1
|
Baheti RK, Solanki PK, Ahmed S, Baerwald A, Rabin Y. Ultrasound-based geometric modeling of the human ovary with applications to cryopreservation. Cryobiology 2025; 118:105187. [PMID: 39675501 DOI: 10.1016/j.cryobiol.2024.105187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/13/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Successful cryopreservation of the whole ovary outside of the body, while a woman undergoes cancer treatments, may help preserving fertility and regaining hormone balance during recovery. One of the key challenges in whole ovary cryopreservation is adequately loading the organ with cryoprotective agents (CPAs). Another notable challenge in developing the application is the lack of geometric data needed for designing matching thermal protocols. The objective of the current study is twofold: (i) to develop an effective geometric reconstruction method for the ovary, based on transvaginal ultrasound (TVUS) data, and (ii) to perform a pilot study on the thermal effects associated with CPA loading with application to vitrification. This study includes screening of 127 TVUS imaging datasets of ovaries from healthy ovulatory participants, reconstruction of 14 geometric models, and thermally analyzing two representative geometric models of low and high mature follicles-to-organ volume ratios. Results of this study demonstrate that the proposed reconstruction method is faster and more accurate than that facilitated by commercially available software (SonoAVC, GE Healthcare). Two extremes were investigated: (1) complete vitrification of the ovary, and (2) crystallization of mature follicles while the remaining ovarian stroma vitrifies. CPA loading into the mature follicles is considered an outstanding cryopreservation challenge, but with very little impact on long-term fertility preservation. Results of this study suggest that ovarian preservation by vitrification is feasible when sufficient CPA loading is achieved, while identifying the most suitable CPA for the task remains a challenge beyond the scope of the current study.
Collapse
Affiliation(s)
- Rounak K Baheti
- Biothermal Technology Laboratory, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Prem K Solanki
- Biothermal Technology Laboratory, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sally Ahmed
- Biothermal Technology Laboratory, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Angela Baerwald
- Department of Academic Family Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yoed Rabin
- Biothermal Technology Laboratory, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Pashikanti G, Chavan LN, Liebeskind LS, Goodman MM. Synthetic Efforts toward the Synthesis of a Fluorinated Analog of 5-Aminolevulinic Acid: Practical Synthesis of Racemic and Enantiomerically Defined 3-Fluoro-5-aminolevulinic Acid. J Org Chem 2024; 89:12176-12186. [PMID: 39189689 PMCID: PMC11382157 DOI: 10.1021/acs.joc.4c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
In 2017, the FDA authorized 5-aminolevulinic acid (5-ALA) for intraoperative optical imaging of suspected high-grade gliomas. This was the first authorized optical imaging agent for brain tumor surgery to enhance the visualization of malignant tissue. Herein we report the synthesis of a racemic and enantiopure fluorinated analog of 5-ALA, i.e., 3-fluoro-5-aminolevulinic acid (3F-5-ALA). We anticipate that these studies will provide the foundation for the future construction of a fluorine-18-labeled 5-ALA PET tracer to be used for functional and metabolic imaging of gliomas.
Collapse
Affiliation(s)
- Gouthami Pashikanti
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Lahu N. Chavan
- Department
of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States
- Center
for Systems Imaging, Emory University, 1841 Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - Lanny S. Liebeskind
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Mark M. Goodman
- Department
of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States
- Center
for Systems Imaging, Emory University, 1841 Clifton Rd NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Tsai KY, Huang PS, Chu PY, Nguyen TNA, Hung HY, Hsieh CH, Wu MH. Current Applications and Future Directions of Circulating Tumor Cells in Colorectal Cancer Recurrence. Cancers (Basel) 2024; 16:2316. [PMID: 39001379 PMCID: PMC11240518 DOI: 10.3390/cancers16132316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
The ability to predict or detect colorectal cancer (CRC) recurrence early after surgery enables physicians to apply appropriate treatment plans and different follow-up strategies to improve patient survival. Overall, 30-50% of CRC patients experience cancer recurrence after radical surgery, but current surveillance tools have limitations in the precise and early detection of cancer recurrence. Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor and enter the bloodstream. These can provide real-time information on disease status. CTCs might become novel markers for predicting CRC recurrence and, more importantly, for making decisions about additional adjuvant chemotherapy. In this review, the clinical application of CTCs as a therapeutic marker for stage II CRC is described. It then discusses the utility of CTCs for monitoring cancer recurrence in advanced rectal cancer patients who undergo neoadjuvant chemoradiotherapy. Finally, it discusses the roles of CTC subtypes and CTCs combined with clinicopathological factors in establishing a multimarker model for predicting CRC recurrence.
Collapse
Affiliation(s)
- Kun-Yu Tsai
- Division of Colon and Rectal Surgery, New Taipei Municipal TuCheng Hospital, New Taipei City 23652, Taiwan
| | - Po-Shuan Huang
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Po-Yu Chu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Thi Ngoc Anh Nguyen
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hsin-Yuan Hung
- Division of Colon and Rectal Surgery, New Taipei Municipal TuCheng Hospital, New Taipei City 23652, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Chia-Hsun Hsieh
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, New Taipei Municipal Hospital, New Taipei City 23652, Taiwan
| | - Min-Hsien Wu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, New Taipei Municipal Hospital, New Taipei City 23652, Taiwan
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
4
|
Ishibashi M, Takahashi M, Yamaya T, Imai Y. Current and Future PET Imaging for Multiple Myeloma. Life (Basel) 2023; 13:1701. [PMID: 37629558 PMCID: PMC10455506 DOI: 10.3390/life13081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Positron emission tomography (PET) is an imaging modality used for the noninvasive assessment of tumor staging and response to therapy. PET with 18F labeled fluorodeoxyglucose (18F-FDG PET) is widely used to assess the active and inactive lesions in patients with multiple myeloma (MM). Despite the availability of 18F-FDG PET for the management of MM, PET imaging is less sensitive than next-generation flow cytometry and sequencing. Therefore, the novel PET radiotracers 64Cu-LLP2A, 68Ga-pentixafor, and 89Zr-daratumumab have been developed to target the cell surface antigens of MM cells. Furthermore, recent studies attempted to visualize the tumor-infiltrating lymphocytes using PET imaging in patients with cancer to investigate their prognostic effect; however, these studies have not yet been performed in MM patients. This review summarizes the recent studies on PET with 18F-FDG and novel radiotracers for the detection of MM and the resulting preclinical research using MM mouse models and clinical studies. Novel PET technologies may be useful for developing therapeutic strategies for MM in the future.
Collapse
Affiliation(s)
- Mariko Ishibashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan;
| | - Miwako Takahashi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (M.T.); (T.Y.)
| | - Taiga Yamaya
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (M.T.); (T.Y.)
| | - Yoichi Imai
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
5
|
Wang H, Qin K, Shi D, Wu P, Hao X, Liu H, Gao J, Li J, Wu Z, Li S. A new 68Ga-labeled ornithine derivative for PET imaging of ornithine metabolism in tumors. Amino Acids 2023:10.1007/s00726-023-03250-z. [PMID: 36809562 DOI: 10.1007/s00726-023-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Ornithine metabolism plays a vital role in tumorigenesis. For cancer cells, ornithine is mainly used as a substrate for ornithine decarboxylase (ODC) for the synthesis of polyamines. The ODC as a key enzyme of polyamine metabolism has become an important target for cancer diagnosis and treatment. To non-invasively detect the levels of ODC expression in malignant tumors, we have synthesized a novel 68Ga-labeled ornithine derivative ([68Ga]Ga-NOTA-Orn). The synthesis time of [68Ga]Ga-NOTA-Orn was about 30 min with a radiochemical yield of 45-50% (uncorrected), and the radiochemical purity was > 98%. [68Ga]Ga-NOTA-Orn was stable in saline and rat serum. Cellular uptake and competitive inhibition assays using DU145 and AR42J cells demonstrated that the transport pathway of [68Ga]Ga-NOTA-Orn was similar to that of L-ornithine, and it could interact with the ODC after transporting into the cell. Biodistribution and micro-positron emission tomography (Micro-PET) imaging studies showed that [68Ga]Ga-NOTA-Orn exhibited rapid tumor uptake and was rapidly excreted through the urinary system. All above results suggested that [68Ga]Ga-NOTA-Orn is a novel amino acid metabolic imaging agent with great potential of tumor diagnosis.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| | - Kaixin Qin
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Dongmei Shi
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ping Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xinzhong Hao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Haiyan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jie Gao
- National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, China Institute for Radiation Protection, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Jianguo Li
- National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, China Institute for Radiation Protection, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
6
|
Muthukumar S, Darden J, Crowley J, Witcher M, Kiser J. A Comparison of PET Tracers in Recurrent High-Grade Gliomas: A Systematic Review. Int J Mol Sci 2022; 24:ijms24010408. [PMID: 36613852 PMCID: PMC9820099 DOI: 10.3390/ijms24010408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Humans with high-grade gliomas have a poor prognosis, with a mean survival time of just 12-18 months for patients who undergo standard-of-care tumor resection and adjuvant therapy. Currently, surgery and chemoradiotherapy serve as standard treatments for this condition, yet these can be complicated by the tumor location, growth rate and recurrence. Currently, gadolinium-based, contrast-enhanced magnetic resonance imaging (CE-MRI) serves as the predominant imaging modality for recurrent high-grade gliomas, but it faces several drawbacks, including its inability to distinguish tumor recurrence from treatment-related changes and its failure to reveal the entirety of tumor burden (de novo or recurrent) due to limitations inherent to gadolinium contrast. As such, alternative imaging modalities that can address these limitations, including positron emission tomography (PET), are worth pursuing. To this end, the identification of PET-based markers for use in imaging of recurrent high-grade gliomas is paramount. This review will highlight several PET radiotracers that have been implemented in clinical practice and provide a comparison between them to assess the efficacy of these tracers.
Collapse
Affiliation(s)
| | - Jordan Darden
- Carilion Clinic Neurosurgery, Roanoke, VA 24016, USA
| | | | - Mark Witcher
- Carilion Clinic Neurosurgery, Roanoke, VA 24016, USA
| | - Jackson Kiser
- Carilion Clinic Radiology, Roanoke, VA 24016, USA
- Correspondence:
| |
Collapse
|
7
|
Nguyen A, Kumar S, Kulkarni AA. Nanotheranostic Strategies for Cancer Immunotherapy. SMALL METHODS 2022; 6:e2200718. [PMID: 36382571 PMCID: PMC11056828 DOI: 10.1002/smtd.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Despite advancements in cancer immunotherapy, heterogeneity in tumor response impose barriers to successful treatments and accurate prognosis. Effective therapy and early outcome detection are critical as toxicity profiles following immunotherapies can severely affect patients' quality of life. Existing imaging techniques, including positron emission tomography, computed tomography, magnetic resonance imaging, or multiplexed imaging, are often used in clinics yet suffer from limitations in the early assessment of immune response. Conventional strategies to validate immune response mainly rely on the Response Evaluation Criteria in Solid Tumors (RECIST) and the modified iRECIST for immuno-oncology drug trials. However, accurate monitoring of immunotherapy efficacy is challenging since the response does not always follow conventional RECIST criteria due to delayed and variable kinetics in immunotherapy responses. Engineered nanomaterials for immunotherapy applications have significantly contributed to overcoming these challenges by improving drug delivery and dynamic imaging techniques. This review summarizes challenges in recent immune-modulation approaches and traditional imaging tools, followed by emerging developments in three-in-one nanoimmunotheranostic systems co-opting nanotechnology, immunotherapy, and imaging. In addition, a comprehensive overview of imaging modalities in recent cancer immunotherapy research and a brief outlook on how nanotheranostic platforms can potentially advance to clinical translations for the field of immuno-oncology is presented.
