic hurdle to an efficient antitumor B-cell response. At the same time, several B-cell-derived metabolites have recently been reported to inhibit anticancer immunity. In this literature review, key B-cell immunometabolism studies and the metabolic life of B cells were summarized. Then, we discussed the intrinsic metabolic pathways of B cells themselves and how the tumor microenvironment and B cells in tumors metabolically influence each other. Finally, we pointed out key questions to provide some inspiration for further study of the role of B-cell immunometabolism in the antitumor immune response.
Collapse
Affiliation(s)
- Su Jiang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ranran Feng
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziying Tian
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu Zhou
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
The Bio-Diversity and the Role of Gut Microbiota in Postmenopausal Women with Luminal Breast Cancer Treated with Aromatase Inhibitors: An Observational Cohort Study. Pathogens 2022; 11:pathogens11121421. [PMID: 36558756 PMCID: PMC9781910 DOI: 10.3390/pathogens11121421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The interactions between aromatase inhibitors (AI) in breast cancer (BC) and gut microbiota (GM) have not been completely established yet. The aim of the study is to evaluate the bio-diversity of GM and the relationship between GM, inflammation and tumor-infiltrating lymphocytes (TILs) in postmenopausal women with BC during adjuvant AI treatment compared to women with disease relapse during or after one year of AI therapy ("endocrine-resistant"). We conducted a monocenter observational case-control study. Eighty-four women with BC (8 cases, 76 controls) were enrolled from 2019 to 2021. We observed a significant difference in the mean microbial abundance between the two groups for the taxonomic rank of order (p 0.035) and family (p 0.029); specifically, the case group showed higher diversity than the control group. Veillonella reached its maximum abundance in cases (p 0.022). Cytokine levels were compared among the groups created considering the TILs levels. We obtained a statistically significant difference (p 0.045) in IL-17 levels among the groups, with patients with low TILs levels showing a higher median value for IL-17 (0.15 vs. 0.08 pg/mL). Further studies about the bio-diversity in women with BC may lead to the development of new biomarkers and targeted interventions.
Collapse
|
5
|
Kumbhar P, Kole K, Khadake V, Marale P, Manjappa A, Nadaf S, Jadhav R, Patil A, Singh SK, Dua K, Jha NK, Disouza J, Patravale V. Nanoparticulate drugs and vaccines: Breakthroughs and bottlenecks of repurposing in breast cancer. J Control Release 2022; 349:812-830. [PMID: 35914614 DOI: 10.1016/j.jconrel.2022.07.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
Breast cancer (BC) is a highly diagnosed and topmost cause of death in females worldwide. Drug repurposing (DR) has shown great potential against BC by overcoming major shortcomings of approved anticancer therapeutics. However, poor physicochemical properties, pharmacokinetic performance, stability, non-selectivity to tumors, and side effects are severe hurdles in repurposed drug delivery against BC. The variety of nanocarriers (NCs) has shown great promise in delivering repurposed therapeutics for effective treatment of BC via improving solubility, stability, tumor selectivity and reducing toxicity. Besides, delivering repurposed cargos via theranostic NCs can be helpful in the quick diagnosis and treatment of BC. Localized delivery of repurposed candidates through apt NCs can diminish the systemic side effects and improve anti-tumor effectiveness. However, breast tumor variability and tumor microenvironment have created several challenges to nanoparticulate delivery of repurposed cargos. This review focuses on DR as an ingenious strategy to treat BC and circumvent the drawbacks of approved anticancer therapeutics. Various nanoparticulate avenues delivering repurposed therapeutics, including non-oncology cargos and vaccines to target BC effectively, are discussed along with case studies. Moreover, clinical trial information on repurposed medications and vaccines for the treatment of BC is covered along with various obstacles in nanoparticulate drug delivery against cancer that have been so far identified. In a nutshell, DR and drug delivery of repurposed drugs via NCs appears to be a propitious approach in devastating BC.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Varsha Khadake
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Pradnya Marale
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India; S. D. Patil Institute of Pharmacy, Urun-Islampur, Maharashtra 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Sameer Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagaon, Gadhinglaj, Maharashtra, India
| | - Rajendra Jadhav
- Bharati Vidyapeeth (Deemed to be University) Pune, Institute of Management, Kolhapur, India
| | - Ajit Patil
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
6
|
Wei J, Zhang J, Wang D, Cen B, Lang JD, DuBois RN. The COX-2-PGE2 Pathway Promotes Tumor Evasion in Colorectal Adenomas. Cancer Prev Res (Phila) 2022; 15:285-296. [PMID: 35121582 PMCID: PMC9064954 DOI: 10.1158/1940-6207.capr-21-0572] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
The mechanisms underlying the regulation of a checkpoint receptor, PD-1, in tumor-infiltrating immune cells during the development of colorectal cancer are not fully understood. Here we demonstrate that COX-2-derived PGE2, an inflammatory mediator and tumor promoter, induces PD-1 expression by enhancing NFκB's binding to the PD-1 promoter via an EP4-PI3K-Akt signaling pathway in both CD8+ T cells and macrophages. Moreover, PGE2 suppresses CD8+ T-cell proliferation and cytotoxicity against tumor cells and impairs macrophage phagocytosis of cancer cells via an EP4-PI3K-Akt-NFκB-PD-1 signaling pathway. In contrast, inhibiting the COX-2-PGE2-EP4 pathway increases intestinal CD8+ T-cell activation and proliferation and enhances intestinal macrophage phagocytosis of carcinoma cells accompanied by reduction of PD-1 expression in intestinal CD8+ T cells and macrophages in ApcMin/+ mice. PD-1 expression correlates well with COX-2 levels in human colorectal cancer specimens. Both elevated PD-1 and COX-2 are associated with poorer overall survival in patients with colorectal cancer. Our results uncover a novel role of PGE2 in tumor immune evasion. They may provide the rationale for developing new therapeutic approaches to subvert this process by targeting immune checkpoint pathways using EP4 antagonists. In addition, our findings reveal a novel mechanism explaining how NSAIDs reduce colorectal cancer risk by suppressing tumor immune evasion. PREVENTION RELEVANCE These findings provide a potential explanation underlying the chemopreventive effect of NSAIDs on reducing colorectal cancer incidence during premalignancy and provide a rationale for developing EP4 antagonists for colorectal cancer prevention and treatment. Simply targeting PGE2 signaling alone may be efficacious in colorectal cancer prevention and treatment, avoiding side effects associated with NSAIDs.
Collapse
Affiliation(s)
- Jie Wei
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Jinyu Zhang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Bo Cen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Jessica D. Lang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004
| | - Raymond N. DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
- Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, AZ 85259
| |
Collapse
|
7
|
Ravinder D, Rampogu S, Dharmapuri G, Pasha A, Lee KW, Pawar SC. Inhibition of DDX3 and COX-2 by forskolin and evaluation of anti-proliferative, pro-apoptotic effects on cervical cancer cells: molecular modelling and in vitro approaches. Med Oncol 2022; 39:61. [PMID: 35478276 DOI: 10.1007/s12032-022-01658-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Several studies have reported up-regulation of both cyclooxygenase-2 (COX-2) and DEAD-box RNA helicase3 (DDX3) and have validated their oncogenic role in many cancers. Inhibition of COX-2 and DDX3 offers a potential pharmacological strategy for prevention of cancer progression. The COX-2 isoform is expressed in response to pro-inflammatory stimuli in premalignant lesions, including cervical tissues. This study elucidates the potential role of plant derived compound Forskolin (FSK) in plummeting the expression of COX-2 and DDX3 in cervical cancer. To establish this, the cervical cancer cells were treated with the FSK compound which induced a dose dependent significant inhibition of COX-2 and DDX3 expression. The FSK treatment also significantly induced apoptosis in cancer cells by modulating the expression of apoptotic markers like caspase-3, cleaved caspase-3, caspase-9, cleaved caspase-9, full length-poly ADP ribose polymerase (PARP), cleaved-poly ADP ribose polymerase (C-PARP) and Bcl2 in dose dependent manner. Further FSK significantly modulated the cell survival pathway Phosphatidylinositol 3-kinase (PI3-K)/Akt signalling pathway upon 24 h of incubation in cervical cancer cells. The molecular docking studies revealed that the FSK engaged the active sites of both the targets by interacting with key residues.
Collapse
Affiliation(s)
- Doneti Ravinder
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Shailima Rampogu
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Gangappa Dharmapuri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Akbar Pasha
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| | - Smita C Pawar
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
8
|
Ansorge N, Dannecker C, Jeschke U, Schmoeckel E, Heidegger HH, Vattai A, Burgmann M, Czogalla B, Mahner S, Fuerst S. Regulatory T Cells with Additional COX-2 Expression Are Independent Negative Prognosticators for Vulvar Cancer Patients. Int J Mol Sci 2022; 23:4662. [PMID: 35563052 PMCID: PMC9099805 DOI: 10.3390/ijms23094662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Vulvar cancer incidence numbers have been steadily rising over the past decades. In particular, the number of young patients with vulvar cancer has recently increased. Therefore, the need to identify new prognostic factors and, in addition, therapeutic options for vulvar carcinoma is more apparent. The aim of this study was to analyze the influx of COX-2 positive tumor-infiltrating lymphocytes and monocytes and their influence on prognosis. Using subtyping by immunofluorescence, the majority of COX-2 expressing immune cells were identified as FOXP3-positive regulatory T cells. In addition, peri- and intra-tumoral macrophages in the same tumor tissue were detected simultaneously as M2-polarized macrophages. COX-2 positive immune cells were independent negative prognostic markers in long-term overall survival of patients with vulvar cancer. These results show an influence of immune cell infiltration for vulvar carcinoma patients. Immune cell infiltration and immune checkpoint expression may, therefore, become interesting targets for further research on new vulvar cancer treatment strategies.