Collapse
Affiliation(s)
- Anh Nguyen
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
8
|
Yitbarek D, Dagnaw GG. Application of Advanced Imaging Modalities in Veterinary Medicine: A Review. Vet Med (Auckl) 2022; 13:117-130. [PMID: 35669942 PMCID: PMC9166686 DOI: 10.2147/vmrr.s367040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
Veterinary anatomy has traditionally relied on detailed dissections to produce anatomical illustrations, but modern imaging modalities, now represent an enormous resource that allows for fast non-invasive visualizations in living animals for clinical and research purposes. In this review, advanced anatomical imaging modalities and their applications, safety issues, challenges, and future prospects of the techniques commonly employed for animal imaging would be highlighted. The quality of diagnostic imaging equipment in veterinary practice has greatly improved. Recent advances made in veterinary advanced imaging specifically about cross-sectional modalities (CT and MRI), nuclear medicine (PET, SPECT), and dual imaging modalities (PET/CT, PET/MR, and SPECT/CT) have become widely available, leading to greater demands and expectations from veterinary clients. These modalities allow for the creation of three-dimensional representations that can be of considerable value in the dissemination of clinical diagnosis and anatomical studies. Despite, the modern imaging modalities well established in developed countries across the globe, it is yet to remain in its infancy stage in veterinary practice in developing countries due to heavy initial investment and maintenance costs, lack of expert interpretation, a requirement of specialized technical staff and need of adjustable machines to accommodate the different range of animal sizes. Therefore, veterinarians should take advantage of these imaging techniques in designing future experiments by considering the availability of these varied imaging modalities and the creation of three-dimensional graphical representations of internal structures.
Collapse
Affiliation(s)
| | - Gashaw Getaneh Dagnaw
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
- Correspondence: Gashaw Getaneh Dagnaw, Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, P.O. Box: 196, Gondar, Ethiopia, Email
| |
Collapse
|
9
|
Ji L, Fang Y, Tang J, Liu C, Huang C, Hu Q, Li Q, Chen Z. Synthesis and biological evaluation of 18F-labelled dopamine D 3 receptor selective ligands. Bioorg Med Chem Lett 2022; 62:128630. [PMID: 35182773 DOI: 10.1016/j.bmcl.2022.128630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022]
Abstract
The dopamine D3 receptor (D3R) is highly expressed in the limbic regions of the brain and closely related to a variety of neurological disorders including Parkinson's disease, schizophrenia and drug-seeking behavior. In vivo imaging of D3R with radio-labelled tracers and positron emission tomography (PET) has become a powerful technique in related disorders. In this study, we synthesized three novel aromatically 18F-labelled phenylpiperazine-like D3R selective radioactive ligands ([18F]5b, [18F]8b and [18F]11b) and developed a simple, rapid and efficient 18F-labelling method by condition optimization. Radiosynthesis of [18F]5b, [18F]8b and [18F]11b was achieved by 18F-fluorination from nitroarene precursors. Final radiochemical purities of [18F]5b, [18F]8b and [18F]11b solution were > 99% and remained good stability (> 98% for up to 6 h) in PBS and FBS. PET imaging and cellular binding studies revealed that [18F]8b had a higher D3R affinity than [18F]5b and [18F]11b. Autoradiography and biodistribution studies of the brain showed that [18F]8b had medium intensity specific accumulation in the striatum and cortex. Meanwhile, the low skeletal uptake of [18F]8b revealed a good in vivo stability with negligible defluorination. These results indicated that [18F]8b might be a potential 18F-labelled D3R PET imaging agent.
Collapse
Affiliation(s)
- Linyang Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Caiyun Huang
- School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Qianyue Hu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qingming Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhengping Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| |
Collapse
|
10
|
Wei Q, Wu Y, Liu F, Cao J, Liu J. Advances in antitumor nanomedicine based on functional metal-organic frameworks beyond drug carriers. J Mater Chem B 2022; 10:676-699. [PMID: 35043825 DOI: 10.1039/d1tb02518j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanoscale metal-organic frameworks (MOFs) have attracted widespread interest due to their unique properties including a tunable porous structure, high drug loading capacity, structural diversity, and outstanding biocompatibility. MOFs have been extensively explored as drug nanocarriers in biotherapeutics. However, by harnessing the functionality of ligands and metal ions or clusters in MOFs, the applications of MOFs can be extended beyond drug delivery vehicles. Based on the intrinsic properties of the components of MOFs (e.g. magnetic moments of metal ions and fluorescence of ligands), different imaging modes can be achieved with varied MOFs. With careful design of the composition of MOFs (e.g. modification of organic linkers), they can respond to tumor microenvironments to realize on-demand treatment. By incorporating porphyrin-based ligands (photosensitizers for photodynamic therapy) or high-Z metal ions (radiosensitizers for radiotherapy) into the scaffold of MOFs, MOFs themselves can act as anticancer therapeutic agents. In this review, we highlight the application of MOFs from the above-mentioned aspects and discuss the prospects and challenges for using MOFs in stimuli-responsive imaging-guided antitumor therapy.
Collapse
Affiliation(s)
- Qin Wei
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Fangfang Liu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong, China.
| | - Jiao Cao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
11
|
Indovina L, Scolozzi V, Capotosti A, Sestini S, Taralli S, Cusumano D, Giancipoli RG, Ciasca G, Cardillo G, Calcagni ML. Short 2-[ 18F]Fluoro-2-Deoxy-D-Glucose PET Dynamic Acquisition Protocol to Evaluate the Influx Rate Constant by Regional Patlak Graphical Analysis in Patients With Non-Small-Cell Lung Cancer. Front Med (Lausanne) 2021; 8:725387. [PMID: 34881253 PMCID: PMC8647994 DOI: 10.3389/fmed.2021.725387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose: To test a short 2-[18F]Fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET dynamic acquisition protocol to calculate Ki using regional Patlak graphical analysis in patients with non-small-cell lung cancer (NSCLC). Methods: 24 patients with NSCLC who underwent standard dynamic 2-[18F]FDG acquisitions (60 min) were randomly divided into two groups. In group 1 (n = 10), a population-based image-derived input function (pIDIF) was built using a monoexponential trend (10–60 min), and a leave-one-out cross-validation (LOOCV) method was performed to validate the pIDIF model. In group 2 (n = 14), Ki was obtained by standard regional Patlak plot analysis using IDIF (0–60 min) and tissue response (10–60 min) curves from the volume of interests (VOIs) placed on descending thoracic aorta and tumor tissue, respectively. Moreover, with our method, the Patlak analysis was performed to obtain Ki,s using IDIFFitted curve obtained from PET counts (0–10 min) followed by monoexponential coefficients of pIDIF (10–60 min) and tissue response curve obtained from PET counts at 10 min and between 40 and 60 min, simulating two short dynamic acquisitions. Both IDIF and IDIFFitted curves were modeled to assume the value of 2-[18F]FDG plasma activity measured in the venous blood sampling performed at 45 min in each patient. Spearman's rank correlation, coefficient of determination, and Passing–Bablok regression were used for the comparison between Ki and Ki,s. Finally, Ki,s was obtained with our method in a separate group of patients (group 3, n = 8) that perform two short dynamic acquisitions. Results: Population-based image-derived input function (10–60 min) was modeled with a monoexponential curve with the following fitted parameters obtained in group 1: a = 9.684, b = 16.410, and c = 0.068 min−1. The LOOCV error was 0.4%. In patients of group 2, the mean values of Ki and Ki,s were 0.0442 ± 0.0302 and 0.33 ± 0.0298, respectively (R2 = 0.9970). The Passing–Bablok regression for comparison between Ki and Ki,s showed a slope of 0.992 (95% CI: 0.94–1.06) and intercept value of −0.0003 (95% CI: −0.0033–0.0011). Conclusions: Despite several practical limitations, like the need to position the patient twice and to perform two CT scans, our method contemplates two short 2-[18F]FDG dynamic acquisitions, a population-based input function model, and a late venous blood sample to obtain robust and personalized input function and tissue response curves and to provide reliable regional Ki estimation.
Collapse
Affiliation(s)
- Luca Indovina
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Scolozzi
- Unità Operativa Complessa (UOC) di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Amedeo Capotosti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Silvia Taralli
- Unità Operativa Complessa (UOC) di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Davide Cusumano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Romina Grazia Giancipoli
- Unità Operativa Complessa (UOC) di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, San Camillo Forlanini Hospital, Rome, Italy
| | - Maria Lucia Calcagni
- Unità Operativa Complessa (UOC) di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
12
|
Chen Q, Chen AZ, Jia G, Li J, Zheng C, Chen K. Molecular Imaging of Tumor Microenvironment to Assess the Effects of Locoregional Treatment for Hepatocellular Carcinoma. Hepatol Commun 2021; 6:652-664. [PMID: 34738743 PMCID: PMC8948593 DOI: 10.1002/hep4.1850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 12/22/2022] Open
Abstract
Liver cancer is one of the leading causes of cancer deaths worldwide. Among all primary liver cancers, hepatocellular carcinoma (HCC) is the most common type, representing 75%‐85% of all primary liver cancer cases. Median survival following diagnosis of HCC is approximately 6 to 20 months due to late diagnosis in its course and few effective treatment options. Interventional therapy with minimal invasiveness is recognized as a promising treatment for HCC. However, due to the heterogeneity of HCC and the complexity of the tumor microenvironment, the long‐term efficacy of treatment for HCC remains a challenge in the clinic. Tumor microenvironment, including factors such as hypoxia, angiogenesis, low extracellular pH, interstitial fluid pressure, aerobic glycolysis, and various immune responses, has emerged as a key contributor to tumor residual and progression after locoregional treatment for HCC. New approaches to noninvasively assess the treatment response and assist in the clinical decision‐making process are therefore urgently needed. Molecular imaging tools enabling such an assessment may significantly advance clinical practice by allowing real‐time optimization of treatment protocols for the individual patient. This review discusses recent advances in the application of molecular imaging technologies for noninvasively assessing changes occurring in the microenvironment of HCC after locoregional treatment.
Collapse
Affiliation(s)
- Quan Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Austin Z Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guorong Jia
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Mosier JA, Schwager SC, Boyajian DA, Reinhart-King CA. Cancer cell metabolic plasticity in migration and metastasis. Clin Exp Metastasis 2021; 38:343-359. [PMID: 34076787 DOI: 10.1007/s10585-021-10102-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer metastasis in which cancer cells manipulate their metabolic profile to meet the dynamic energetic requirements of the tumor microenvironment. Though cancer cell proliferation and migration through the extracellular matrix are key steps of cancer progression, they are not necessarily fueled by the same metabolites and energy production pathways. The two main metabolic pathways cancer cells use to derive energy from glucose, glycolysis and oxidative phosphorylation, are preferentially and plastically utilized by cancer cells depending on both their intrinsic metabolic properties and their surrounding environment. Mechanical factors in the microenvironment, such as collagen density, pore size, and alignment, and biochemical factors, such as oxygen and glucose availability, have been shown to influence both cell migration and glucose metabolism. As cancer cells have been identified as preferentially utilizing glycolysis or oxidative phosphorylation based on heterogeneous intrinsic or extrinsic factors, the relationship between cancer cell metabolism and metastatic potential is of recent interest. Here, we review current in vitro and in vivo findings in the context of cancer cell metabolism during migration and metastasis and extrapolate potential clinical applications of this work that could aid in diagnosing and tracking cancer progression in vivo by monitoring metabolism. We also review current progress in the development of a variety of metabolically targeted anti-metastatic drugs, both in clinical trials and approved for distribution, and highlight potential routes for incorporating our recent understanding of metabolic plasticity into therapeutic directions. By further understanding cancer cell energy production pathways and metabolic plasticity, more effective and successful clinical imaging and therapeutics can be developed to diagnose, target, and inhibit metastasis.
Collapse
Affiliation(s)
- Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - David A Boyajian
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
14
|
Chaudhari AJ, Badawi RD. Application-specific nuclear medical in vivoimaging devices. Phys Med Biol 2021; 66:10TR01. [PMID: 33770765 DOI: 10.1088/1361-6560/abf275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2021] [Indexed: 11/11/2022]
Abstract
Nuclear medical imaging devices, such as those enabling photon emission imaging (gamma camera, single photon emission computed tomography, or positron emission imaging), that are typically used in today's clinics are optimized for assessing large portions of the human body, and are classified as whole-body imaging systems. These systems have known limitations for organ imaging, therefore application-specific devices have been designed, constructed and evaluated. These devices, given their compact nature and superior technical characteristics, such as their higher detection sensitivity and spatial resolution for organ imaging compared to whole-body imaging systems, have shown promise for niche applications. Several of these devices have further been integrated with complementary anatomical imaging devices. The objectives of this review article are to (1) provide an overview of such application-specific nuclear imaging devices that were developed over the past two decades (in the twenty-first century), with emphasis on brain, cardiac, breast, and prostate imaging; and (2) discuss the rationale, advantages and challenges associated with the translation of these devices for routine clinical imaging. Finally, a perspective on the future prospects for application-specific devices is provided, which is that sustained effort is required both to overcome design limitations which impact their utility (where these exist) and to collect the data required to define their clinical value.
Collapse
Affiliation(s)
- Abhijit J Chaudhari
- Department of Radiology, University of California Davis, Sacramento, CA 95817, United States of America
- Center for Molecular and Genomic Imaging, University of California Davis, Davis, CA 95616, United States of America
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, CA 95817, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| |
Collapse
|
15
|
Pulmonary Carcinoid and the Importance of Correct Radiotracer Selection. Ochsner J 2021; 21:6-9. [PMID: 33828419 PMCID: PMC7993423 DOI: 10.31486/toj.20.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
16
|
Pickel TC, Pashikanti G, Voll RJ, Yu W, Zhang Z, Nye JA, Bacsa J, Olson JJ, Liebeskind LS, Goodman MM. Synthesis, Radiolabeling, and Biological Evaluation of the trans-Stereoisomers of 1-Amino-3-(fluoro- 18F)-4-fluorocyclopentane-1-carboxylic Acid as PET Imaging Agents. ACS Pharmacol Transl Sci 2021; 4:1195-1203. [PMID: 34151209 DOI: 10.1021/acsptsci.1c00062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 11/29/2022]
Abstract
The enantiomeric non-natural cyclic amino acids (3R,4R)-1-amino-3-fluoro-4-(fluoro-18F)cyclopentane-1-carboxylic acid and (3S,4S)-1-amino-3-fluoro-4-(fluoro-18F)cyclopentane-1-carboxylic acid ([ 18 F]5) have been prepared as a racemic mixture in 1.3% decay corrected radiochemical yield and in greater than 99% radiochemical purity. [ 18 F]5 is transported primarily via system L with some transport occurring via system ASC, as assessed in rat 9L gliosarcoma, human U87 ΔEGFR glioblastoma, and human DU145 androgen-independent prostate carcinoma tumor cells. In rats bearing intracranial 9L gliosarcoma, [ 18 F]5 gave tumor to contralateral brain tissue ratios of up to 2.8. Biodistribution studies in healthy rats demonstrated that bladder accumulation is delayed until 10 min postinjection.
Collapse
Affiliation(s)
- Thomas C Pickel
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States.,Medicinal Chemistry, Biotherapeutic and Medicinal Science, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Gouthami Pashikanti
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Ronald J Voll
- Department of Radiology and Imaging Sciences, Department of Neurosurgery, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States.,Center for Systems Imaging, Emory University, 1841 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Weiping Yu
- Department of Radiology and Imaging Sciences, Department of Neurosurgery, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States.,Center for Systems Imaging, Emory University, 1841 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Zhaobin Zhang
- Department of Radiology and Imaging Sciences, Department of Neurosurgery, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Department of Neurosurgery, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States.,Center for Systems Imaging, Emory University, 1841 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Medicinal Chemistry, Biotherapeutic and Medicinal Science, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States.,Department of Radiology and Imaging Sciences, Department of Neurosurgery, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States.,Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States.,Center for Systems Imaging, Emory University, 1841 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Jeffrey J Olson
- Department of Radiology and Imaging Sciences, Department of Neurosurgery, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Lanny S Liebeskind
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, Department of Neurosurgery, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States.,Center for Systems Imaging, Emory University, 1841 Clifton Road NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
17
|
Li J, Van Valkenburgh J, Conti PS, Chen K. Exploring Solvent Effects in the Radiosynthesis of 18F-Labeled Thymidine Analogues toward Clinical Translation for Positron Emission Tomography Imaging. ACS Pharmacol Transl Sci 2021; 4:266-275. [PMID: 33615178 DOI: 10.1021/acsptsci.0c00184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/20/2022]
Abstract
Thymidine analogues, 5-substituted 2'-deoxy-2'-[18F]fluoro-arabinofuranosyluracil derivatives, are promising positron emission tomography (PET) tracers being evaluated for noninvasive imaging of cancer cell proliferation and/or reporter gene expression. We report the radiosynthesis of 2'-deoxy-2'-[18F]fluoro-5-methyl-1-β-d-arabinofuranosyluracil ([18F]FMAU) and other 2'-deoxy-2'-[18F]fluoro-5-substituted-1-β-d-arabinofuranosyluracil analogues using 1,4-dioxane to replace the currently used 1,2-dichloroethane. Compared to 1,2-dichloroethane, 1,4-dioxane is analyzed as a better solvent in terms of radiochemical yield and toxicity concern. The use of a less toxic solvent allows for the translation of the improved approach to clinical production. The new radiolabeling method can be applied to an extensive range of uses for 18F-labeling of other nucleoside analogues.
Collapse
Affiliation(s)
- Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, California 90033, United States
| | - Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, California 90033, United States
| | - Peter S Conti
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, California 90033, United States
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, California 90033, United States
| |
Collapse
|
18
|
Hioki T, Gholami YH, McKelvey KJ, Aslani A, Marquis H, Eslick EM, Willowson KP, Howell VM, Bailey DL. Overlooked potential of positrons in cancer therapy. Sci Rep 2021; 11:2475. [PMID: 33510222 PMCID: PMC7843622 DOI: 10.1038/s41598-021-81910-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/08/2021] [Indexed: 11/09/2022] Open
Abstract
Positron (β+) emitting radionuclides have been used for positron emission tomography (PET) imaging in diagnostic medicine since its development in the 1950s. Development of a fluorinated glucose analog, fluorodeoxyglucose, labelled with a β+ emitter fluorine-18 (18F-FDG), made it possible to image cellular targets with high glycolytic metabolism. These targets include cancer cells based on increased aerobic metabolism due to the Warburg effect, and thus, 18F-FDG is a staple in nuclear medicine clinics globally. However, due to its attention in the diagnostic setting, the therapeutic potential of β+ emitters have been overlooked in cancer medicine. Here we show the first in vitro evidence of β+ emitter cytotoxicity on prostate cancer cell line LNCaP C4-2B when treated with 20 Gy of 18F. Monte Carlo simulation revealed thermalized positrons (sub-keV) traversing DNA can be lethal due to highly localized energy deposition during the thermalization and annihilation processes. The computed single and double strand breakages were ~ 55% and 117% respectively, when compared to electrons at 400 eV. Our in vitro and in silico data imply an unexplored therapeutic potential for β+ emitters. These results may also have implications for emerging cancer theranostic strategies, where β+ emitting radionuclides could be utilized as a therapeutic as well as a diagnostic agent once the challenges in radiation safety and protection after patient administration of a radioactive compound are overcome.
Collapse
Affiliation(s)
- Takanori Hioki
- School of Physics, Faculty of Science, The University of Sydney, Sydney, Australia. .,Bill Walsh Translational Cancer Research Laboratory, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia. .,Sydney Vital Translational Cancer Research Centre, Sydney, Australia.
| | - Yaser H Gholami
- School of Physics, Faculty of Science, The University of Sydney, Sydney, Australia.,Bill Walsh Translational Cancer Research Laboratory, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Sydney Vital Translational Cancer Research Centre, Sydney, Australia
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Sydney Vital Translational Cancer Research Centre, Sydney, Australia
| | - Alireza Aslani
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Harry Marquis
- School of Physics, Faculty of Science, The University of Sydney, Sydney, Australia.,Sydney Vital Translational Cancer Research Centre, Sydney, Australia
| | - Enid M Eslick
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Kathy P Willowson
- School of Physics, Faculty of Science, The University of Sydney, Sydney, Australia.,Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Sydney Vital Translational Cancer Research Centre, Sydney, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Dale L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia. .,Sydney Vital Translational Cancer Research Centre, Sydney, Australia. .,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
19
|
Haque S, Norbert CC, Patra CR. Nanomedicine: future therapy for brain cancers. NANO DRUG DELIVERY STRATEGIES FOR THE TREATMENT OF CANCERS 2021:37-74. [DOI: 10.1016/b978-0-12-819793-6.00003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Nisar S, Bhat AA, Hashem S, Yadav SK, Rizwan A, Singh M, Bagga P, Macha MA, Frenneaux MP, Reddy R, Haris M. Non-invasive biomarkers for monitoring the immunotherapeutic response to cancer. J Transl Med 2020; 18:471. [PMID: 33298096 PMCID: PMC7727217 DOI: 10.1186/s12967-020-02656-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022] Open
Abstract
Immunotherapy is an efficient way to cure cancer by modulating the patient’s immune response. However, the immunotherapy response is heterogeneous and varies between individual patients and cancer subtypes, reinforcing the need for early benefit predictors. Evaluating the infiltration of immune cells in the tumor and changes in cell-intrinsic tumor characteristics provide potential response markers to treatment. However, this approach requires invasive sampling and may not be suitable for real-time monitoring of treatment response. The recent emergence of quantitative imaging biomarkers provides promising opportunities. In vivo imaging technologies that interrogate T cell responses, metabolic activities, and immune microenvironment could offer a powerful tool to monitor the cancer response to immunotherapy. Advances in imaging techniques to identify tumors' immunological characteristics can help stratify patients who are more likely to respond to immunotherapy. This review discusses the metabolic events that occur during T cell activation and differentiation, anti-cancer immunotherapy-induced T cell responses, focusing on non-invasive imaging techniques to monitor T cell metabolism in the search for novel biomarkers of response to cancer immunotherapy.