Collapse
Affiliation(s)
- Nadine Ansorge
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany;
| | - Christian Dannecker
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany;
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany;
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Thalkirchner Str. 36, 80337 Munich, Germany;
| | - Helene Hildegard Heidegger
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
| | - Maximiliane Burgmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
| | - Sophie Fuerst
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81337 Munich, Germany; (N.A.); (H.H.H.); (A.V.); (M.B.); (B.C.); (S.M.); (S.F.)
| |
Collapse
|
9
|
Tsai YT, Lo WL, Chen PY, Ko CY, Chuang JY, Kao TJ, Yang WB, Chang KY, Hung CY, Kikkawa U, Chang WC, Hsu TI. Reprogramming of arachidonate metabolism confers temozolomide resistance to glioblastoma through enhancing mitochondrial activity in fatty acid oxidation. J Biomed Sci 2022; 29:21. [PMID: 35337344 PMCID: PMC8952270 DOI: 10.1186/s12929-022-00804-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 01/10/2023] Open
Abstract
Background Sp1 is involved in the recurrence of glioblastoma (GBM) due to the acquirement of resistance to temozolomide (TMZ). Particularly, the role of Sp1 in metabolic reprogramming for drug resistance remains unknown. Methods RNA-Seq and mass spectrometry were used to analyze gene expression and metabolites amounts in paired GBM specimens (primary vs. recurrent) and in paired GBM cells (sensitive vs. resistant). ω-3/6 fatty acid and arachidonic acid (AA) metabolism in GBM patients were analyzed by targeted metabolome. Mitochondrial functions were determined by Seahorse XF Mito Stress Test, RNA-Seq, metabolome and substrate utilization for producing ATP. Therapeutic options targeting prostaglandin (PG) E2 in TMZ-resistant GBM were validated in vitro and in vivo. Results Among the metabolic pathways, Sp1 increased the prostaglandin-endoperoxide synthase 2 expression and PGE2 production in TMZ-resistant GBM. Mitochondrial genes and metabolites were obviously increased by PGE2, and these characteristics were required for developing resistance in GBM cells. For inducing TMZ resistance, PGE2 activated mitochondrial functions, including fatty acid β-oxidation (FAO) and tricarboxylic acid (TCA) cycle progression, through PGE2 receptors, E-type prostanoid (EP)1 and EP3. Additionally, EP1 antagonist ONO-8713 inhibited the survival of TMZ-resistant GBM synergistically with TMZ. Conclusion Sp1-regulated PGE2 production activates FAO and TCA cycle in mitochondria, through EP1 and EP3 receptors, resulting in TMZ resistance in GBM. These results will provide us a new strategy to attenuate drug resistance or to re-sensitize recurred GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00804-3.
Collapse
Affiliation(s)
- Yu-Ting Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Wei-Lun Lo
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, 110, Taiwan.,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Pin-Yuan Chen
- School of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan.,Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan.,Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Chiung-Yuan Ko
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Jian-Ying Chuang
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Tzu-Jen Kao
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Wen-Bing Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110.,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Chia-Yang Hung
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Ushio Kikkawa
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110. .,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.
| | - Tsung-I Hsu
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan. .,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan. .,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan. .,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan. .,National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan.
| |
Collapse
|
10
|
PTGES3 is a Putative Prognostic Marker in Breast Cancer. J Surg Res 2022; 271:154-162. [DOI: 10.1016/j.jss.2021.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/30/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
|
11
|
Yi X, Yan Y, Li L, Zhou R, Shen X, Huang Y. Combination of mitochondria impairment and inflammation blockade to combat metastasis. J Control Release 2021; 341:753-768. [PMID: 34915072 DOI: 10.1016/j.jconrel.2021.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022]
Abstract
Targeted induction of mitochondria impairment has emerged as a promising strategy for anti-metastasis therapy. However, problems such as limited mitochondria targeting efficiency, undesired drug leakage and insufficient drug release inside mitochondria remain crucial challenges for mitochondria-targeting therapy. Here, we constructed an N-(2-hydroxypropyl) methacrylamide (HPMA) polymer based cationic system that could target to mitochondria and facilitate on demand drug release in response to excessive mitochondrial reactive oxygen species. Whereas, this drug delivery system is still challenged by limitations of (1) in vivo application, and (2) inflammatory tumor microenvironment (TME). On one aspect, to prolong blood circulation and increase tumor targeting, we designed a nanocomposite (PDT-NCs) that assembled from the cationic HPMA polymer and anionic hyaluronic acid via electrostatic interaction. On another aspect, a celecoxib loaded liposome (Lip-Cel) was further fabricated to alleviate inflammation in TME by downregulating various metastasis-associated factors. Ultimately, PDT-NCs and Lip-Cel led to a drastic improvement in the suppression of primary tumor growth and distant lung metastasis. Our work provided a generalizable approach of mitochondria dysfunction and inflammation blockade to combat metastatic tumors.
Collapse
Affiliation(s)
- Xiaoli Yi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
| | - Yue Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
| | - Rui Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
| | - Xinran Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China.
| |
Collapse
|
12
|
Ozmen V, Ordu C, Ilgun AS, Unal C, Soybir G, Erdogan Z, Kayan Tapan T, Aktepe F, Alco G, Duymaz T, Ozmen T. The effects of vitamin D replacement on pathological complete response (pCR) in breast cancer patients receiving neoadjuvant systemic chemotherapy (NAC). Breast J 2021; 27:902-905. [PMID: 34806247 DOI: 10.1111/tbj.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Vahit Ozmen
- Department of General Surgery, Istanbul University Istanbul Faculty of Medicine, Capa, Istanbul, Turkey
| | - Cetin Ordu
- Department of Medical Oncology, Gayrettepe Florence Nightingale Hospital, Istanbul, Turkey
| | - Ahmet Serkan Ilgun
- Department of General Surgery, Demiroglu Bilim University, Istanbul, Turkey
| | - Caglar Unal
- Department of Medical Oncology, Demiroglu Bilim University, Istanbul, Turkey
| | - Gursel Soybir
- Department of General Surgery, Sisli Memorial Hospital, Istanbul, Turkey
| | - Zeynep Erdogan
- Department of Physical Therapy Rehabilitation, Biruni University, Istanbul, Turkey
| | - Tuba Kayan Tapan
- Department of Nutrition and Dietetic, Demiroglu Bilim University, Istanbul, Turkey
| | - Fatma Aktepe
- Department of Pathology, Sisli Memorial Hospital, Istanbul, Turkey
| | - Gul Alco
- Department of Radiation Oncology, Gayrettepe Florence Nightingale Hospital, Istanbul, Turkey
| | - Tomris Duymaz
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Bilgi University, Istanbul, Turkey
| | - Tolga Ozmen
- Department of General Surgery, University of Miami, Miller School of Medicine/Jackson Memorial Hospital, Miami, Florida, USA
| |
Collapse
|
13
|
Thompson PA, Huang C, Yang J, Wertheim BC, Roe D, Zhang X, Ding J, Chalasani P, Preece C, Martinez J, Chow HHS, Stopeck AT. Sulindac, a Nonselective NSAID, Reduces Breast Density in Postmenopausal Women with Breast Cancer Treated with Aromatase Inhibitors. Clin Cancer Res 2021; 27:5660-5668. [PMID: 34112707 DOI: 10.1158/1078-0432.ccr-21-0732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the effect of sulindac, a nonselective anti-inflammatory drug (NSAID), for activity to reduce breast density (BD), a risk factor for breast cancer. EXPERIMENTAL DESIGN An open-label phase II study was conducted to test the effect of 12 months' daily sulindac at 150 mg twice daily on change in percent BD in postmenopausal hormone receptor-positive breast cancer patients on aromatase inhibitor (AI) therapy. Change in percent BD in the contralateral, unaffected breast was measured by noncontrast magnetic resonance imaging (MRI) and reported as change in MRI percent BD (MRPD). A nonrandomized patient population on AI therapy (observation group) with comparable baseline BD was also followed for 12 months. Changes in tissue collagen after 6 months of sulindac treatment were explored using second-harmonic generated microscopy in a subset of women in the sulindac group who agreed to repeat breast biopsy. RESULTS In 43 women who completed 1 year of sulindac (86% of those accrued), relative MRPD significantly decreased by 9.8% [95% confidence interval (CI), -14.6 to -4.7] at 12 months, an absolute decrease of -1.4% (95% CI, -2.5 to -0.3). A significant decrease in mean breast tissue collagen fiber straightness (P = 0.032), an investigational biomarker of tissue inflammation, was also observed. MRPD (relative or absolute) did not change in the AI-only observation group (N = 40). CONCLUSIONS This is the first study to indicate that the NSAID sulindac may reduce BD. Additional studies are needed to verify these findings and determine if prostaglandin E2 inhibition by NSAIDs is important for BD or collagen modulation.
Collapse
Affiliation(s)
- Patricia A Thompson
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York. .,Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Chuan Huang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Radiology, Stony Brook University, Stony Brook, New York.,Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Jie Yang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | | | - Denise Roe
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona
| | - Xiaoyue Zhang
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | - Jie Ding
- Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Pavani Chalasani
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Medicine, University of Arizona, Tucson, Arizona
| | - Christina Preece
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Jessica Martinez
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | | | - Alison T Stopeck
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
14
|
MicroRNA and cyclooxygenase-2 in breast cancer. Clin Chim Acta 2021; 522:36-44. [PMID: 34389281 DOI: 10.1016/j.cca.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 12/24/2022]
Abstract
Cancer remains a major public health problem worldwide and the latest statistics show that breast cancer (BC) is among the most frequent in women. MicroRNAs (miRNAs; miRs) and cyclooxygenase-2 (COX-2) are new diagnostic and therapeutic biomarkers for monitoring BC. COX-2 is a prominent tumor-associated inflammatory factor highly expressed in human tumor cells, including BC. Expression of COX-2 contributes to tumor growth, metastasis and recurrence. MiRs are a group of short (~22 nucleotides), noncoding regulatory RNAs that downregulate gene expression post-transcriptionally and play vital roles in regulating cancer development and progression. Interestingly, there are a group of miRNAs differentially expressed in breast tumor tissue. Understanding the pathway linking miRNAs to COX-2 can provide novel insight for suppressing COX-2 expression via gene silencing thereby leading to the development of selective miRNA inhibitors. Further research can also reveal key intermediate players and their potential as therapeutic targets. Given the association between different miRNAs and COX-2 expression in BC, this review presents a comprehensive overview of the current literature concerning how miRNAs and COX-2 signaling interact in BC progression.
Collapse
|
15
|
Combined COX-2/PPARγ Expression as Independent Negative Prognosticator for Vulvar Cancer Patients. Diagnostics (Basel) 2021; 11:diagnostics11030491. [PMID: 33802010 PMCID: PMC8001561 DOI: 10.3390/diagnostics11030491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
Vulvar cancer incidence numbers have been rising steadily over the past decades. Especially the number of young patients with vulvar cancer increased recently. Therefore, the need to identify new prognostic factors for vulvar carcinoma is more apparent. Cyclooxygenase-2 (COX-2) has long been an object of scientific interest in the context of carcinogenesis. This enzyme is involved in prostaglandin synthesis and the latter binds to nuclear receptors like PPARγ. Therefore, the aim of this study was to investigate COX-2- and PPARγ- expression in tissues of vulvar carcinomas and to analyze their relevance as prognostic factors. The cytoplasmatic expression of COX-2 as well as PPARγ is associated with a significantly reduced survival, whereas nuclear expression of PPARγ results in a better survival. Especially the combined expression of both COX-2 and PPARγ in the cytoplasm is an independent negative prognosticator for vulvar cancer patients.