Collapse
Affiliation(s)
- Sabah Nisar
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sheema Hashem
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Santosh K Yadav
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Arshi Rizwan
- Department of Nephrology, AIIMS, New Delhi, India
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Puneet Bagga
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | | | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
21
|
Simões JCS, Sarpaki S, Papadimitroulas P, Therrien B, Loudos G. Conjugated Photosensitizers for Imaging and PDT in Cancer Research. J Med Chem 2020; 63:14119-14150. [PMID: 32990442 DOI: 10.1021/acs.jmedchem.0c00047] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Early cancer detection and perfect understanding of the disease are imperative toward efficient treatments. It is straightforward that, for choosing a specific cancer treatment methodology, diagnostic agents undertake a critical role. Imaging is an extremely intriguing tool since it assumes a follow up to treatments to survey the accomplishment of the treatment and to recognize any conceivable repeating injuries. It also permits analysis of the disease, as well as to pursue treatment and monitor the possible changes that happen on the tumor. Likewise, it allows screening the adequacy of treatment and visualizing the state of the tumor. Additionally, when the treatment is finished, observing the patient is imperative to evaluate the treatment methodology and adjust the treatment if necessary. The goal of this review is to present an overview of conjugated photosensitizers for imaging and therapy.
Collapse
Affiliation(s)
- João C S Simões
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.,BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| | - Sophia Sarpaki
- BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| | | | - Bruno Therrien
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - George Loudos
- BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| |
Collapse
|
22
|
Pasquali M, Martini P, Shahi A, Jalilian AR, Osso JA, Boschi A. Copper-64 based radiopharmaceuticals for brain tumors and hypoxia imaging. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:371-381. [PMID: 33026209 DOI: 10.23736/s1824-4785.20.03285-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The most common and aggressive primary malignancy of the central nervous system is Glioblastoma that, as a wide range of malignant solid tumor, is characterized by extensive hypoxic regions. A great number of PET radiopharmaceuticals have been developed for the identification of hypoxia in solid tumors, among these, we find copper-based tracers. The aim of the current review paper was to provide an overview of radiocopper compounds applied for preclinical and clinical research in brain tumors and hypoxia imaging or therapy. EVIDENCE ACQUISITION Copper offers a wide variety of isotopes, useful for nuclear medicine applications, but only 64Cu and 67Cu are under the spotlight of the scientific community since being good candidates for theranostic applications. Between the two, 64Cu availability and production cost have attracted more interest of the scientific community. EVIDENCE SYNTHESIS In order to better understand the application of copper-bis thiosemicarbazones in hypoxia imaging, an overview of the role of hypoxia in cancer, existing non-imaging and imaging techniques for hypoxia identification and promising future avenues regarding hypoxia is necessary. Different proposed uptake mechanisms of [64Cu][Cu(ATSM)] inside the cell will be discussed and other 64Cu-based tracers for brain tumors described. CONCLUSIONS Among radio copper compounds [64Cu][Cu(ATSM)] is the most studied radiopharmaceutical for imaging and treatment of brain tumors. Experimental evidence suggested that [64Cu][Cu(ATSM)] could be more appropriately considered as a marker of over-reduced intracellular state rather than a pure hypoxia agent. Moreover, preliminary clinical data suggested that [64Cu]CuCl<inf>2</inf> can be a potentially useful diagnostic agent for malignancies of the central nervous system (CNS).
Collapse
Affiliation(s)
- Micol Pasquali
- National Institute of Nuclear Physics, National Laboratories of Legnaro, Padua, Italy
| | - Petra Martini
- National Institute of Nuclear Physics, National Laboratories of Legnaro, Padua, Italy.,Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Arman Shahi
- Faculty of Science, McMaster University, Hamilton, Canada
| | - Amir R Jalilian
- Department of Nuclear Science and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Joao A Osso
- Department of Nuclear Science and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Alessandra Boschi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy -
| |
Collapse
|
23
|
Pickel TC, Voll RJ, Yu W, Wang Z, Nye JA, Bacsa J, Olson JJ, Liebeskind LS, Goodman MM. Synthesis, Radiolabeling, and Biological Evaluation of the cis Stereoisomers of 1-Amino-3-Fluoro-4-(fluoro- 18F)Cyclopentane-1-Carboxylic Acid as PET Imaging Agents. J Med Chem 2020; 63:12008-12022. [PMID: 32946235 DOI: 10.1021/acs.jmedchem.0c01302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The non-natural cyclic amino acids (1S,3R,4S)-1-amino-3-fluoro-4-(fluoro-18F)cyclopentane-1-carboxylic acid ([18F]9) and (1S,3S,4R)-1-amino-3-fluoro-4-(fluoro-18F)cyclopentane-1-carboxylic acid ([18F]28) have been prepared in 10 and 1.7% decay corrected radiochemical yield, respectively, and in greater than 99% radiochemical purity. Cell assays in rat 9L gliosarcoma, human U87 ΔEGFR glioblastoma, and human DU145 androgen-independent prostate carcinoma tumor cells indicated that both compounds are substrates for amino acid transport primarily by system L, with some transport taking place via system ASC. In rats with 9L gliosarcoma, [18F]9 and [18F]28 provided high tumor to normal brain tissue ratios, with maximal ratios of 3.5 and 4.1, respectively. Biodistribution studies in healthy rats confirmed that both compounds are BBB permeable and that bladder accumulation is low until at least 5 min post injection.
Collapse
Affiliation(s)
- Thomas C Pickel
- Medicinal Chemistry, Biotherapeutic and Medicinal Science, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States.,Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Ronald J Voll
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States.,Center for Systems Imaging, Emory University, 1841 Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - Weiping Yu
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States.,Center for Systems Imaging, Emory University, 1841 Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - Zhaobin Wang
- Department of Neurosurgery, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States.,Center for Systems Imaging, Emory University, 1841 Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jeffrey J Olson
- Department of Neurosurgery, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Lanny S Liebeskind
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States.,Center for Systems Imaging, Emory University, 1841 Clifton Rd NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
24
|
He K, Zeng S, Qian L. Recent progress in the molecular imaging of therapeutic monoclonal antibodies. J Pharm Anal 2020; 10:397-413. [PMID: 33133724 PMCID: PMC7591813 DOI: 10.1016/j.jpha.2020.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/01/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic monoclonal antibodies have become one of the central components of the healthcare system and continuous efforts are made to bring innovative antibody therapeutics to patients in need. It is equally critical to acquire sufficient knowledge of their molecular structure and biological functions to ensure the efficacy and safety by incorporating new detection approaches since new challenges like individual differences and resistance are presented. Conventional techniques for determining antibody disposition including plasma drug concentration measurements using LC-MS or ELISA, and tissue distribution using immunohistochemistry and immunofluorescence are now complemented with molecular imaging modalities like positron emission tomography and near-infrared fluorescence imaging to obtain more dynamic information, while methods for characterization of antibody's interaction with the target antigen as well as visualization of its cellular and intercellular behavior are still under development. Recent progress in detecting therapeutic antibodies, in particular, the development of methods suitable for illustrating the molecular dynamics, is described here.
Collapse
Affiliation(s)
- Kaifeng He
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
25
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Preclinical evaluation of a 64Cu-labeled disintegrin for PET imaging of prostate cancer. Amino Acids 2019; 51:1569-1575. [PMID: 31621030 DOI: 10.1007/s00726-019-02794-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
A novel recombinant disintegrin, vicrostatin (VCN), displays high binding affinity to a broad range of human integrins in substantial competitive biological advantage over other integrin-based antagonists. In this study, we synthesized a new 64Cu-labeled VCN probe and evaluated its imaging properties for prostate cancer in PC-3 tumor-bearing mice. Macrocyclic chelating agent 1,8-diamino-3,6,10,13,16,19-hexaazabicyclo[6.6.6]-eicosine (DiAmSar) was conjugated with PEG unit and followed by coupling with VCN. The precursor was then radiolabeled with positron emitter 64Cu (t1/2 = 12.7 h) in ammonium acetate buffer to provide 64Cu-Sar-PEG-VCN, which was subsequently subjected to in vitro studies, small animal PET, and biodistribution studies. The PC-3 tumor-targeting efficacy of 64Cu-Sar-PEG-VCN was compared to a cyclic RGD peptide-based PET probe (64Cu-Sar-RGD). 64Cu labeling was achieved in 75% decay-corrected yield with radiochemical purity of > 98%. The specific activity of 64Cu-Sar-PEG-VCN was estimated to be 37 MBq/nmol. MicroPET imaging results showed that 64Cu-Sar-PEG-VCN has preferential tumor uptake and good tumor retention in PC-3 tumor xenografts. As compared to 64Cu-Sar-RGD, 64Cu-Sar-PEG-VCN produces higher tumor-to-muscle (T/M) imaging contrast ratios at 2 h (4.66 ± 0.34 vs. 2.88 ± 0.46) and 24 h (4.98 ± 0.80 vs. 3.22 ± 0.30) post-injection (pi) and similar tumor-to-liver ratios at 2 h (0.43 ± 0.09 vs. 0.37 ± 0.04) and 24 h (0.57 ± 0.13 vs. 0.52 ± 0.07) pi. The biodistribution results were consistent with the quantitative analysis of microPET imaging, demonstrating good T/M ratio (2.73 ± 0.36) of 64Cu-Sar-PEG-VCN at 48 h pi in PC-3 tumor xenografts. For both microPET and biodistribution studies at 48 h pi, the PC-3 tumor uptake of 64Cu-Sar-PEG-VCN is lower than that of 64Cu-Sar-RGD. 64Cu-Sar-PEG-VCN has the potential for in vivo imaging of prostate cancer with PET, which may provide a unique non-invasive method to quantitatively localize and characterize prostate cancer.
Collapse
|
27
|
Zhou Y, Li J, Xu X, Zhao M, Zhang B, Deng S, Wu Y. 64Cu-based Radiopharmaceuticals in Molecular Imaging. Technol Cancer Res Treat 2019; 18:1533033819830758. [PMID: 30764737 PMCID: PMC6378420 DOI: 10.1177/1533033819830758] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Copper-64 (T1/2 = 12.7 hours; β+: 19%, β-: 38%) has a unique decay profile and can be used for positron emission tomography imaging and radionuclide therapy. The well-established coordination chemistry of copper allows for its reaction with different types of chelator systems. It can be linked to antibodies, proteins, peptides, and other biologically relevant small molecules. Two potential ways to produce copper-64 radioisotopes concern the use of the cyclotron or the reactor. This review summarized several commonly used biomarkers of copper-64 radionuclide.