Collapse
|
16
|
Biochemical and functional characterization of a new recombinant phospholipase A 2 inhibitor from Crotalus durissus collilineatus snake serum. Int J Biol Macromol 2020; 164:1545-1553. [PMID: 32735921 DOI: 10.1016/j.ijbiomac.2020.07.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 11/20/2022]
Abstract
Phospholipase A2 plays an important role in many diseases. Thus, the production of bioactive molecules, which can modulate PLA2 activity, became an important target for the pharmaceutical industry. Previously, we demonstrated the inhibitory and anti-angiogenic effect of γCdcPLI, the natural PLA2inhibitor from Crotalus durissus collilineatus. The aim of the present study was to recombinantly express the γCdcPLI inhibitor and analyze its biochemical and functional characteristics. Based on the amino acid sequence from the natural protein, we designed a synthetic gene for production of a non-tagged recombinant recγCdcPLI using the pHis-Parallel2 vector. To enable disulfide bond formation, protein expression was performed using E. coli Rosetta-gamiB. The protein was purified by anion and affinity chromatography with a yield of 5 mg/L. RecγCdcPLI showed similar secondary structure in CD and FTIR, revealing predominately β-strands. Analogous to the natural protein, recγCdcPLI was able to form oligomers of ~5.5 nm. The inhibitor was efficiently binding to PLA2 from honeybee (Kd = 1.48 μM) and was able to inhibit the PLA2 activity. Furthermore, it decreased the vessel formation in HUVEC cells, suggesting an anti-angiogenic potential. Heterologous production of recγCdcPLI is highly efficient and thus enables enhanced drug design for treatment of diseases triggered by PLA2 activity.
Collapse
|
17
|
Clemente SM, Martínez-Costa OH, Monsalve M, Samhan-Arias AK. Targeting Lipid Peroxidation for Cancer Treatment. Molecules 2020; 25:E5144. [PMID: 31825806 PMCID: PMC7663840 DOI: 10.3390/molecules25215144] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the highest prevalent diseases in humans. The chances of surviving cancer and its prognosis are very dependent on the affected tissue, body location, and stage at which the disease is diagnosed. Researchers and pharmaceutical companies worldwide are pursuing many attempts to look for compounds to treat this malignancy. Most of the current strategies to fight cancer implicate the use of compounds acting on DNA damage checkpoints, non-receptor tyrosine kinases activities, regulators of the hedgehog signaling pathways, and metabolic adaptations placed in cancer. In the last decade, the finding of a lipid peroxidation increase linked to 15-lipoxygenases isoform 1 (15-LOX-1) activity stimulation has been found in specific successful treatments against cancer. This discovery contrasts with the production of other lipid oxidation signatures generated by stimulation of other lipoxygenases such as 5-LOX and 12-LOX, and cyclooxygenase (COX-2) activities, which have been suggested as cancer biomarkers and which inhibitors present anti-tumoral and antiproliferative activities. These findings support the previously proposed role of lipid hydroperoxides and their metabolites as cancer cell mediators. Depletion or promotion of lipid peroxidation is generally related to a specific production source associated with a cancer stage or tissue in which cancer originates. This review highlights the potential therapeutical use of chemical derivatives to stimulate or block specific cellular routes to generate lipid hydroperoxides to treat this disease.
Collapse
Affiliation(s)
- Sofia M. Clemente
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| | - Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| |
Collapse
|
18
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
19
|
Jin C, Yuan P. Implications of lipid droplets in lung cancer: Associations with drug resistance. Oncol Lett 2020; 20:2091-2104. [PMID: 32782526 PMCID: PMC7399769 DOI: 10.3892/ol.2020.11769] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells usually show different metabolic patterns compared with healthy cells due to the reprogramming of metabolic processes. The process of lipid metabolism undergoes notable changes, leading to the accumulation of lipid droplets in cells. Additionally, this phenotype is considered an important marker of cancer cells. Lipid droplets are a highly dynamic type of organelle in the cell, which is composed of a neutral lipid core, a monolayer phospholipid membrane and lipid droplet-related proteins. Lipid droplets are involved in several biological processes, including cell proliferation, apoptosis, lipid metabolism, stress, immunity, signal transduction and protein trafficking. Epidermal growth factor receptor (EGFR)-activating mutations are currently the most effective therapeutic targets for non-small cell lung cancer. Several EGFR tyrosine kinase inhibitors (EGFR-TKIs) that target these mutations, including gefitinib, erlotinib, afatinib and osimertinib, have been widely used clinically. However, the development of acquired resistance has a major impact on the efficacy of these drugs. A number of previous studies have reported that the expression of lipid droplets in the tumor tissues of patients with lung cancer are elevated, whereas the association between elevated numbers of lipid droplets and drug resistance has received little attention. The present review describes the potential association between lipid droplets and drug resistance. Furthermore, the mechanisms and implications of lipid droplet accumulation in cancer cells are analyzed, as wells as the mechanism by which lipid droplets suppress endoplasmic reticulum stress and apoptosis, which are essential for the development and treatment of lung cancer.
Collapse
Affiliation(s)
- Chunlai Jin
- Department of Surgery, First People's Hospital of Jinan, Jinan, Shandong 250011, P.R. China
| | - Peng Yuan
- Department of Surgery, First People's Hospital of Jinan, Jinan, Shandong 250011, P.R. China
| |
Collapse
|
20
|
Cen B, Lang JD, Du Y, Wei J, Xiong Y, Bradley N, Wang D, DuBois RN. Prostaglandin E 2 Induces miR675-5p to Promote Colorectal Tumor Metastasis via Modulation of p53 Expression. Gastroenterology 2020; 158:971-984.e10. [PMID: 31734182 PMCID: PMC7062589 DOI: 10.1053/j.gastro.2019.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/20/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Prostaglandin E2 (PGE2) promotes colorectal tumor formation and progression by unknown mechanisms. We sought to identify microRNAs (miRNAs) that might mediate the effects of PGE2 on colorectal cancer (CRC) development. METHODS We incubated LS174T colorectal cancer cells with PGE2 or without (control) and used miRNA-sequencing technology to compare expression patterns of miRNAs. We knocked down levels of specific miRNAs or proteins in cells using small interfering RNAs or genome editing. Cells were analyzed by immunoblot, quantitative polymerase chain reaction, chromosome immunoprecipitation, cell invasion, and luciferase reporter assays; we measured gene expression, binding activity, cell migration and invasion, and transcriptional activity of transcription factors. NOD-scidIL-2Rg-/- mice were given injections of LS174T cells, and growth of primary tumors and numbers of liver and lung metastases were quantified and analyzed by histology. We used public databases to identify correlations in gene expression pattern with patient outcomes. RESULTS We identified miRNA 675-5p (miR675-5p) as the miRNA most highly up-regulated by incubation of colorectal cancer cells with PGE2. PGE2 increased expression of miR675-5p by activating expression of Myc, via activation of protein kinase B, also known as (AKT), nuclear factor κB, and β-catenin. PGE2 increased the invasive activities of cultured CRC cells. LS174T cells incubated with PGE2 formed more liver and lung metastases in mice than control LS174T cells. We identified a 3' untranslated region in the TP53 messenger RNA that bound miR675-5p; binding resulted in loss of the p53 protein. Expression of miR675-5p or its precursor RNA, H19, correlated with expression of cyclooxygenase-1 and cyclooxygenase-2 and shorter survival times of patients with CRC. CONCLUSIONS We found that treatment of mice with PGE2 increased CRC cells invasive activity and ability to form liver and lung metastases. PGE2 down-regulates expression of p53 by increasing expression of miR675-5p, which binds to and prevents translation of TP53 messenger RNA. These findings provide insight into the mechanisms by which PGE2 promotes tumor development and progression. Strategies to target PGE2 might be developed for treatment of CRC.
Collapse
Affiliation(s)
- Bo Cen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, Charleston, SC 29425
| | - Jessica D. Lang
- Biodesign Institute of Arizona State University, Tempe, AZ85287, and Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004
| | - Yuchen Du
- Biodesign Institute of Arizona State University, Tempe, AZ85287 (current address: Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX77030)
| | - Jie Wei
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, Charleston, SC 29425
| | - Ying Xiong
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, Charleston, SC 29425
| | - Norma Bradley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, Charleston, SC 29425
| | - Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, Charleston, SC 29425
| | - Raymond N. DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, Charleston, SC 29425.,Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, AZ 85259,Correspondence to: Raymond N. DuBois, MD. Ph.D., 601 Clinical Science Building, 96 Jonathan Lucas Street, Suite 601, Charleston, SC 29425, Tel: 843-792-2842 and Fax: 843-792-2967,
| |
Collapse
|
21
|
Donovan MG, Selmin OI, Stillwater BJ, Neumayer LA, Romagnolo DF. Do Olive and Fish Oils of the Mediterranean Diet Have a Role in Triple Negative Breast Cancer Prevention and Therapy? An Exploration of Evidence in Cells and Animal Models. Front Nutr 2020; 7:571455. [PMID: 33123546 PMCID: PMC7573103 DOI: 10.3389/fnut.2020.571455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the most common malignancy and cause of cancer-related mortality among women worldwide. Triple negative breast cancers (TNBC) are the most aggressive and lethal of the breast cancer molecular subtypes, due in part to a poor understanding of TNBC etiology and lack of targeted therapeutics. Despite advances in the clinical management of TNBC, optimal treatment regimens remain elusive. Thus, identifying interventional approaches that suppress the initiation and progression of TNBC, while minimizing side effects, would be of great interest. Studies have documented an inverse relationship between the incidence of hormone receptor negative breast cancer and adherence to a Mediterranean Diet, particularly higher consumption of fish and olive oil. Here, we performed a review of studies over the last 5 years investigating the effects of fish oil, olive oil and their components in model systems of TNBC. We included studies that focused on the fish oil ω-3 essential fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in addition to olive oil polyphenolic compounds and oleic acid. Both beneficial and deleterious effects on TNBC model systems are reviewed and we highlight how multiple components of these Mediterranean Diet oils target signaling pathways known to be aberrant in TNBC including PI3K/Akt/mTOR, NF-κB/COX2 and Wnt/β-catenin.
Collapse
Affiliation(s)
- Micah G. Donovan
- Interdisciplinary Cancer Biology Graduate Program, The University of Arizona, Tucson, AZ, United States
| | - Ornella I. Selmin
- University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, United States
| | - Barbara J. Stillwater
- Department of Surgery, Breast Surgery Oncology, The University of Arizona, Tucson, AZ, United States
| | - Leigh A. Neumayer
- Department of Surgery, Breast Surgery Oncology, The University of Arizona, Tucson, AZ, United States
| | - Donato F. Romagnolo
- University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Donato F. Romagnolo
| |
Collapse
|
22
|
Pepe F, Pisapia P, Del Basso de Caro ML, Conticelli F, Malapelle U, Troncone G, Martinez JC. Next generation sequencing identifies novel potential actionable mutations for grade I meningioma treatment. Histol Histopathol 2019; 35:741-749. [PMID: 31872418 DOI: 10.14670/hh-18-195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Meningiomas are common brain tumors that arise from the meningeal membranes that envelope the brain and spinal cord. The World Health Organization classifies these tumors into three histopathological grades. Because of tumor recurrence, treating meningiomas may be challenging even in well-differentiated grade I (GI) neoplasms. Indeed, around 5% of completely resected GI meningiomas relapse within 5 years. Therefore, identifying driver mutations in GI meningiomas through next generation sequencing (NGS) assays is paramount. The aim of this study was to validate the use of the 50-gene AmpliSeq Hotspot Cancer Panel v2 to identify the mutational status of 23 GI meningioma, namely, 12 non recurrent and 11 recurrent. In 18 out of the 23 GI meningiomas analyzed, we identified at least one gene mutation (78.2%). The most frequently mutated genes were c-kit (39.1%), ATM (26.1%), TP53 (26.1%), EGFR (26.1%), STK11 (21.7%), NRAS (17.4%), SMAD4 (13%), FGFR3 (13%), and PTPN11 (13%); less frequent mutations were SMARCB1 (8.7%), FLT3 (8.7%), KRAS (8.7%), FBWX7 (8.7%), ABL1 (8.7%), ERBB2 (8.7%), IDH1 (8.7%), BRAF (8.7%), MET (8.7%), HRAS (4.3%), RB1 (4.3%), CTNNB1 (4.3%), PIK3CA (4.3%), VHL (4.3%), KDR (4.3%), APC (4.3%), NOTCH1 (4.3%), JAK3 (4.3%), and SRC (4.3%). To our knowledge, mutations in all of these genes, except for TP53, STK11, SMARCB1, PIK3CA, VHL, and BRAF, have never been described before in meningiomas. Hence, these findings demonstrate the viability of NGS to detect new genetic alterations in GI meningiomas. Equally important, this technology enabled us to detect possible novel actionable mutations not previously associated with GI and for which selective inhibitors already exist.
Collapse
Affiliation(s)
- Francesco Pepe
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | | | - Floriana Conticelli
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples "Federico II", Naples, Italy.
| | | |
Collapse
|
23
|
Schoos A, Gabriel C, Knab VM, Fux DA. Activation of HIF-1 α by δ-Opioid Receptors Induces COX-2 Expression in Breast Cancer Cells and Leads to Paracrine Activation of Vascular Endothelial Cells. J Pharmacol Exp Ther 2019; 370:480-489. [PMID: 31300611 DOI: 10.1124/jpet.119.257501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/24/2019] [Indexed: 01/05/2023] Open
Abstract
Opioids promote tumor angiogenesis in mammary malignancies, but the underlying signaling mechanism is largely unknown. The current study investigated the hypothesis that stimulation of δ-opioid receptors (DOR) in breast cancer (BCa) cells activates the hypoxia-inducible factor 1α (HIF-1α), which triggers synthesis and release of diverse angiogenic factors. Immunoblotting revealed that incubation of human MCF-7 and T47D breast cancer cells with the DOR agonist d-Ala2,d-Leu5-enkephalin (DADLE) resulted in a transient accumulation and thus activation of HIF-1α DADLE-induced HIF-1α activation preceded PI3K/Akt stimulation and was blocked by the DOR antagonist naltrindole and naloxone, pertussis toxin, different phosphoinositide 3-kinase (PI3K) inhibitors, and the Akt inhibitor Akti-1/2. Whereas DADLE exposure had no effect on the expression and secretion of vascular endothelial growth factor (VEGF) in BCa cells, an increased abundance of cyclooxygenase-2 (COX-2) and release of prostaglandin E2 (PGE2) was detected. DADLE-induced COX-2 expression was also observed in three-dimensional cultured MCF-7 cells and impaired by PI3K/Akt inhibitors and the HIF-1α inhibitor echinomycin. Supernatant from DADLE-treated MCF-7 cells triggered sprouting of endothelial (END) cells, which was blocked when MCF-7 cells were pretreated with echinomycin or the COX-2 inhibitor celecoxib. Also no sprouting was observed when END cells were exposed to the PGE2 receptor antagonist PF-04418948. The findings together indicate that DOR stimulation in BCa cells leads to PI3K/Akt-dependent HIF-1α activation and COX-2 expression, which trigger END cell sprouting by paracrine activation of PGE2 receptors. These findings provide a potential mechanism of opioid-driven tumor angiogenesis and thus therapeutic targets to combat the tumor-angiogenic opioid effect. SIGNIFICANCE STATEMENT: Opioids are indispensable analgesics for treating cancer-related pain. However, opioids were found to promote tumor growth and metastasis, which questions the use of these potent pain-relieving drugs in cancer patients. Enhanced tumor vascularization after opioid treatment implies that tumor progression results from angiogenic opioid effects. Thus, understanding the signaling mechanism of opioid-driven tumor angiogenesis helps to identify therapeutic targets to combat these undesired tumor effects. The present study reveals that stimulation of δ-opioid receptors in breast cancer cells leads to an activation of HIF-1α and expression of COX-2 via PI3K/Akt stimulation, which results in a paracrine activation of vascular endothelial cells by prostaglandin E2 receptors.
Collapse
Affiliation(s)
- Alexandra Schoos
- Division Clinical Pharmacology, Institute of Pharmacology and Toxicology (A.S., V.M.K., D.A.F.) and Institute of Pathology and Forensic Veterinary Medicine (C.G.), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Cordula Gabriel
- Division Clinical Pharmacology, Institute of Pharmacology and Toxicology (A.S., V.M.K., D.A.F.) and Institute of Pathology and Forensic Veterinary Medicine (C.G.), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vanessa M Knab
- Division Clinical Pharmacology, Institute of Pharmacology and Toxicology (A.S., V.M.K., D.A.F.) and Institute of Pathology and Forensic Veterinary Medicine (C.G.), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Daniela A Fux
- Division Clinical Pharmacology, Institute of Pharmacology and Toxicology (A.S., V.M.K., D.A.F.) and Institute of Pathology and Forensic Veterinary Medicine (C.G.), University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
24
|
Abstract
Eicosanoids are bioactive lipids that play crucial roles in various pathophysiological conditions, including inflammation and cancer. They include both the COX-derived prostaglandins and the LOX-derived leukotrienes. Furthermore, the epidermal growth factor receptor (EGFR) pathways family of receptor tyrosine kinases also are known to play a central role in the tumorigenesis. Various antitumor modalities have been approved cancer treatments that target therapeutically the COX-2 and EGFR pathways; these include selective COX-2 inhibitors and EGFR monoclonal antibodies. Research has shown that the COX-2 and epidermal growth factor receptor pathways actively interact with each other in order to orchestrate carcinogenesis. This has been used to justify a targeted combinatorial approach aimed at these two pathways. Although combined therapies have been found to have a greater antitumor effect than the administration of single agent, this does not exempt them from the possible fatal cardiac effects that are associated with COX-2 inhibition. In this review, we delineate the contribution of HB-EGF, an important EGFR ligand, to the cardiac dysfunction related to decreased shedding of HB-EGF after COX-2/PGE2 inhibition. A better understanding of the molecular mechanisms underlying these cardiac side effects will make possible more effective regimens that use the dual-targeting approach.
Collapse
Affiliation(s)
- Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan.
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
25
|
Chiu AP, Tschida BR, Sham TT, Lo LH, Moriarity BS, Li XX, Lo RC, Hinton DE, Rowlands DK, Chan CO, Mok DKW, Largaespada DA, Warner N, Keng VW. HBx-K130M/V131I Promotes Liver Cancer in Transgenic Mice via AKT/FOXO1 Signaling Pathway and Arachidonic Acid Metabolism. Mol Cancer Res 2019; 17:1582-1593. [PMID: 30975706 DOI: 10.1158/1541-7786.mcr-18-1127] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/18/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Chronic hepatitis B viral (HBV) infection remains a high underlying cause for hepatocellular carcinoma (HCC) worldwide, while the genetic mechanisms behind this remain unclear. This study elucidated the mechanisms contributing to tumor development induced by the HBV X (HBx) gene of predominantly Asian genotype B HBV and its common HBx variants. To compare the potential tumorigenic effects of K130M/V131I (Mut) and wild-type (WT) HBx on HCC, the Sleeping Beauty (SB) transposon system was used to deliver HBx Mut and WT into the livers of fumarylacetoacetate hydrolase (Fah)-deficient mice and in the context of transformation related protein 53 (Trp53) deficiency. From our results, HBx Mut had a stronger tumorigenic effect than its WT variant. Also, inflammation, necrosis, and fibrosis were evident in HBx experimental animals. Reduction of forkhead box O1 (FOXO1) with increased phosphorylation of upstream serine/threonine kinase (AKT) was detected under HBx Mut overexpression. Thus, it is proposed that HBx Mut enhances disease progression by reducing FOXO1 via phosphorylation of AKT. At the metabolomic level, HBx altered the expression of genes that participated in arachidonic acid (AA) metabolism, as a result of inflammation via accumulation of proinflammatory factors such as prostaglandins and leukotriene in liver. Taken together, the increased rate of HCC observed in chronic hepatitis B patients with K130M/V131I-mutated X protein, may be due to changes in AA metabolism and AKT/FOXO1 signaling. IMPLICATIONS: Our findings suggested that HBx-K130M/V131I-mutant variant promoted HCC progression by activating AKT/FOXO1 pathway and inducing stronger inflammation in liver via AA metabolism.
Collapse
Affiliation(s)
- Amy P Chiu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Barbara R Tschida
- Center for Genome Engineering, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Tung-Ting Sham
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lilian H Lo
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Branden S Moriarity
- Center for Genome Engineering, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Xiao-Xiao Li
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Regina C Lo
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Dewi K Rowlands
- Laboratory Animal Services Centre, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Chi-On Chan
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Daniel K W Mok
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - David A Largaespada
- Center for Genome Engineering, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Nadia Warner
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Vincent W Keng
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China. .,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
26
|
Umamaheswaran S, Dasari SK, Yang P, Lutgendorf SK, Sood AK. Stress, inflammation, and eicosanoids: an emerging perspective. Cancer Metastasis Rev 2019; 37:203-211. [PMID: 29948328 DOI: 10.1007/s10555-018-9741-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinical and experimental studies support the notion that adrenergic stimulation and chronic stress affect inflammation, metabolism, and tumor growth. Eicosanoids are also known to heavily influence inflammation while regulating certain stress responses. However, additional work is needed to understand the full extent of interactions between the stress-related pathways and eicosanoids. Here, we review the potential influences that stress, inflammation, and metabolic pathways have on each other, in the context of eicosanoids. Understanding the intricacies of such interactions could provide insights on how systemic metabolic effects mediated by the stress pathways can be translated into therapies for cancer and other diseases.
Collapse
Affiliation(s)
- Sujanitha Umamaheswaran
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Santosh K Dasari
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan K Lutgendorf
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA, USA
- Department of Urology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
27
|
Dillekås H, Straume O. The link between wound healing and escape from tumor dormancy. Surg Oncol 2018; 28:50-56. [PMID: 30851911 DOI: 10.1016/j.suronc.2018.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
Tumor dormancy is considered one of the major unsolved questions in cancer biology. Understanding the mechanisms responsible for maintaining and interrupting dormancy would be a major step towards preventing overt metastatic disease. Increasing evidence points to tissue trauma and subsequent wound healing as contributing events in escape from dormancy. In this review, we outline relevant aspects of the wound healing process, and relate this to mechanisms of tumor dormancy and metastatic progression. In addition to important findings in epidemiological and experimental studies, more direct evidence of such a link has recently been presented. These results can have major implications for treatment and prevention of cancer.