Collapse
Affiliation(s)
- Yeye Zhou
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jihui Li
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Xu
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Man Zhao
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zhang
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengming Deng
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiwei Wu
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Wang X, Zhang J, Wu H, Li Y, Conti PS, Chen K. PET imaging of Hsp90 expression in pancreatic cancer using a new 64Cu-labeled dimeric Sansalvamide A decapeptide. Amino Acids 2018; 50:897-907. [PMID: 29691700 DOI: 10.1007/s00726-018-2566-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022]
Abstract
Heat shock protein 90 (Hsp90) plays a vital role in the progress of malignant disease and elevated Hsp90 expression has been reported in pancreatic cancer. In this study, we radiolabeled a dimeric Sansalvamide A derivative (Di-San A1) with 64Cu, and evaluated the feasibility of using 64Cu-Di-San A1 for PET imaging of Hsp90 expression in a mouse model of pancreatic cancer. A macrocyclic chelator NOTA (1,4,7-triazacyclononane-1,4,7-trisacetic acid) was conjugated to Di-San A1. 64Cu-Di-San A1 was successfully prepared in a radiochemical yield > 97% with a radiochemical purity > 98%. 64Cu-Di-San A1 is stable in PBS and mouse serum with > 92% of parent probe intact after 4 h incubation. The cell binding and uptake revealed that 64Cu-Di-San A1 binds to Hsp90-positive PL45 pancreatic cancer cells, and the binding can be effectively blocked by an Hsp90 inhibitor (17AAG). For microPET study, 64Cu-Di-San A1 shows good in vivo performance in terms of tumor uptake in nude mice bearing PL45 tumors. The Hsp90-specific tumor activity accumulation of 64Cu-Di-San A1 was further demonstrated by significant reduction of PL45 tumor uptake with a pre-injected blocking dose of 17AAG. The ex vivo PET imaging and biodistribution results were consistent with the quantitative analysis of PET imaging, demonstrating good tumor-to-muscle ratio (5.35 ± 0.46) of 64Cu-Di-San A1 at 4 h post-injection in PL45 tumor mouse xenografts. 64Cu-Di-San A1 allows PET imaging of Hsp90 expression in PL45 tumors, which may provide a non-invasive method to quantitatively characterize Hsp90 expression in pancreatic cancer.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.,Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jun Zhang
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hubing Wu
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yumin Li
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China. .,General Surgery Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Peter S Conti
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kai Chen
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
29
|
Ma W, Fu F, Zhu J, Huang R, Zhu Y, Liu Z, Wang J, Conti PS, Shi X, Chen K. 64Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging. NANOSCALE 2018; 10:6113-6124. [PMID: 29547220 PMCID: PMC7473786 DOI: 10.1039/c7nr09269e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report the use of multifunctional folic acid (FA)-modified dendrimers as a platform to radiolabel with 64Cu for PET imaging of folate receptor (FR)-expressing tumors. In this study, amine-terminated generation 5 (G5) poly(amidoamine) dendrimers were sequentially modified with fluorescein isothiocyanate (FI), FA, and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), followed by acetylation of the remaining dendrimer terminal amines. The as-formed multifunctional DOTA-FA-FI-G5·NHAc dendrimers were then radiolabeled with 64Cu via the DOTA chelation. We show that the FA modification renders the dendrimers with targeting specificity to cancer cells overexpressing FR in vitro. Importantly, the radiolabeled 64Cu-DOTA-FA-FI-G5·NHAc dendrimers can be used as a nanoprobe for specific targeting of FR-overexpressing cancer cells in vitro and targeted microPET imaging of the FR-expressing xenografted tumor model in vivo. The developed 64Cu-labeled multifunctional dendrimeric nanoprobe may hold great promise to be used for targeted PET imaging of different types of FR-expressing cancer.
Collapse
Affiliation(s)
- Wenhui Ma
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. and Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fanfan Fu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jingyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Rui Huang
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Yizhou Zhu
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Zhenwei Liu
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Peter S Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China. and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
30
|
Bergmann H, Geist B, Schaffarich M, Hirtl A, Hacker M, Beyer T, Rausch I. Variation of system performance, quality control standards and adherence to international FDG-PET/CT imaging guidelines. Nuklearmedizin 2018; 53:242-8. [DOI: 10.3413/nukmed-0665-14-05] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/04/2014] [Indexed: 12/20/2022]
Abstract
Summary
Aim: To gather information on clinical operations, quality control (QC) standards and adoption of guidelines for FDG-PET/CT imaging in Austrian PET/CT centres. Methods: A written survey composed of 68 questions related to A) PET/CT centre and installation, B) standard protocol parameters for FDG-PET/CT imaging of oncology patients, and C) standard QC procedures was conducted between November and December 2013 among all Austrian PET/CT centres. In addition, a NEMA-NU2 2012 image quality phantom test was performed using standard whole-body imaging settings on all PET/CT systems with a lesion-to- background ratio of 4. Recovery coefficients (RC) were calculated for each lesion and PET/ CT system. Resu lts: A) 13 PET/CT systems were installed in 12 nuclear medicine departments at public hospitals. B) Average fasting prior to FDG-PET/CT was 7.6 (4-12) h. All sites measured blood glucose levels while using different cut-off levels (64%: 150 mg/dl). Weight- based activity injection was performed at 83% sites with a mean FDG activity of 4.1 MBq/kg. Average FDG uptake time was 55 (45-75) min. All sites employed CT contrast agents (variation from 1 %-95% of the patients). All sites reported SUV-max. C) Frequency of QC tests varied significantly and QC phantom measurements revealed significant differences in RCs. Conclusion: Significant variations in FDG-PET/CT protocol parameters among all Austrian PET/CT users were observed. subsequently, efforts need to be put in place to further standardize imaging protocols. At a minimum clinical PET/CT operations should ensure compliance with existing guidelines. Further, standardized QC procedures must be followed to improve quantitative accuracy across PET/CT centres.
Collapse
|
31
|
Berthon B, Spezi E, Galavis P, Shepherd T, Apte A, Hatt M, Fayad H, De Bernardi E, Soffientini CD, Ross Schmidtlein C, El Naqa I, Jeraj R, Lu W, Das S, Zaidi H, Mawlawi OR, Visvikis D, Lee JA, Kirov AS. Toward a standard for the evaluation of PET-Auto-Segmentation methods following the recommendations of AAPM task group No. 211: Requirements and implementation. Med Phys 2017; 44:4098-4111. [PMID: 28474819 PMCID: PMC5575543 DOI: 10.1002/mp.12312] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 04/07/2017] [Accepted: 04/15/2017] [Indexed: 01/04/2023] Open
Abstract
Purpose The aim of this paper is to define the requirements and describe the design and implementation of a standard benchmark tool for evaluation and validation of PET‐auto‐segmentation (PET‐AS) algorithms. This work follows the recommendations of Task Group 211 (TG211) appointed by the American Association of Physicists in Medicine (AAPM). Methods The recommendations published in the AAPM TG211 report were used to derive a set of required features and to guide the design and structure of a benchmarking software tool. These items included the selection of appropriate representative data and reference contours obtained from established approaches and the description of available metrics. The benchmark was designed in a way that it could be extendable by inclusion of bespoke segmentation methods, while maintaining its main purpose of being a standard testing platform for newly developed PET‐AS methods. An example of implementation of the proposed framework, named PETASset, was built. In this work, a selection of PET‐AS methods representing common approaches to PET image segmentation was evaluated within PETASset for the purpose of testing and demonstrating the capabilities of the software as a benchmark platform. Results A selection of clinical, physical, and simulated phantom data, including “best estimates” reference contours from macroscopic specimens, simulation template, and CT scans was built into the PETASset application database. Specific metrics such as Dice Similarity Coefficient (DSC), Positive Predictive Value (PPV), and Sensitivity (S), were included to allow the user to compare the results of any given PET‐AS algorithm to the reference contours. In addition, a tool to generate structured reports on the evaluation of the performance of PET‐AS algorithms against the reference contours was built. The variation of the metric agreement values with the reference contours across the PET‐AS methods evaluated for demonstration were between 0.51 and 0.83, 0.44 and 0.86, and 0.61 and 1.00 for DSC, PPV, and the S metric, respectively. Examples of agreement limits were provided to show how the software could be used to evaluate a new algorithm against the existing state‐of‐the art. Conclusions PETASset provides a platform that allows standardizing the evaluation and comparison of different PET‐AS methods on a wide range of PET datasets. The developed platform will be available to users willing to evaluate their PET‐AS methods and contribute with more evaluation datasets.
Collapse
Affiliation(s)
- Beatrice Berthon
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR 7587, INSERM U979, Paris, 75012, France
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom
| | - Paulina Galavis
- Department of Radiation Oncology, Langone Medical Center, New York University, New York, NY, 10016, USA
| | - Tony Shepherd
- Turku PET Centre, Turku University Hospital, Turku, 20521, Finland
| | - Aditya Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mathieu Hatt
- INSERM, UMR 1101, LaTIM, IBSAM, UBO, UBL, Brest, 29609, France
| | - Hadi Fayad
- INSERM, UMR 1101, LaTIM, IBSAM, UBO, UBL, Brest, 29609, France
| | | | - Chiara D Soffientini
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, 20133, Italy
| | - C Ross Schmidtlein
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48103, USA
| | - Robert Jeraj
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Wei Lu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shiva Das
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Habib Zaidi
- Division of Nuclear Medicine & Molecular Imaging, Geneva University Hospital, Geneva CH-1211, Switzerland
| | - Osama R Mawlawi
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - John A Lee
- IREC/MIRO, Université catholique de Louvain (IREC/MIRO) & FNRS, Brussels, 1200, Belgium
| | - Assen S Kirov
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
32
|
Shmidt E, Nehra V, Lowe V, Oxentenko AS. Clinical significance of incidental [18 F]FDG uptake in the gastrointestinal tract on PET/CT imaging: a retrospective cohort study. BMC Gastroenterol 2016; 16:125. [PMID: 27716085 PMCID: PMC5052901 DOI: 10.1186/s12876-016-0545-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022] Open
Abstract
Background The frequency and clinically important characteristics of incidental (18)F-fluorodeoxyglucose ([18 F]FDG) positron emission tomography (PET) uptake in the gastrointestinal tract (GIT) on PET/CT imaging in adults remain elusive. Methods All PET/CT reports from 1/1/2000 to 12/31/2009 at a single tertiary referral center were reviewed; clinical information was obtained from cases with incidental (18)F-FDG uptake in the GIT, with follow-up through October, 2012. Results Of the 41,538 PET/CT scans performed during the study period, 303 (0.7 %) had incidental GIT uptake. The most common indication for the PET/CT order was cancer staging (226 cases, 75 %), with 74 % for solid and 26 % for hematologic malignancies. Of those with solid malignancy, only 51 (17 %) had known metastatic disease. The most common site of GIT uptake was the colon, and of the 240 cases with colonic uptake, the most common areas of uptake were cecum (n = 65), sigmoid (n = 60), and ascending colon (n = 50). Investigations were pursued for the GIT uptake in 147 cases (49 %), whereas 51 % did not undergo additional studies, largely due to advanced disease. There were 73 premalignant colonic lesions diagnosed in 56 cases (tubular adenoma, n = 36; tubulovillous adenoma with low grade dysplasia, n = 27; sessile serrated adenoma, n = 4; tubulovillous adenoma with high grade dysplasia, n = 3; villous adenoma, n = 3), and 20 cases with newly diagnosed primary colon cancer. All 20 (100 %) patients with malignant colonic lesions had a focal pattern of [18 F]FDG uptake. Among cases with a known pattern of [18 F]FDG uptake, 98 % of those with premalignant lesions had focal [18 F]FDG uptake. Eighteen (90 %) of the cases with newly diagnosed colon cancer were not known to have metastatic disease of their primary tumor. Areas of incidental uptake in the ascending colon had the greatest chance (42 %) of being malignant and premalignant lesions than in any other area. Conclusion Focality of uptake is highly sensitive for malignant and premalignant lesions of the GIT. In patients without metastatic disease, incidental focal [18]FDG uptake in the GIT on PET/CT imaging warrants further evaluation.