Collapse
Affiliation(s)
- Hanna Dillekås
- Department of Clinical Science, University of Bergen, N5020, Bergen, Norway.
| | - Oddbjørn Straume
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, N5020, Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, N5021, Bergen, Norway.
| |
Collapse
|
28
|
Peng Y, Wang Y, Tang N, Sun D, Lan Y, Yu Z, Zhao X, Feng L, Zhang B, Jin L, Yu F, Ma X, Lv C. Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway. J Exp Clin Cancer Res 2018; 37:248. [PMID: 30314513 PMCID: PMC6186120 DOI: 10.1186/s13046-018-0926-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/02/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Andrographolide (Andro), a diterpenoid lactone, has been used for treatment of various cancers with less adverse effects. However, the underlying mechanisms regarding its anti-tumor mechanism still remain unclear. METHODS Cell viability and proliferation were measured by CCK8 and CFSE dilution assay. The localization of p50/p65 or cytochrome c was determined using confocal immunofluorescence. Streptavidin-agarose pulldown or ChIP assays were used to detect the binding of multiple transactivators to COX-2 promoter. The promoter activity was examined by a dual-Luciferase reporter assay. The functions of Andro on COX-2-mediated angiogenesis were also investigated using human HUVEC cells through tube formation and spheroids sprouting assay. The in vivo anti-tumor efficacy of Andro was analyzed in xenografts nude mice. RESULTS The results indicated that Andro could significantly inhibit the proliferation of human breast cancers, and suppress COX-2 expression at both protein and mRNA levels. Furthermore, Andro could dose-dependently inhibit COX-2-mediated angiogenesis in human endothelial cells. We have also found that Andro significantly promoted the activation of cytochrome c and activated caspase-dependent apoptotic signaling pathway. Our further explorations demonstrated that Andro inhibited the binding of the transactivators CREB2, C-Fos and NF-κB and blocked the recruitment of coactivator p300 to COX-2 promoter. Moreover, Andro could effectively inhibit the activity of p300 histone acetyltransferase (HAT), thereby attenuating the p300-mediated acetylation of NF-κB. Besides, Andro could also dramatically inhibit the migration, invasion and tubulogenesis of HUVECs in vitro. In addition, Andro also exhibited effective anti-tumor efficacy as well as angiogenesis inhibition in vivo. CONCLUSION In current study, we explore the potential effects of Andro in suppressing breast cancer growth and tumor angiogenesis, as well as the precise mechanisms. This work demonstrated the potential anti-cancer effects of Andro, indicating that Andro could inhibit COX-2 expression through attenuating p300 HAT activity and suppress angiogenesis via VEGF pathway, and thereby could be developed as an antitumor agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yulin Peng
- Institute of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044 China
| | - Yan Wang
- Institute of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044 China
| | - Ning Tang
- Institute of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044 China
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, 110167 China
| | - Dongdong Sun
- Institute of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044 China
| | - Yulong Lan
- Institute of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044 China
| | - Zhenlong Yu
- Institute of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044 China
- Emergency Department, The Second Affiliated Hospital of Hainan Medical University, Haikou, 571199 China
| | - Xinyu Zhao
- Institute of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044 China
| | - Lei Feng
- Institute of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044 China
- Emergency Department, The Second Affiliated Hospital of Hainan Medical University, Haikou, 571199 China
| | - Baojing Zhang
- Institute of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044 China
| | - Lingling Jin
- Institute of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044 China
| | - Fabiao Yu
- Emergency Department, The Second Affiliated Hospital of Hainan Medical University, Haikou, 571199 China
| | - Xiaochi Ma
- Institute of Integrative Medicine, College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044 China
- Emergency Department, The Second Affiliated Hospital of Hainan Medical University, Haikou, 571199 China
| | - Chuanzhu Lv
- Emergency Department, The Second Affiliated Hospital of Hainan Medical University, Haikou, 571199 China
| |
Collapse
|
29
|
Dropping in on lipid droplets: insights into cellular stress and cancer. Biosci Rep 2018; 38:BSR20180764. [PMID: 30111611 PMCID: PMC6146295 DOI: 10.1042/bsr20180764] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets (LD) have increasingly become a major topic of research in recent years following its establishment as a highly dynamic organelle. Contrary to the initial view of LDs being passive cytoplasmic structures for lipid storage, studies have provided support on how they act in concert with different organelles to exert functions in various cellular processes. Although lipid dysregulation resulting from aberrant LD homeostasis has been well characterised, how this translates and contributes to cancer progression is poorly understood. This review summarises the different paradigms on how LDs function in the regulation of cellular stress as a contributing factor to cancer progression. Mechanisms employed by a broad range of cancer cell types in differentially utilising LDs for tumourigenesis will also be highlighted. Finally, we discuss the potential of targeting LDs in the context of cancer therapeutics.
Collapse
|
30
|
Low-dose Aspirin, Nonsteroidal Anti-inflammatory Drugs, Selective COX-2 Inhibitors and Breast Cancer Recurrence. Epidemiology 2018; 27:586-93. [PMID: 27007644 DOI: 10.1097/ede.0000000000000480] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aspirin, nonsteroidal anti-inflammatory drugs (NSAIDs), and selective COX-2 inhibitors may improve outcomes in breast cancer patients. We investigated the association of aspirin, NSAIDs, and use of selective COX-2 inhibitors with breast cancer recurrence. METHODS We identified incident stage I-III Danish breast cancer patients in the Danish Breast Cancer Cooperative Group registry, who were diagnosed during 1996-2008. Prescriptions for aspirin (>99% low-dose aspirin), NSAIDs, and selective COX-2 inhibitors were ascertained from the National Prescription Registry. Follow-up began on the date of breast cancer primary surgery and continued until the first of recurrence, death, emigration, or 1 January 2013. We used Cox regression models to compute hazard ratios (HR) and corresponding 95% confidence intervals (95% CI) associating prescriptions with recurrence, adjusting for confounders. RESULTS We identified 34,188 breast cancer patients with 233,130 person-years of follow-up. Median follow-up was 7.1 years; 5,325 patients developed recurrent disease. Use of aspirin, NSAIDs, or selective COX-2 inhibitors was not associated with the rate of recurrence (HRadjusted aspirin = 1.0, 95% CI = 0.90, 1.1; NSAIDs = 0.99, 95% CI = 0.92, 1.1; selective COX-2 inhibitors = 1.1, 95% CI = 0.98, 1.2), relative to nonuse. Prediagnostic use of the exposure drugs was associated with reduced recurrence rates (HRaspirin = 0.92, 95% CI = 0.82, 1.0; HRNSAIDs = 0.86, 95% CI = 0.81, 0.91; HRsCOX-2inhibitors = 0.88, 95% CI = 0.83, 0.95). CONCLUSIONS This prospective cohort study suggests that post diagnostic prescriptions for aspirin, NSAIDs, and selective COX-2 inhibitors have little or no association with the rate of breast cancer recurrence. Prediagnostic use of the drugs was, however, associated with a reduced rate of breast cancer recurrence.
Collapse
|
31
|
Wang T, Cai H, Zheng W, Michel A, Pawlita M, Milne G, Xiang YB, Gao YT, Li HL, Rothman N, Lan Q, Shu XO, Epplein M. A Prospective Study of Urinary Prostaglandin E2 Metabolite, Helicobacter pylori Antibodies, and Gastric Cancer Risk. Clin Infect Dis 2018; 64:1380-1386. [PMID: 28402440 DOI: 10.1093/cid/cix106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 01/02/2023] Open
Abstract
Background Previous studies suggest that a stable end-product of prostaglandin E2, the urinary metabolite PGE-M, is associated with colorectal cancer, and 1 study of relatively small sample size found an association with gastric cancer among women. In the present study we further investigate the PGE-M, Helicobacter pylori, and gastric cancer association. Methods The present analysis included 359 prospectively ascertained gastric cancer cases and 700 individually matched controls from the Shanghai Women's and Men's Health Studies. Urinary PGE-M was measured by a liquid chromatography/tandem mass spectrometric method. Seropositivity to 15 H. pylori recombinantly expressed fusion proteins was detected by H. pylori multiplex serology. Results Adjusting for H. pylori, increasing PGE-M was associated with higher risk of gastric cancer (quartile 4 vs 1: odds ratio [OR], 1.76 [95% confidence interval {CI}, 1.17-2.66], Ptrend = .004). This association remained after excluding those diagnosed within 2 years from sample collection (OR, 1.73 [95% CI, 1.12-2.65], Ptrend = .007). However it was no longer present among individuals with 10 or more years of follow-up (2-4.9 years: OR, 3.15 [95% CI, 1.11-8.91]; 5-9.9 years: OR, 2.23 [95% CI, 1.22-4.06]; ≥10 years: OR, 0.73 [95% CI, .31-1.70]). Compared to H. pylori-negative individuals with below-median PGE-M levels, H. pylori-positive individuals with above-median PGE-M levels had a 5-fold increase in the odds of gastric cancer (OR, 5.08 [95% CI, 2.47-10.43]). Conclusions In China, higher PGE-M levels may indicate an increased risk of gastric cancer independent of the risk conferred by H. pylori infection status, particularly for cancers diagnosed within 10 years of sample collection.
Collapse
Affiliation(s)
- Tianyi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Peking University Health Science Center, Beijing, China.,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Angelika Michel
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program in Infection, Inflammation, and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Michael Pawlita
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program in Infection, Inflammation, and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Ginger Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, China; and
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, China; and
| | - Hong-Lan Li
- Department of Epidemiology, Shanghai Cancer Institute, China; and
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Meira Epplein
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
32
|
Chiba A, Raman R, Thomas A, Lamy PJ, Viala M, Pouderoux S, Mott SL, Schroeder MC, Thezenas S, Jacot W. Serum Vitamin D Levels Affect Pathologic Complete Response in Patients Undergoing Neoadjuvant Systemic Therapy for Operable Breast Cancer. Clin Breast Cancer 2017; 18:144-149. [PMID: 29290565 DOI: 10.1016/j.clbc.2017.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/27/2017] [Accepted: 12/01/2017] [Indexed: 11/15/2022]
Abstract
INTRODUCTION There has been increasing interest in the potential benefit of vitamin D in improving breast cancer outcome. Preclinical studies suggest that vitamin D enhances chemotherapy-induced cell death. We investigated the impact of serum vitamin D levels during neoadjuvant chemotherapy (NAC) on the rates of achieving pathologic complete response (pCR) after breast cancer NAC. PATIENTS AND METHODS Patients from 1 of 2 Iowa registries who had serum vitamin D level measured before or during NAC were included. French patients enrolled onto a previous study of the impact of NAC on vitamin D and bone metabolism were also eligible for this study. Vitamin D deficiency was defined as < 20 ng/mL. pCR was defined as no residual invasive disease in breast and lymph nodes. A Firth penalized logistic regression multivariable model was used. RESULTS The study included 144 women. There was no difference between the French and Iowan cohorts with regard to age at diagnosis (P = .20), clinical stage (P = .22), receptor status (P = .32), and pCR rate (P = .34). French women had lower body mass index (mean 24.8 vs. 28.8, P < .01) and lower vitamin D levels (mean 21.5 vs. 27.5, P < .01) compared to Iowan patients. In multivariable analysis, after adjusting for the effects of cohort, clinical stage, and receptor status, vitamin D deficiency increased the odds of not attaining pCR by 2.68 times (95% confidence interval, 1.12-6.41, P = .03). CONCLUSION Low serum vitamin D levels were associated with not attaining a pCR. Prospective trials could elucidate if maintaining vitamin D levels during NAC, a highly modifiable variable, may be utilized to improve cancer outcomes.
Collapse
Affiliation(s)
- Akiko Chiba
- Division of Surgical Oncology, Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Alexandra Thomas
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Pierre-Jean Lamy
- Department of Medical Oncology, Institut Régional Du Cancer de Montpellier ICM, Montpellier, France
| | - Marie Viala
- Department of Medical Oncology, Institut Régional Du Cancer de Montpellier ICM, Montpellier, France
| | - Stephane Pouderoux
- Department of Medical Oncology, Institut Régional Du Cancer de Montpellier ICM, Montpellier, France
| | - Sarah L Mott
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | | | - Simon Thezenas
- Biometry Unit, Institut Régional Du Cancer de Montpellier ICM, Montpellier, France
| | - William Jacot
- Department of Medical Oncology, Institut Régional Du Cancer de Montpellier ICM, Montpellier, France.
| |
Collapse
|
33
|
Alexanian A, Sorokin A. Cyclooxygenase 2: protein-protein interactions and posttranslational modifications. Physiol Genomics 2017; 49:667-681. [PMID: 28939645 DOI: 10.1152/physiolgenomics.00086.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous studies implicate the cyclooxygenase 2 (COX2) enzyme and COX2-derived prostanoids in various human diseases, and thus, much effort has been made to uncover the regulatory mechanisms of this enzyme. COX2 has been shown to be regulated at both the transcriptional and posttranscriptional levels, leading to the development of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX2 inhibitors (COXIBs), which inhibit the COX2 enzyme through direct targeting. Recently, evidence of posttranslational regulation of COX2 enzymatic activity by s-nitrosylation, glycosylation, and phosphorylation has also been presented. Additionally, posttranslational regulators that actively downregulate COX2 expression by facilitating increased proteasome degradation of this enzyme have also been reported. Moreover, recent data identified proteins, located in close proximity to COX2 enzyme, that serve as posttranslational modulators of COX2 function, upregulating its enzymatic activity. While the precise mechanisms of the protein-protein interaction between COX2 and these regulatory proteins still need to be addressed, it is likely these interactions could regulate COX2 activity either as a result of conformational changes of the enzyme or by impacting subcellular localization of COX2 and thus affecting its interactions with regulatory proteins, which further modulate its activity. It is possible that posttranslational regulation of COX2 enzyme by such proteins could contribute to manifestation of different diseases. The uncovering of posttranslational regulation of COX2 enzyme will promote the development of more efficient therapeutic strategies of indirectly targeting the COX2 enzyme, as well as provide the basis for the generation of novel diagnostic tools as biomarkers of disease.
Collapse
Affiliation(s)
- Anna Alexanian
- Cardiovascular Center and Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrey Sorokin
- Cardiovascular Center and Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
34
|
Tirinato L, Pagliari F, Limongi T, Marini M, Falqui A, Seco J, Candeloro P, Liberale C, Di Fabrizio E. An Overview of Lipid Droplets in Cancer and Cancer Stem Cells. Stem Cells Int 2017; 2017:1656053. [PMID: 28883835 PMCID: PMC5572636 DOI: 10.1155/2017/1656053] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/08/2017] [Accepted: 07/05/2017] [Indexed: 02/06/2023] Open
Abstract
For decades, lipid droplets have been considered as the main cellular organelles involved in the fat storage, because of their lipid composition. However, in recent years, some new and totally unexpected roles have been discovered for them: (i) they are active sites for synthesis and storage of inflammatory mediators, and (ii) they are key players in cancer cells and tissues, especially in cancer stem cells. In this review, we summarize the main concepts related to the lipid droplet structure and function and their involvement in inflammatory and cancer processes.
Collapse
Affiliation(s)
- L. Tirinato
- German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - F. Pagliari
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - T. Limongi
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy
| | - M. Marini
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - A. Falqui
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - J. Seco
- German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
| | - P. Candeloro
- BioNEM Lab, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - C. Liberale
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - E. Di Fabrizio
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
35
|
Shaker OG, Helmy HS. Circulating Bone-related Markers and YKL-40 Versus HER2 and TOPO2a in Bone Metastatic and Nonmetastatic Breast Cancer: Diagnostic Implications. Clin Breast Cancer 2017. [PMID: 28645722 DOI: 10.1016/j.clbc.2017.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The bone represents one of the most common sites of metastases in breast cancer. The aim of the current study was to evaluate the diagnostic potential of several circulating markers to detect metastasis to bones in patients with breast cancer. PATIENTS AND METHODS Receptor activator of Nuclear Factor-kappa β (NF-Kβ) ligand (RANKL), osteoprotegrin (OPG), vitamin D (VIT D), Chitinase-3-like protein 1; also known as YKL-40, topoisomerase IIα (TOPO2a), and human epidermal growth factor receptor 2 (HER2) were measured in blood samples obtained from 122 patients with breast cancer and 25 healthy controls. RESULTS All biomarkers were significantly elevated in patients with breast cancer with bone metastasis compared with nonmetastatic patients except YKL-40. RANKL had the highest diagnostic performance for bone metastasis detection with an area under the curve of 97.3, a sensitivity of 85%, and a specificity of 98.6%. Furthermore, logistic regression analysis resulted in a model of RANKL combined with HER2 that had even higher discriminatory power of metastasis to bones than that of RANKL alone. Overall correct classification of the model was 98.9%. CONCLUSION We recommend that measuring RANKL together with HER2 can be routinely applied to allow early detection of bone metastases in patients with breast cancer.
Collapse
Affiliation(s)
- Olfat Gamil Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
36
|
Verdoodt F, Kjaer S, Friis S. Influence of aspirin and non-aspirin NSAID use on ovarian and endometrial cancer: Summary of epidemiologic evidence of cancer risk and prognosis. Maturitas 2017; 100:1-7. [DOI: 10.1016/j.maturitas.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 12/26/2022]
|
37
|
Chang CT, Hseu YC, Thiyagarajan V, Huang HC, Hsu LS, Huang PJ, Liu JY, Liao JW, Yang HL. Antrodia salmonea induces G 2 cell-cycle arrest in human triple-negative breast cancer (MDA-MB-231) cells and suppresses tumor growth in athymic nude mice. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:9-19. [PMID: 27986611 DOI: 10.1016/j.jep.2016.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/19/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Antrodia salmonea (AS), is a well-known folk medicinal mushroom in Taiwan, has been reported to exhibit anti-oxidant, anti-angiogenic, and anti-inflammatory effects. MATERIALS AND METHODS In the present study, we examined the effects of AS on cell-cycle arrest in vitro in MDA-MB-231 cells and on tumor regression in vivo using an athymic nude mice model. RESULTS AS (0-200μg/mL) treatment significantly induced G2 cell-cycle arrest in MDA-MB-231 cells by reducing the levels of cyclin B1, cyclin A, cyclin E, and CDC2 proteins. In addition, N-acetylcysteine (NAC) pretreatment prevented AS induced G2 cell-cycle arrest, indicating that ROS accumulation and subsequent cell cycle arrest might be a major mechanism of AS-induced cytotoxicity. Further, AS treatment decreased COX-2 expression and induced PARP cleavage was significantly reversed by NAC pretreatment in MDA-MB-231 cells. The in vivo study results revealed that AS treatment was effective in terms of delaying the tumor incidence and reducing the tumor growth in MDA-MB-231-xenografted nude mice. TUNEL assay, immunohistochemical staining and Western blotting confirmed that AS significantly modulated the xenografted tumor progression as demonstrated by induction of apoptosis, autophagy, and cell-cycle arrest. CONCLUSION Our data strongly suggest that Antrodia salmonea could be an anti-cancer agent for human breast cancer.
Collapse
Affiliation(s)
- Chia-Ting Chang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics,Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Varadharajan Thiyagarajan
- Department of Cosmeceutics,Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Hui-Chi Huang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, 40402 Taichung, Taiwan
| | - Pei-Jane Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
38
|
Kastrati I, Delgado-Rivera L, Georgieva G, Thatcher GRJ, Frasor J. Synthesis and Characterization of an Aspirin-fumarate Prodrug that Inhibits NFκB Activity and Breast Cancer Stem Cells. J Vis Exp 2017. [PMID: 28190074 DOI: 10.3791/54798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a cancer hallmark that underlies cancer incidence and promotion, and eventually progression to metastasis. Therefore, adding an anti-inflammatory drug to standard cancer regiments may improve patient outcome. One such drug, aspirin (acetylsalicylic acid, ASA), has been explored for cancer chemoprevention and anti-tumor activity. Besides inhibiting the cyclooxygenase 2-prostaglandin axis, ASA's anti-cancer activities have also been attributed to nuclear factor ĸB (NFĸB) inhibition. Because prolonged ASA use may cause gastrointestinal toxicity, a prodrug strategy has been implemented successfully. In this prodrug design the carboxylic acid of ASA is masked and additional pharmacophores are incorporated. This protocol describes how we synthesized an aspirin-fumarate prodrug, GTCpFE, and characterized its inhibition of the NFĸB pathway in breast cancer cells and attenuation of the cancer stem-like properties, an important NFĸB-dependent phenotype. GTCpFE effectively inhibits the NFĸB pathway in breast cancer cell lines whereas ASA lacks any inhibitory activity, indicating that adding fumarate to ASA structure significantly contributes to its activity. In addition, GTCpFE shows significant anti-cancer stem cell activity by blocking mammosphere formation and attenuating the cancer stem cell associated CD44+CD24- immunophenotype. These results establish a viable strategy to develop improved anti-inflammatory drugs for chemoprevention and cancer therapy.