Collapse
Affiliation(s)
- Eugenia Shmidt
- Division of Gastroenterology, Department of Internal Medicine, Mount Sinai Medical Center, New York, NY, USA
| | - Vandana Nehra
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Val Lowe
- Division of Nuclear Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amy S Oxentenko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
33
|
Stimson DHR, Pringle AJ, Maillet D, King AR, Nevin ST, Venkatachalam TK, Reutens DC, Bhalla R. Management of radioactive waste gases from PET radiopharmaceutical synthesis using cost effective capture systems integrated with a cyclotron safety system. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:504-517. [PMID: 27383139 DOI: 10.1088/0952-4746/36/3/504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The emphasis on the reduction of gaseous radioactive effluent associated with PET radiochemistry laboratories has increased. Various radioactive gas capture strategies have been employed historically including expensive automated compression systems. We have implemented a new cost-effective strategy employing gas capture bags with electronic feedback that are integrated with the cyclotron safety system. Our strategy is suitable for multiple automated 18F radiosynthesis modules and individual automated 11C radiosynthesis modules. We describe novel gas capture systems that minimize the risk of human error and are routinely used in our facility.
Collapse
Affiliation(s)
- D H R Stimson
- Centre for Advanced Imaging, Building 57, University of Queensland, St. Lucia 4072, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Prognostic Evaluation of Disease Outcome in Solid Tumors Investigated With 64Cu-ATSM PET/CT. Clin Nucl Med 2016; 41:e87-92. [PMID: 26447388 DOI: 10.1097/rlu.0000000000001017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Cu-ATSM is a very promising PET radiopharmaceutical for tumor imaging of hypoxia. One of the advantages of this compound compared with other hypoxia-avid tracers is the high tumor-to-background signal offered, which guaranties facilitated tumor delineation. This study analyzes optimal semiquantitative and quantitative parameters obtained by Cu-ATSM PET/CT in the same cohort of patients with special focus on their correlation to disease outcome. PATIENTS AND METHODS A prospective recruitment of 18 consecutive patients (M:F, 13:5; mean age, 60.7 years) with locally advanced non-small cell lung cancer (n = 7) or head and neck cancer (HNC) was performed. Each participant received 105 to 500 MBq of tracer according to body size and was scanned in a 3-dimensional mode PET/CT 60 minutes after tracer injection. PET images were reconstructed and visualized on a GE Advanced 4.6 workstation for the definition of semiquantitative and quantitative parameters: SUVmax, SUVratio-to-muscle, hypoxic tumor volume (HTV), and hypoxic burden (HB = HTV × SUVmean). These data were subsequently correlated to disease outcome, expressed in terms of progression-free survival calculated on a follow-up period with a median of 14.6 months. RESULTS All patients showed a moderately to highly increased uptake of Cu-ATSM in tumor lesions, with a mean SUVmax of 5.2 (range, 1.9-8.3) and mean SUVratio of 4.4 (range, 1.6-6.8). In addition, a broad range of HTV and HB was defined as mean values of 99.3 cm (range, 2.5-453.7 cm) and 301 (4.2-1134), respectively. Receiver operating characteristic analysis identified as reference cutoffs with respect to disease outcome with the following values: SUVmax >2.5 (AUC, 0.57; sensitivity, 88.9%; specificity, 50%), SUVratio ≤4.4 (AUC, 0.60; sensitivity, 50; specificity, 83.3%), HTV >160.7 cm (AUC, 0.61; sensitivity, 55.6%; specificity, 75%), and HB >160.7 (AUC, 0.67; sensitivity, 58.3%; specificity, 83.3%). In our cohort, HB showed a statistically significant difference in terms of mean values on the analysis of variance test with respect to disease progression (P = 0.04). On univariate analysis, Cox regression confirmed these findings and showed a significant correlation to progression-free survival for HB (P = 0.05) and HTV (P = 0.02). CONCLUSIONS In our cohort, the definition of optimal semiquantitative and quantitative parameters on Cu-ATSM PET/CT seems feasible and in line with previously published data. However, when considering the prognostic role with respect to disease outcome, the more robust parameters are represented by HTV and HB.
Collapse
|
35
|
D'Souza JW, Hensley H, Doss M, Beigarten C, Torgov M, Olafsen T, Yu JQ, Robinson MK. Cerenkov Luminescence Imaging as a Modality to Evaluate Antibody-Based PET Radiotracers. J Nucl Med 2016; 58:175-180. [PMID: 27539844 DOI: 10.2967/jnumed.116.178780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/11/2016] [Indexed: 12/25/2022] Open
Abstract
Antibodies, and engineered antibody fragments, labeled with radioisotopes are being developed as radiotracers for the detection and phenotyping of diseases such as cancer. The development of antibody-based radiotracers requires extensive characterization of their in vitro and in vivo properties, including their ability to target tumors in an antigen-selective manner. In this study, we investigated the use of Cerenkov luminescence imaging (CLI) as compared with PET as a modality for evaluating the in vivo behavior of antibody-based radiotracers. METHODS The anti-prostate-specific membrane antigen (PSMA) huJ591 antibody (IgG; 150 kDa) and its minibody (Mb; 80 kDa) format were functionalized with the chelator 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODAGA) and radiolabeled with the positron-emitting radionuclide 64Cu (half-life, 12.7 h). Immunoreactive preparations of the radiolabeled antibodies were injected into NCr nu/nu mice harboring PSMA-positive CWR22Rv1 and PSMA-negative PC-3 tumor xenografts. Tumor targeting was evaluated by both PET and CLI. RESULTS 64Cu-NODAGA-PSMA-IgG and 64Cu-NODAGA-PSMA-Mb retained the ability to bind cell surface PSMA, and both radiotracers exhibited selective uptake into PSMA-positive tumors. Under the experimental conditions used, PSMA-selective uptake of 64Cu-NODAGA-PSMA-IgG and 64Cu-NODAGA-PSMA-Mb was observed by CLI as early as 3 h after injection, with tumor-to-background ratios peaking at 24 (IgG) and 16 (Mb) h after injection. Targeting data generated by CLI correlated with that generated by PET and necropsy. CONCLUSION CLI provided a rapid and simple assessment of the targeting specificity and pharmacokinetics of the antibody-based PET radiotracers that correlated well with the behavior observed by standard PET imaging. Moreover, CLI provided clear discrimination between uptake kinetics of an intact IgG and its small-molecular-weight derivative Mb. These data support the use of CLI for the evaluation of radiotracer performance.
Collapse
Affiliation(s)
- Jimson W D'Souza
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Harvey Hensley
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mohan Doss
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Nuclear Medicine, Department of Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, Pennsylvania; and
| | | | | | | | - Jian Q Yu
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Nuclear Medicine, Department of Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, Pennsylvania; and
| | - Matthew K Robinson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Dai Y, Chen X, Yin J, Kang X, Wang G, Zhang X, Nie Y, Wu K, Liang J. Investigation of injection dose and camera integration time on quantifying pharmacokinetics of a Cy5.5-GX1 probe with dynamic fluorescence imaging in vivo. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:86001. [PMID: 27488591 DOI: 10.1117/1.jbo.21.8.086001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/14/2016] [Indexed: 05/24/2023]
Abstract
The aim of this article is to investigate the influence of a tracer injection dose (ID) and camera integration time (IT) on quantifying pharmacokinetics of Cy5.5-GX1 in gastric cancer BGC-823 cell xenografted mice. Based on three factors, including whether or not to inject free GX1, the ID of Cy5.5-GX1, and the camera IT, 32 mice were randomly divided into eight groups and received 60-min dynamic fluorescence imaging. Gurfinkel exponential model (GEXPM) and Lammertsma simplified reference tissue model (SRTM) combined with a singular value decomposition analysis were used to quantitatively analyze the acquired dynamic fluorescent images. The binding potential (Bp) and the sum of the pharmacokinetic rate constants (SKRC) of Cy5.5-GX1 were determined by the SRTM and EXPM, respectively. In the tumor region, the SKRC value exhibited an obvious trend with change in the tracer ID, but the Bp value was not sensitive to it. Both the Bp and SKRC values were independent of the camera IT. In addition, the ratio of the tumor-to-muscle region was correlated with the camera IT but was independent of the tracer ID. Dynamic fluorescence imaging in conjunction with a kinetic analysis may provide more quantitative information than static fluorescence imaging, especially for a priori information on the optimal ID of targeted probes for individual therapy.
Collapse
Affiliation(s)
- Yunpeng Dai
- Xidian University, Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, 266 Xinglong Section of Xifeng Road, Xi'an 710071, China
| | - Xueli Chen
- Xidian University, Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, 266 Xinglong Section of Xifeng Road, Xi'an 710071, China
| | - Jipeng Yin
- Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, 127 Changle Road, Xi'an 710032, China
| | - Xiaoyu Kang
- Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, 127 Changle Road, Xi'an 710032, China
| | - Guodong Wang
- Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, 127 Changle Road, Xi'an 710032, China
| | - Xianghan Zhang
- Xidian University, Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, 266 Xinglong Section of Xifeng Road, Xi'an 710071, China
| | - Yongzhan Nie
- Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, 127 Changle Road, Xi'an 710032, China
| | - Kaichun Wu
- Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, 127 Changle Road, Xi'an 710032, China
| | - Jimin Liang
- Xidian University, Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, 266 Xinglong Section of Xifeng Road, Xi'an 710071, China
| |
Collapse
|
37
|
Yin J, Hui X, Yao L, Li M, Hu H, Zhang J, Xin B, He M, Wang J, Nie Y, Wu K. Evaluation of Tc-99 m Labeled Dimeric GX1 Peptides for Imaging of Colorectal Cancer Vasculature. Mol Imaging Biol 2016; 17:661-70. [PMID: 25847184 DOI: 10.1007/s11307-015-0838-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aimed to evaluate the potential of PEGylated dimeric GX1 peptide as a radiotracer for imaging of colorectal cancer vasculature in a LoVo tumor xenografted mouse model. PROCEDURES The [(99m)Tc]PEG-(GX1)2 peptide was synthesized and identified. Confocal immunofluorescence analysis, receptor binding assay, and competitive inhibition assay were performed to evaluate the binding specificity and the receptor binding affinity of PEG-(GX1)2 to Co-human umbilical vein endothelial cells (HUVECs). Single photon emission computed tomography imaging and biodistribution were performed to evaluate the targeting ability of PEG-(GX1)2 to colorectal cancer. RESULTS The studies in vitro suggested that PEG-(GX1)2 co-localized with Factor VIII in the perinuclear cytoplasm of Co-HUVECs and bound specifically to Co-HUVECs with a high affinity. The studies in vivo demonstrated that the targeting efficacy of PEG-(GX1)2 was superior to GX1. CONCLUSIONS PEGylation improved the affinity and the targeting ability of the GX1 peptide. PEG-(GX1)2 is a more promising probe for imaging of colorectal vasculature than GX1.
Collapse
Affiliation(s)
- Jipeng Yin
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoli Hui
- First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liping Yao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Hu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Xin
- The 88th Hospital of PLA, Taian, China
| | - Minglei He
- School of Life Science, Dalian Nationalities University, Dalian, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
38
|
In Vivo Tumor Angiogenesis Imaging Using Peptide-Based Near-Infrared Fluorescent Probes. Methods Mol Biol 2016; 1444:73-84. [PMID: 27283419 DOI: 10.1007/978-1-4939-3721-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Near-infrared fluorescence (NIRF) imaging is an emerging imaging technique for studying diseases at the molecular level. Optical imaging with a near-infrared emitting fluorophore for targeting tumor angiogenesis offers a noninvasive method for early tumor detection and efficient monitoring of tumor response to anti-angiogenesis therapy. CD13 receptor, a zinc-dependent membrane-bound ectopeptidase, plays important roles in regulating tumor angiogenesis and the growth of new blood vessels. In this chapter, we use CD13 receptor as an example to demonstrate how to construct CD13-specific NGR-containing peptides via bioorthogonal click chemistry for visualizing and quantifying the CD13 receptor expression in vivo by means of NIRF optical imaging.
Collapse
|
39
|
Theranostic Nanoseeds for Efficacious Internal Radiation Therapy of Unresectable Solid Tumors. Sci Rep 2016; 6:20614. [PMID: 26852805 PMCID: PMC4745015 DOI: 10.1038/srep20614] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/08/2016] [Indexed: 02/05/2023] Open
Abstract
Malignant tumors are considered “unresectable” if they are adhere to vital structures or the surgery would cause irreversible damages to the patients. Though a variety of cytotoxic drugs and radiation therapies are currently available in clinical practice to treat such tumor masses, these therapeutic modalities are always associated with substantial side effects. Here, we report an injectable nanoparticle-based internal radiation source that potentially offers more efficacious treatment of unresectable solid tumors without significant adverse side effects. Using a highly efficient incorporation procedure, palladium-103, a brachytherapy radioisotope in clinical practice, was coated to monodispersed hollow gold nanoparticles with a diameter about 120 nm, to form 103Pd@Au nanoseeds. The therapeutic efficacy of 103Pd@Au nanoseeds were assessed when intratumorally injected into a prostate cancer xenograft model. Five weeks after a single-dose treatment, a significant tumor burden reduction (>80%) was observed without noticeable side effects on the liver, spleen and other organs. Impressively, >95% nanoseeds were retained inside the tumors as monitored by Single Photon Emission Computed Tomography (SPECT) with the gamma emissions of 103Pd. These findings show that this nanoseed-based brachytherapy has the potential to provide a theranostic solution to unresectable solid tumors.
Collapse
|
40
|
Zhang H, Xing W, Kang Q, Chen C, Wang L, Lu J. Diagnostic value of [18F] FDG-PET and PET/CT in urinary bladder cancer: a meta-analysis. Tumour Biol 2015; 36:3209-14. [PMID: 25809703 DOI: 10.1007/s13277-014-2361-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/14/2014] [Indexed: 11/24/2022] Open
Abstract
An early diagnosis of urinary bladder cancer is crucial for early treatment and management. The objective of this systematic review was to assess the overall diagnostic accuracy of 18 F FDG-PET and PET/CT in urinary bladder cancer with meta-analysis. The PubMed and CNKI databases were searched for the eligible studies published up to June 01, 2014. The sensitivity, specificity, and other measures of accuracy of 18 F FDG-PET and PET/CT in the diagnosis of urinary bladder cancer were pooled along with 95 % confidence intervals (CI). Summary receiver operating characteristic (ROC) curves were used to summarize overall test performance. Ten studies met our inclusion criteria. The summary estimates for 18 F FDG-PET and PET/CT in the diagnosis of urinary bladder cancer in meta-analysis were as follows: a pooled sensitivity, 0.82 (95 % confidence interval [CI], 0.75 to 0.88); a pooled specificity, 0.92 (95 % CI, 0.87 to 0.95); positive likelihood ratio, 6.80 (95 % CI, 4.31 to 10.74); negative likelihood ratio, 0.27 (95 % CI, 0.19 to 0.36); and diagnostic odds ratio, 25.18 (95 % CI, 17.58 to 70.4). The results indicate that 18 F FDG-PET and PET/CT are relatively high sensitive and specific for the diagnosis of urinary bladder cancer.
Collapse
Affiliation(s)
- Huojun Zhang
- Department of Radiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | | | | | | | | | | |
Collapse
|
41
|
Rosenkrantz AB, Mendiratta-Lala M, Bartholmai BJ, Ganeshan D, Abramson RG, Burton KR, Yu JPJ, Scalzetti EM, Yankeelov TE, Subramaniam RM, Lenchik L. Clinical utility of quantitative imaging. Acad Radiol 2015; 22:33-49. [PMID: 25442800 PMCID: PMC4259826 DOI: 10.1016/j.acra.2014.08.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 12/24/2022]
Abstract
Quantitative imaging (QI) is increasingly applied in modern radiology practice, assisting in the clinical assessment of many patients and providing a source of biomarkers for a spectrum of diseases. QI is commonly used to inform patient diagnosis or prognosis, determine the choice of therapy, or monitor therapy response. Because most radiologists will likely implement some QI tools to meet the patient care needs of their referring clinicians, it is important for all radiologists to become familiar with the strengths and limitations of QI. The Association of University Radiologists Radiology Research Alliance Quantitative Imaging Task Force has explored the clinical application of QI and summarizes its work in this review. We provide an overview of the clinical use of QI by discussing QI tools that are currently used in clinical practice, clinical applications of these tools, approaches to reporting of QI, and challenges to implementing QI. It is hoped that these insights will help radiologists recognize the tangible benefits of QI to their patients, their referring clinicians, and their own radiology practice.
Collapse
Affiliation(s)
- Andrew B Rosenkrantz
- Department of Radiology, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016.
| | - Mishal Mendiratta-Lala
- Henry Ford Hospital, Abdominal and Cross-sectional Interventional Radiology, Detroit, Michigan
| | - Brian J Bartholmai
- Division of Radiology Informatics, Mayo Clinic in Rochester, Rochester, Minnesota
| | | | - Richard G Abramson
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kirsteen R Burton
- Department of Medical Imaging and Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - John-Paul J Yu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Ernest M Scalzetti
- Department of Radiology, SUNY Upstate Medical University, Syracuse New York
| | - Thomas E Yankeelov
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
| | - Rathan M Subramaniam
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, and Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Leon Lenchik
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| |
Collapse
|
42
|
da Silva ES, Gómez-Vallejo V, Llop J, López-Gallego F. Efficient nitrogen-13 radiochemistry catalyzed by a highly stable immobilized biocatalyst. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00179j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, an unprecedented strategy for the reduction of [13N]NO3− to [13N]NO2− using a heterogeneous biocatalyst will be presented.
Collapse
Affiliation(s)
| | | | - Jordi Llop
- Radiochemistry and Nuclear Imaging
- CIC biomaGUNE
- San Sebastian
- Spain
| | | |
Collapse
|
43
|
Park JH, Kim KI, Lee KC, Lee YJ, Lee TS, Chung WS, Lim SM, Kang JH. Assessment of α-fetoprotein targeted HSV1-tk expression in hepatocellular carcinoma with in vivo imaging. Cancer Biother Radiopharm 2014; 30:8-15. [PMID: 25545853 DOI: 10.1089/cbr.2014.1716] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tumor-specific enhancer/promoter is applicable for targeting gene expression in tumors and helpful for tumor-targeting imaging and therapy. We aimed to acquire α-fetoprotein (AFP)-producing hepatocellular carcinoma (HCC) specific images using adenovirus containing HSV1-tk gene controlled by AFP enhancer/promoter and evaluate in vivo ganciclovir (GCV)-medicated therapeutic effects on AFP-targeted HSV1-tk expression with (18)F-FDG positron emission tomography (PET). Recombinant adenovirus expressing HSV1-tk under AFP enhancer/promoter was produced (AdAFP-TK) and the expression levels were evaluated by RT-PCR and (125)I-IVDU uptake. GCV-mediated HSV1-tk cytotoxicity was determined by MTT assay. After the mixture of AdAFP-fLuc and AdAFP-TK was administrated, bioluminescent images (BLIs) and (18)F-FHBG PET images were obtained in tumor-bearing mice. In vivo therapeutic effects of AdAFP-TK and GCV in the HuH-7 xenograft model were monitored by (18)F-FDG PET. When infected with AdAFP-TK, cell viability in HuH-7 was reduced, but those in HT-29 and SK-Hep-1 were not significantly decreased at any GCV concentration less than 100 μM. AFP-targeted fLuc and HSV1-tk expression were clearly visualized by BLI and (18)F-FHBG PET images in AFP-producing HCC, respectively. In vivo GCV-mediated tumor growth inhibition by AFP-targeted HSV1-tk expression was monitored by (18)F-FDG PET. Recombinant AdAFP-TK could be applied for AFP-targeted HCC gene therapy and imaging in AFP-producing HCC.
Collapse
Affiliation(s)
- Ju Hui Park
- 1 Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences , Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hong H, Chen F, Zhang Y, Cai W. New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev 2014; 76:2-20. [PMID: 25086372 DOI: 10.1016/j.addr.2014.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 01/03/2023]
Abstract
Tremendous advances over the last several decades in positron emission tomography (PET) and single photon emission computed tomography (SPECT) allow for targeted imaging of molecular and cellular events in the living systems. Angiogenesis, a multistep process regulated by the network of different angiogenic factors, has attracted world-wide interests, due to its pivotal role in the formation and progression of different diseases including cancer, cardiovascular diseases (CVD), and inflammation. In this review article, we will summarize the recent progress in PET or SPECT imaging of a wide variety of vascular targets in three major angiogenesis-related diseases: cancer, cardiovascular diseases, and inflammation. Faster drug development and patient stratification for a specific therapy will become possible with the facilitation of PET or SPECT imaging and it will be critical for the maximum benefit of patients.