Collapse
Affiliation(s)
- Irida Kastrati
- Physiology and Biophysics, College of Medicine, University of Illinois at Chicago;
| | - Loruhama Delgado-Rivera
- Medicinal Chemistry and Pharmacognosy, College of Medicine, University of Illinois at Chicago
| | | | - Gregory R J Thatcher
- Medicinal Chemistry and Pharmacognosy, College of Medicine, University of Illinois at Chicago
| | - Jonna Frasor
- Physiology and Biophysics, College of Medicine, University of Illinois at Chicago
| |
Collapse
|
39
|
Hamy AS, Bieche I, Lehmann-Che J, Scott V, Bertheau P, Guinebretière JM, Matthieu MC, Sigal-Zafrani B, Tembo O, Marty M, Asselain B, Spyratos F, de Cremoux P. BIRC5 (survivin): a pejorative prognostic marker in stage II/III breast cancer with no response to neoadjuvant chemotherapy. Breast Cancer Res Treat 2016; 159:499-511. [PMID: 27592112 DOI: 10.1007/s10549-016-3961-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Neoadjuvant systemic therapy (NAC) is currently used in the treatment of stage II/III breast cancer. Pathological complete response as a surrogate endpoint for clinical outcomes is not completely validated for all subgroups of breast cancers. Therefore, there is a need for reliable predictive tests of the most effective treatment. METHODS We used a combination of predictive clinical, pathological, and gene expression-based markers of response to NAC in a prospective phase II multicentre randomized clinical trial in breast cancer patients, with a long follow-up (8 years). This study concerned the subpopulation of 188 patients with similar levels of pathological response rates to sequential epirubicin/cyclophosphamide and docetaxel to determine predictive marker of pCR and DFS. We used a set of 45 genes selected from high throughput analysis and a standardized RT-qPCR. We analyzed the predictive markers of pathological complete response (pCR) and DFS in the overall population and DFS the subpopulation of 159 patients with no pCR. RESULTS In the overall population, combining both clinical and genomic variables, large tumor size, low TFF1, and MYBL2 overexpression were significantly associated with pCR. T4 Stage, lymphovascular invasion, negative PR status, histological type, and high values of CCNB1 were associated with DFS. In the no pCR population, only lymphovascular invasion and high values of BIRC5 were associated with DFS. CONCLUSIONS We confirm the importance of ER-related and proliferation genes in the prediction of pCR in NAC-treated breast cancer patients. Furthermore, we identified BIRC5 (survivin) as a main pejorative prognostic factor in patients with breast cancers with no pCR. These results also open perspective for predictive markers of new targeted therapies.
Collapse
Affiliation(s)
- A S Hamy
- Department of Biostatistics, Institut Curie, Paris, France
| | - I Bieche
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, Paris, France
| | - J Lehmann-Che
- APHP Molecular Oncology Unit, Hôpital Saint Louis, Paris Diderot University, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - V Scott
- Biology Department, Institut Gustave Roussy, Villejuif, France
| | - Ph Bertheau
- APHP Pathology Department, Hôpital Saint Louis, Paris Diderot University, Paris, France
| | - J M Guinebretière
- Pathology Department, Hôpital René-Huguenin, Institut Curie, Saint-Cloud, France
| | - M C Matthieu
- Pathology Department, Institut Gustave Roussy, Villejuif, France
| | | | - O Tembo
- APHP, Centre for Therapeutic Innovation, Saint-Louis Hospital, Paris, France
| | - M Marty
- APHP, Centre for Therapeutic Innovation, Saint-Louis Hospital, Paris, France
| | - B Asselain
- Department of Biostatistics, Institut Curie, Paris, France
| | - F Spyratos
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, Paris, France
| | - P de Cremoux
- APHP Molecular Oncology Unit, Hôpital Saint Louis, Paris Diderot University, 1 Avenue Claude Vellefaux, 75010, Paris, France.
| |
Collapse
|
40
|
Tseng TS, Chuang SM, Hsiao NW, Chen YW, Lee YC, Lin CC, Huang C, Tsai KC. Discovery of a potent cyclooxygenase-2 inhibitor, S4, through docking-based pharmacophore screening, in vivo and in vitro estimations. MOLECULAR BIOSYSTEMS 2016; 12:2541-51. [DOI: 10.1039/c6mb00229c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclooxygenase (COX; EC: 1.14.99.1), the key enzyme in prostaglandin production in the human body, is a major pharmacological target for developing anti-inflammatory agents.
Collapse
Affiliation(s)
- Tien-Sheng Tseng
- National Research Institute of Chinese Medicine
- Ministry of Health and Welfare
- Taipei
- Taiwan
- Institute of Biomedical Sciences
| | - Show-Mei Chuang
- Institute of Biomedical Sciences
- National Chung Hsing University
- Taichung
- Taiwan
| | - Nai-Wan Hsiao
- Institute of Biotechnology
- National Changhua University of Education
- Changhua
- Taiwan
| | | | - Yu-Ching Lee
- The Center of Translational Medicine
- Taipei Medical University
- Taipei
- Taiwan
- The Ph.D. Program for Medical Biotechnology
| | - Chi-Chen Lin
- Institute of Biomedical Sciences
- National Chung Hsing University
- Taichung
- Taiwan
| | - Cheng Huang
- National Research Institute of Chinese Medicine
- Ministry of Health and Welfare
- Taipei
- Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine
- Ministry of Health and Welfare
- Taipei
- Taiwan
- The Ph.D. Program for Medical Biotechnology
| |
Collapse
|
41
|
Wang D, Fu L, Sun H, Guo L, DuBois RN. Prostaglandin E2 Promotes Colorectal Cancer Stem Cell Expansion and Metastasis in Mice. Gastroenterology 2015; 149:1884-1895.e4. [PMID: 26261008 PMCID: PMC4762503 DOI: 10.1053/j.gastro.2015.07.064] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Inflammation may contribute to the formation, maintenance, and expansion of cancer stem cells (CSCs), which have the capacity for self-renewal, differentiation, and resistance to cytotoxic agents. We investigated the effects of the inflammatory mediator prostaglandin E2 (PGE2) on colorectal CSC development and metastasis in mice and the correlation between levels of PGE2 and CSC markers in human colorectal cancer (CRC) specimens. METHODS Colorectal carcinoma specimens and matched normal tissues were collected from patients at the Mayo Clinic (Scottsdale, AZ) and analyzed by mass spectrometry and quantitative polymerase chain reaction. Human primary CRC cells and mouse tumor cells were isolated using microbeads or flow cytometry and analyzed for sphere-formation and by flow cytometry assays. LS-174T cells were sorted by flow cytometry (for CD133(+)CD44(+) and CD133(-)CD44(-) cells) and also used in these assays. NOD-scidIL-2Rγ(-/-) (NSG) mice were given cecal or subcutaneous injections of LS-174T or human primary CRC cells. Apc(Min/+) mice and NSG mice with orthotopic cecal tumors were given vehicle (controls), PGE2, celecoxib, and/or Ono-AE3-208. PGE2 downstream signaling pathways were knocked down with small hairpin RNAs, expressed from lentiviral vectors in LS-174T cells, or blocked with inhibitors in human primary CRC cells. RESULTS Levels of PGE2 correlated with colonic CSC markers (CD133, CD44, LRG5, and SOX2 messenger RNAs) in human colorectal carcinoma samples. Administration of PGE2 to Apc(Min/+) mice increased tumor stem cells and tumor burden, compared with controls. NSG mice given PGE2 had increased numbers of cecal CSCs and liver metastases compared with controls after intracecal injection of LS-174T or human primary CRC cells. Alternatively, celecoxib, an inhibitor of prostaglandin-endoperoxide synthase 2, reduced polyp numbers in Apc(Min/+) mice, liver metastasis in NSG mice with orthotopic tumors, and numbers of CSCs in Apc(Min/+) and NSG mice. Inhibitors or knockdown of PGE2 receptor 4 (EP4), phosphoinositide 3-kinase (PI3K) p85α, extracellular signal-regulated kinase 1 (ERK1), or nuclear factor (NF)-κB reduced PGE2-induced sphere formation and expansion of LS-174T and/or human primary CRC cells. Knockdown of ERK1 or PI3K p85α also attenuated PGE2-induced activation of NF-κB in LS-174T cells. An EP4 antagonist reduced the ability of PGE2 to induce CSC expansion in orthotopic tumors and to accelerate the formation of liver metastases. Knockdown experiments showed that NF-κB was required for PGE2 induction of CSCs and metastasis in mice. CONCLUSIONS PGE2 induces CSC expansion by activating NF-κB, via EP4-PI3K and EP4-mitogen-activated protein kinase signaling, and promotes the formation of liver metastases in mice. The PGE2 signaling pathway therefore might be targeted therapeutically to slow CSC expansion and colorectal cancer progression.
Collapse
Affiliation(s)
- Dingzhi Wang
- Laboratory for Inflammation and Cancer, Biodesign Institute of Arizona State University, Tempe, AZ 85287
| | - Lingchen Fu
- Laboratory for Inflammation and Cancer, Biodesign Institute of Arizona State University, Tempe, AZ 85287
| | - Haiyan Sun
- Laboratory for Inflammation and Cancer, Biodesign Institute of Arizona State University, Tempe, AZ 85287
| | - Lixia Guo
- Laboratory for Inflammation and Cancer, Biodesign Institute of Arizona State University, Tempe, AZ 85287,Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905 (the present affiliation)
| | - Raymond N. DuBois
- Laboratory for Inflammation and Cancer, Biodesign Institute of Arizona State University, Tempe, AZ 85287,Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287,Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, AZ 85259,Correspondence to: Raymond N. DuBois, MD. Ph.D., Executive Director of the Biodesign Institute at Arizona State University, PO Box 875001, 1001 S. McAllister Ave., Tempe, AZ 85287, Tel: 480-965-1228 and Fax: 480-727-9550,
| |
Collapse
|
42
|
Kastrati I, Litosh VA, Zhao S, Alvarez M, Thatcher GRJ, Frasor J. A novel aspirin prodrug inhibits NFκB activity and breast cancer stem cell properties. BMC Cancer 2015; 15:845. [PMID: 26530254 PMCID: PMC4632459 DOI: 10.1186/s12885-015-1868-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/27/2015] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Activation of cyclooxygenase (COX)/prostaglandin and nuclear factor κB (NFκB) pathways can promote breast tumor initiation, growth, and progression to drug resistance and metastasis. Thus, anti-inflammatory drugs have been widely explored as chemopreventive and antineoplastic agents. Aspirin (ASA), in particular, is associated with reduced breast cancer incidence but gastrointestinal toxicity has limited its usefulness. To improve potency and minimize toxicity, ASA ester prodrugs have been developed, in which the carboxylic acid of ASA is masked and ancillary pharmacophores can be incorporated. To date, the effects of ASA and ASA prodrugs have been largely attributed to COX inhibition and reduced prostaglandin production. However, ASA has also been reported to inhibit the NFκB pathway at very high doses. Whether ASA prodrugs can inhibit NFκB signaling remains relatively unexplored. METHODS A library of ASA prodrugs was synthesized and screened for inhibition of NFκB activity and cancer stem-like cell (CSC) properties, an important PGE2-and NFκB-dependent phenotype of aggressive breast cancers. Inhibition of NFκB activity was determined by dual luciferase assay, RT-QPCR, p65 DNA binding activity and Western blots. Inhibition of CSC properties was determined by mammosphere growth, CD44(+)CD24(-)immunophenotype and tumorigenicity at limiting dilution. RESULTS While we identified multiple ASA prodrugs that are capable of inhibiting the NFκB pathway, several were associated with cytotoxicity. Of particular interest was GTCpFE, an ASA prodrug with fumarate as the ancillary pharmacophore. This prodrug potently inhibits NFκB activity without innate cytotoxicity. In addition, GTCpFE exhibited selective anti-CSC activity by reducing mammosphere growth and the CD44(+)CD24(-)immunophenotype. Moreover, GTCpFE pre-treated cells were less tumorigenic and, when tumors did form, latency was increased and growth rate was reduced. Structure-activity relationships for GTCpFE indicate that fumarate, within the context of an ASA prodrug, is essential for anti-NFκB activity, whereas both the ASA and fumarate moieties contributed to attenuated mammosphere growth. CONCLUSIONS These results establish GTCpFE as a prototype for novel ASA-and fumarate-based anti-inflammatory drugs that: (i) are capable of targeting CSCs, and (ii) may be developed as chemopreventive or therapeutic agents in breast cancer.