Collapse
|
45
|
Pretze M, Mosch B, Bergmann R, Steinbach J, Pietzsch J, Mamat C. Radiofluorination and first radiopharmacological characterization of a SWLAY peptide-based ligand targeting EphA2. J Labelled Comp Radiopharm 2014; 57:660-5. [DOI: 10.1002/jlcr.3237] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/24/2014] [Accepted: 08/24/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Marc Pretze
- Institut für Radiopharmazeutische Krebsforschung; Helmholtz-Zentrum Dresden-Rossendorf; Bautzner Landstraße 400 D-01328 Dresden Germany
- Fachbereich Chemie und Lebensmittelchemie; Technische Universität Dresden; D-01062 Dresden Germany
| | - Birgit Mosch
- Institut für Radiopharmazeutische Krebsforschung; Helmholtz-Zentrum Dresden-Rossendorf; Bautzner Landstraße 400 D-01328 Dresden Germany
| | - Ralf Bergmann
- Institut für Radiopharmazeutische Krebsforschung; Helmholtz-Zentrum Dresden-Rossendorf; Bautzner Landstraße 400 D-01328 Dresden Germany
| | - Jörg Steinbach
- Institut für Radiopharmazeutische Krebsforschung; Helmholtz-Zentrum Dresden-Rossendorf; Bautzner Landstraße 400 D-01328 Dresden Germany
- Fachbereich Chemie und Lebensmittelchemie; Technische Universität Dresden; D-01062 Dresden Germany
| | - Jens Pietzsch
- Institut für Radiopharmazeutische Krebsforschung; Helmholtz-Zentrum Dresden-Rossendorf; Bautzner Landstraße 400 D-01328 Dresden Germany
- Fachbereich Chemie und Lebensmittelchemie; Technische Universität Dresden; D-01062 Dresden Germany
| | - Constantin Mamat
- Institut für Radiopharmazeutische Krebsforschung; Helmholtz-Zentrum Dresden-Rossendorf; Bautzner Landstraße 400 D-01328 Dresden Germany
- Fachbereich Chemie und Lebensmittelchemie; Technische Universität Dresden; D-01062 Dresden Germany
| |
Collapse
|
46
|
Ma W, Li G, Wang J, Yang W, Zhang Y, Conti PS, Chen K. In vivo NIRF imaging-guided delivery of a novel NGR-VEGI fusion protein for targeting tumor vasculature. Amino Acids 2014; 46:2721-32. [PMID: 25182731 DOI: 10.1007/s00726-014-1828-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/17/2014] [Indexed: 12/11/2022]
Abstract
Pathological angiogenesis is crucial in tumor growth, invasion and metastasis. Previous studies demonstrated that the vascular endothelial growth inhibitor (VEGI), a member of the tumor necrosis factor superfamily, can be used as a potent endogenous inhibitor of tumor angiogenesis. Molecular probes containing the asparagine-glycine-arginine (NGR) sequence can specifically bind to CD13 receptor which is overexpressed on neovasculature and several tumor cells. Near-infrared fluorescence (NIRF) optical imaging for targeting tumor vasculature offers a noninvasive method for early detection of tumor angiogenesis and efficient monitoring of response to anti-tumor vasculature therapy. The aim of this study was to develop a new NIRF imaging probe on the basis of an NGR-VEGI protein for the visualization of tumor vasculature. The NGR-VEGI fusion protein was prepared from prokaryotic expression, and its function was characterized in vitro. The NGR-VEGI protein was then labeled with a Cy5.5 fluorophore to afford Cy5.5-NGR-VEGI probe. Using the NIRF imaging technique, we visualized and quantified the specific delivery of Cy5.5-NGR-VEGI protein to subcutaneous HT-1080 fibrosarcoma tumors in mouse xenografts. The Cy5.5-NGR-VEGI probe exhibited rapid HT-1080 tumor targeting, and highest tumor-to-background contrast at 8 h post-injection (pi). Tumor specificity of Cy5.5-NGR-VEGI was confirmed by effective blocking of tumor uptake in the presence of unlabeled NGR-VEGI (20 mg/kg). Ex vivo NIRF imaging further confirmed in vivo imaging findings, demonstrating that Cy5.5-NGR-VEGI displayed an excellent tumor-to-muscle ratio (18.93 ± 2.88) at 8 h pi for the non-blocking group and significantly reduced ratio (4.92 ± 0.75) for the blocking group. In conclusion, Cy5.5-NGR-VEGI provided highly sensitive, target-specific, and longitudinal imaging of HT-1080 tumors. As a novel theranostic protein, Cy5.5-NGR-VEGI has the potential to improve cancer treatment by targeting tumor vasculature.
Collapse
Affiliation(s)
- Wenhui Ma
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC 103, Los Angeles, CA, 90033-9061, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
68Ga-labeled cyclic NGR peptide for microPET imaging of CD13 receptor expression. Molecules 2014; 19:11600-12. [PMID: 25100253 PMCID: PMC6271277 DOI: 10.3390/molecules190811600] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022] Open
Abstract
Peptides containing the asparagines-glycine-arginine (NGR) motif have been identified as specific ligands binding to CD13/aminopeptidase N (APN) receptor, a tumor neovascular biomarker. In this study, we synthesized a novel NGR-containing peptide (NOTA-G3-NGR), and labeled NOTA-G3-NGR with 68Ga (t1/2 = 67.7 min). The resulting 68Ga-NOTA-G3-NGR peptide was subject to in vitro and in vivo characterization. The microPET imaging results revealed that the 68Ga-NOTA-G3-NGR peptide exhibits rapid and specific tumor uptake, and high tumor-to-background contrast in a subcutaneous HT-1080 fibrosarcoma mouse model. We concluded that the 68Ga-NOTA-G3-NGR peptide has potential in the diagnosis of CD13-targeted tumor angiogenesis.
Collapse
|
48
|
Wållberg H, Ståhl S. Design and evaluation of radiolabeled tracers for tumor imaging. Biotechnol Appl Biochem 2014; 60:365-83. [PMID: 24033592 DOI: 10.1002/bab.1111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/20/2013] [Indexed: 12/22/2022]
Abstract
The growing understanding of tumor biology and the identification of tumor-specific genetic and molecular alterations, such as the overexpression of membrane receptors and other proteins, allows for personalization of patient management using targeted therapies. However, this puts stringent demands on the diagnostic tools used to identify patients who are likely to respond to a particular treatment. Radionuclide molecular imaging is a promising noninvasive method to visualize and characterize the expression of such targets. A number of different proteins, from full-length antibodies and their derivatives to small scaffold proteins and peptide receptor-ligands, have been applied to molecular imaging, each demonstrating strengths and weaknesses. Here, we discuss the concept of molecular targeting and, in particular, molecular imaging of cancer-associated targets. Additionally, we describe important biotechnological considerations and desired features when designing and developing tracers for radionuclide molecular imaging.
Collapse
Affiliation(s)
- Helena Wållberg
- Division of Molecular Biotechnology, School of Biotechnology, AlbaNova University Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
49
|
Lopci E, Grassi I, Chiti A, Nanni C, Cicoria G, Toschi L, Fonti C, Lodi F, Mattioli S, Fanti S. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2014; 4:365-84. [PMID: 24982822 PMCID: PMC4074502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Hypoxia is a pathological condition arising in living tissues when oxygen supply does not adequately cover the cellular metabolic demand. Detection of this phenomenon in tumors is of the utmost clinical relevance because tumor aggressiveness, metastatic spread, failure to achieve tumor control, increased rate of recurrence, and ultimate poor outcome are all associated with hypoxia. Consequently, in recent decades there has been increasing interest in developing methods for measurement of oxygen levels in tumors. Among the image-based modalities for hypoxia assessment, positron emission tomography (PET) is one of the most extensively investigated based on the various advantages it offers, i.e., broad range of radiopharmaceuticals, good intrinsic resolution, three-dimensional tumor representation, possibility of semiquantification/quantification of the amount of hypoxic tumor burden, overall patient friendliness, and ease of repetition. Compared with the other non-invasive techniques, the biggest advantage of PET imaging is that it offers the highest specificity for detection of hypoxic tissue. Starting with the 2-nitroimidazole family of compounds in the early 1980s, a great number of PET tracers have been developed for the identification of hypoxia in living tissue and solid tumors. This paper provides an overview of the principal PET tracers applied in cancer imaging of hypoxia and discusses in detail their advantages and pitfalls.
Collapse
Affiliation(s)
- Egesta Lopci
- Department of Nuclear Medicine, University Hospital S. Orsola-MalpighiBologna, Italy
- Department of Nuclear Medicine, Humanitas Clinical and Research CenterRozzano, Italy
| | - Ilaria Grassi
- Department of Nuclear Medicine, University Hospital S. Orsola-MalpighiBologna, Italy
| | - Arturo Chiti
- Department of Nuclear Medicine, Humanitas Clinical and Research CenterRozzano, Italy
| | - Cristina Nanni
- Department of Nuclear Medicine, University Hospital S. Orsola-MalpighiBologna, Italy
| | - Gianfranco Cicoria
- Department of Medical Physics, University Hospital S. Orsola-MalpighiBologna, Italy
| | - Luca Toschi
- Department of Medical Oncology, Humanitas Clinical and Research CenterRozzano, Italy
| | - Cristina Fonti
- Department of Nuclear Medicine, University Hospital S. Orsola-MalpighiBologna, Italy
| | - Filippo Lodi
- Department of Nuclear Medicine, University Hospital S. Orsola-MalpighiBologna, Italy
| | - Sandro Mattioli
- Division of Thoracic Surgery, University Hospital S. Orsola-MalpighiBologna, Italy
| | - Stefano Fanti
- Department of Nuclear Medicine, University Hospital S. Orsola-MalpighiBologna, Italy
| |
Collapse
|
50
|
Jiang L, Tu Y, Shi H, Cheng Z. PET probes beyond (18)F-FDG. J Biomed Res 2014; 28:435-46. [PMID: 25469112 PMCID: PMC4250522 DOI: 10.7555/jbr.28.20130196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/21/2014] [Accepted: 03/14/2014] [Indexed: 12/27/2022] Open
Abstract
During the past several decades, positron emission tomography (PET) has been one of the rapidly growing areas of medical imaging; particularly, its applications in routine oncological practice have been widely recognized. At present, (18)F-fluorodeoxyglucose ((18)F-FDG) is the most broadly used PET probe. However, (18)F-FDG also suffers many limitations. Thus, scientists and clinicians are greatly interested in exploring and developing new PET imaging probes with high affinity and specificity. In this review, we briefly summarize the representative PET probes beyond (18)F-FDG that are available for patients imaging in three major clinical areas (oncology, neurology and cardiology), and we also discuss the feasibility and trends in developing new PET probes for personalized medicine.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China. ; Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford Cancer Institute, Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Yingfeng Tu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford Cancer Institute, Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford Cancer Institute, Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|