Collapse
Affiliation(s)
- Irida Kastrati
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, E202 MSB, MC901, Chicago, IL, 60612, USA.
| | - Vladislav A Litosh
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Shuangping Zhao
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, E202 MSB, MC901, Chicago, IL, 60612, USA.
| | - Manuel Alvarez
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, E202 MSB, MC901, Chicago, IL, 60612, USA.
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, E202 MSB, MC901, Chicago, IL, 60612, USA.
| |
Collapse
|
43
|
Triptolide: A Critical Review on Antiangiogenesis in Cancer and Scope in Therapeutics. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2015. [DOI: 10.4028/www.scientific.net/jbbbe.23.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triptolide (TPL) is a traditional Chinese medicine and an active component of a Chinese herbTripterygium wilfordiiF. (Celastraceae). Triptolide has been used to treat a variety of ailments, including rheumatoid arthritis, nephritic syndrome and Lupus erythematosus. It is also a strong antitumor agent. Several angiogenesis assays in numerous research studies have shown that triptolide is an angiogenesis inhibitor. Numerous preclinical studies have shown that TPL inhibits cell proliferation, induces apoptosis and limits tumor metastasis. TPL also has a synergistic action with other treatment methods whereby, it enhances the effects of other antitumor treatments, as studied in various cancer cell lines. This review summarizes the recent developments and discussion of antiangiogenic mechanisms of TPL in cancer, brief outline of its clinical trials and its future in cancer therapeutics.
Collapse
|
44
|
Tran AQ, Cohen JG, Li AJ. Impact of obesity on secondary cytoreductive surgery and overall survival in women with recurrent ovarian cancer. Gynecol Oncol 2015; 138:263-6. [PMID: 26037901 DOI: 10.1016/j.ygyno.2015.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Obesity may negatively influence tumor biology in women with epithelial ovarian cancers. To date, only body mass indices (BMI) determined at the time of diagnosis have correlated with clinical outcome. We hypothesized that obesity negatively affects survival throughout the disease course, and sought to determine the prognostic role of BMI at the time of secondary cytoreductive surgery (SCS) for recurrent ovarian cancer. METHODS We performed a review of patients undergoing SCS for recurrent epithelial ovarian or peritoneal cancer between 1997 and 2012. We retrospectively reviewed data which were analyzed using Fisher's exact test, Kaplan-Meier survival, and Cox regression analysis. BMI was defined according to the National Institutes of Health's categorizations. RESULTS We identified 104 patients; 2 were underweight, 46 were of ideal body weight, 32 were overweight, and 24 were obese. Overall, 90 patients underwent optimal resection and BMI did not correlate with ability to perform optimal SCS (p=0.25). When examining BMI strata (underweight, ideal, overweight, and obese), we observed a statistical trend between increasing BMI and poor outcome; median survival was undetermined (greater than 50 months), 46 months, 38 months, and 34 months, respectively (p=0.04). In a multivariate analysis, BMI was an independent predictor of survival (p=0.02). CONCLUSIONS In this cohort of women undergoing SCS for recurrent ovarian cancer, BMI significantly and independently correlated with overall survival. This observation suggests an effect of excess weight on tumor biology and/or response to treatment that is prevalent throughout the disease course.
Collapse
Affiliation(s)
- Arthur-Quan Tran
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 280W, Los Angeles, CA 90048, USA
| | - Joshua G Cohen
- Division of Gynecologic Oncology, Women's Cancer Program, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 280W, Los Angeles, CA 90048, USA
| | - Andrew J Li
- Division of Gynecologic Oncology, Women's Cancer Program, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 280W, Los Angeles, CA 90048, USA.
| |
Collapse
|
45
|
Bowers LW, deGraffenried LA. Targeting the COX-2 Pathway to Improve Therapeutic Response in the Obese Breast Cancer Patient Population. ACTA ACUST UNITED AC 2015; 1:336-345. [PMID: 26442202 DOI: 10.1007/s40495-015-0041-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple studies have demonstrated that obesity is associated with a worse outcome for all breast cancer subtypes and that obese breast cancer patients do not respond as well as normal weight patients to aromatase inhibitor treatment and chemotherapy. While a number of mechanisms have been proposed to explain this link, recent studies have provided evidence that elevated local cyclooxygenase-2 (COX-2) expression and the resulting increase in prostaglandin E2 (PGE2) production may play an important role. COX-2 upregulation in breast tumors is associated with a poor prognosis, a connection generally attributed to PGE2's direct effects on apoptosis and invasion as well as its stimulation of pre-adipocyte aromatase expression and subsequent estrogen production. Research in this area has provided a strong foundation for the hypothesis that COX-2 signaling is involved in the obesity-breast cancer link, and further study regarding the role of COX-2 in this link is warranted.
Collapse
Affiliation(s)
- Laura W Bowers
- Department of Nutritional Sciences, University of Texas at Austin, 1400 Barbara Jordan Boulevard, R1800, Austin, TX 78723
| | - Linda A deGraffenried
- Department of Nutritional Sciences, University of Texas at Austin, 1400 Barbara Jordan Boulevard, R1800, Austin, TX 78723
| |
Collapse
|
46
|
Chen W, Hu GH. Biomarkers for enhancing the radiosensitivity of nasopharyngeal carcinoma. Cancer Biol Med 2015; 12:23-32. [PMID: 25859408 PMCID: PMC4383846 DOI: 10.7497/j.issn.2095-3941.2014.0015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/07/2015] [Indexed: 12/14/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy. The incidence of NPC is higher in Southern China and Southeast Asia compared with Western countries. Given its high radiosensitivity, the standard treatment for NPC is radiotherapy. However, radioresistance remains a serious obstacle to successful treatment. Radioresistance can cause local recurrence and distant metastases in some patients after treatment by radiation. Thus, special emphasis has been given to the discovery of effective radiosensitizers. This review aims to discuss the biomarkers, classified according to the main mechanisms of radiosensitization, which can enhance the sensitivity of NPC cells to ionizing radiation.
Collapse
Affiliation(s)
- Wei Chen
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guo-Hua Hu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
47
|
DiNicolantonio JJ, McCarty MF, Chatterjee S, Lavie CJ, O'Keefe JH. A higher dietary ratio of long-chain omega-3 to total omega-6 fatty acids for prevention of COX-2-dependent adenocarcinomas. Nutr Cancer 2014; 66:1279-84. [PMID: 25356937 DOI: 10.1080/01635581.2014.956262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Compelling evidence that daily low-dose aspirin decreases risk for a number of adenocarcinomas likely reflects the fact that a modest but consistent inhibition of cyclooxygenase-2 (COX-2) activity can have a meaningful protective impact on risk for such cancers. The cancer-promoting effects of COX-2 are thought to be mediated primarily by prostaglandin E2 (PGE2), synthesized from arachidonic acid. The long-chain omega-3s eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in many fatty fish, can interfere with the availability of arachidonate to COX-2 by multiple complementary mechanisms; moreover, the PGE3 produced by COX-2 from EPA is a competitive inhibitor of the receptors activated by PGE2. These considerations have given rise to the hypothesis that a high dietary intake of EPA/DHA, relative to omega-6 (from which arachidonate is generated), should lessen risk for a number of adenocarcinomas by impeding PGE2 production and activity-while not posing the risk to vascular health associated with COX-2-specific nonsteroidal antiinflammatory agents. Analyses that focus on studies in which the upper category of fish consumption (not fried or salt-preserved) is 2 or more servings weekly, and on studies that evaluate the association of long-term fish oil supplementation with cancer risk yields a number of findings that are consistent with the hypothesis. Further studies of this nature may help to clarify the impact of adequate regular intakes of long-chain omega-3 on cancer risk, and perhaps provide insight into the dose-dependency of this effect.
Collapse
|
48
|
Stromal, rather than epithelial cyclooxygenase-2 (COX-2) expression is associated with overall survival of breast cancer patients. BMC Cancer 2014; 14:732. [PMID: 25269624 PMCID: PMC4192334 DOI: 10.1186/1471-2407-14-732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022] Open
Abstract
Background Prognostic value of enhanced COX-2 expression in breast cancer has been controversial for a long time. The opinions vary widely between studies. Moreover, significant majority of studies considered only COX-2 expression in cancer epithelial cells. Methods We examined the prognostic value of COX-2 expression in both epithelial and stromal cells using three different antibodies and three algorithms of immunohistochemical scoring and categorizing the tumours into COX-2 overexpressing groups. Results Our results demonstrate that COX-2 expression in stromal cells is independent prognostic factor indicating worse overall survival of patients. Such a result was obtained using each of the three antibodies and two of the algorithms used for evaluations of COX-2 expression levels. We also show that immunohistochemical assessment of the prognostic value of COX-2 expression in cancer epithelial cells depends to a large extent on a combination of primary antibodies and algorithms used for determination of the COX-2 over-expressing tumours. Conclusions Our results indicate that stromal expression of COX-2 is independent prognostic parameter relatively insensitive to variations in sensitivity of antibodies used for its determination. Wide scatter of the published results concerning prognostic value of COX-2 expression in breast cancer tissues seems to be due to a large extent to multitude of antibodies and scoring algorithms used by different groups.
Collapse
|
49
|
Abstract
It is widely accepted that intake of dietary fats and chronic inflammation are risk factors for developing colorectal cancer. Arachidonic acid is a major component of animal fats, and the bioactive lipids produced from this substrate play critical roles in a variety of biologic processes, including cancer. Cyclooxygenase-derived prostaglandin E2 is a known proinflammatory lipid mediator that promotes tumor progression. Metabolism of arachidonic acid by the cyclooxygenase pathway provides one mechanism for the contribution of dietary fats and chronic inflammation to carcinogenesis. In this review, we highlight recent advances in our understanding of how a proinflammatory mediator prostaglandin E2 promotes colorectal cancer immune evasion. These findings may provide a rationale for the development of new therapeutic approaches to subvert tumor-induced immunosuppression.
Collapse
|
50
|
ATL-1, a synthetic analog of lipoxin, modulates endothelial permeability and interaction with tumor cells through a VEGF-dependent mechanism. Biochem Pharmacol 2014; 90:388-96. [DOI: 10.1016/j.bcp.2014.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 12/31/2022]
|