1
|
Holmen Olofsson G, Mikkelsen MK, Ragle AM, Christiansen AB, Olsen AP, Heide-Ottosen L, Horsted CB, Pedersen CMS, Engell-Noerregaard L, Lorentzen T, Persson GF, Vinther A, Nielsen DL, thor Straten P. High Intensity Aerobic exercise training and Immune cell Mobilization in patients with lung cancer (HI AIM)—a randomized controlled trial. BMC Cancer 2022; 22:246. [PMID: 35247994 PMCID: PMC8897734 DOI: 10.1186/s12885-022-09349-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022] Open
Abstract
Background The increasing role of exercise training in cancer care is built on evidence that exercise can reduce side effects of treatment, improve physical functioning and quality of life. We and others have shown in mouse tumor models, that exercise leads to an adrenalin-mediated increased influx of T and NK cells into the tumor, altering the tumor microenvironment (TME) and leading to reduced tumor growth. These data suggest that exercise could improve immune responses against cancer cells by increase immune cell infiltration to the tumor and potentially having an impact on disease progression. Additionally, there are data to suggest that infiltration of T and NK cells into the TME is correlates with response to immune checkpoint inhibitors in patients. We have therefore initiated the clinical trial HI AIM, to investigate if high intensity exercise can mobilize and increase infiltration of immune cells in the TME in patients with lung cancer. Methods HI AIM (NCT04263467) is a randomized controlled trial (70 patients, 1:1) for patients with non-small cell lung cancer. Patients in the treatment arm, receive an exercise-intervention consisting of supervised and group-based exercise training, comprising primarily intermediate to high intensity interval training three times per week over 6 weeks. All patients will also receive standard oncological treatments; checkpoint inhibitors, checkpoint inhibitors combined with chemotherapy or oncological surveillance. Blood samples and biopsies (ultrasound guided), harvested before, during and after the 6-week training program, will form basis for immunological measurements of an array of immune cells and markers. Primary outcome is circulating NK cells. Secondary outcome is other circulating immune cells, infiltration of immune cells in tumor, inflammatory markers, aerobic capacity measured by VO2 max test, physical activity levels and quality of life measured by questionnaires, and clinical outcomes. Discussion To our knowledge, HI AIM is the first project to combine supervised and monitored exercise in patients with lung cancer, with rigorous analyses of immune and cancer cell markers over the course of the trial. Data from the trial can potentially support exercise as a tool to mobilize cells of the immune system, which in turn could potentiate the effect of immunotherapy. Trial registration The study was prospectively registered at ClinicalTrials.gov on February 10th 2020, ID: NCT04263467. https://clinicaltrials.gov/ct2/show/NCT04263467
Collapse
|
2
|
Panoskaltsis N, McCarthy NE, Stagg AJ, Mummery CJ, Husni M, Arebi N, Greenstein D, Price CL, Al-Hassi HO, Koutinas M, Mantalaris A, Knight SC. Immune reconstitution and clinical recovery following anti-CD28 antibody (TGN1412)-induced cytokine storm. Cancer Immunol Immunother 2021; 70:1127-1142. [PMID: 33033851 PMCID: PMC7543968 DOI: 10.1007/s00262-020-02725-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022]
Abstract
Cytokine storm can result from cancer immunotherapy or certain infections, including COVID-19. Though short-term immune-related adverse events are routinely described, longer-term immune consequences and sequential immune monitoring are not as well defined. In 2006, six healthy volunteers received TGN1412, a CD28 superagonist antibody, in a first-in-man clinical trial and suffered from cytokine storm. After the initial cytokine release, antibody effect-specific immune monitoring started on Day + 10 and consisted mainly of evaluation of dendritic cell and T-cell subsets and 15 serum cytokines at 21 time-points over 2 years. All patients developed problems with concentration and memory; three patients were diagnosed with mild-to-moderate depression. Mild neutropenia and autoantibody production was observed intermittently. One patient suffered from peripheral dry gangrene, required amputations, and had persistent Raynaud's phenomenon. Gastrointestinal irritability was noted in three patients and coincided with elevated γδT-cells. One had pruritus associated with elevated IgE levels, also found in three other asymptomatic patients. Dendritic cells, initially undetectable, rose to normal within a month. Naïve CD8+ T-cells were maintained at high levels, whereas naïve CD4+ and memory CD4+ and CD8+ T-cells started high but declined over 2 years. T-regulatory cells cycled circannually and were normal in number. Cytokine dysregulation was especially noted in one patient with systemic symptoms. Over a 2-year follow-up, cognitive deficits were observed in all patients following TGN1412 infusion. Some also had signs or symptoms of psychological, mucosal or immune dysregulation. These observations may discern immunopathology, treatment targets, and long-term monitoring strategies for other patients undergoing immunotherapy or with cytokine storm.
Collapse
Affiliation(s)
- Nicki Panoskaltsis
- Department of Haematology, Imperial College London, Northwick Park & St. Mark's Campus, London, UK.
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark's Campus, London, UK.
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, UK.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, USA.
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA.
| | - Neil E McCarthy
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark's Campus, London, UK
- Centre for Immunobiology, The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andrew J Stagg
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark's Campus, London, UK
- Centre for Immunobiology, The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Catherine J Mummery
- Dementia Research Centre, National Hospital for Neurology and Neurosurgery, Queen Square, Department of Neurology, Northwick Park Hospital, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospital, University College London, London, UK
| | - Mariwan Husni
- Central and North West London Mental Health NHS Foundation Trust, Northwick Park Hospital, London, UK
- Psychiatry Department, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Naila Arebi
- Department of Gastroenterology and Intestinal Physiology, St. Mark's Hospital, London, UK
- Inflammatory Bowel Disease Clinical Service, St Mark's Hospital, London, UK
| | - David Greenstein
- Department of Vascular Surgery, North West London Hospitals NHS Trust, Northwick Park & St. Mark's Hospitals Site, London, UK
- Department of Vascular Surgery, Northwick Park Hospital and Imperial College London, London, UK
| | - Claire L Price
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark's Campus, London, UK
- Lucid Group Communications, Buckinghamshire, UK
| | - Hafid O Al-Hassi
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark's Campus, London, UK
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Michalis Koutinas
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, UK
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark's Campus, London, UK
| |
Collapse
|
3
|
Garg SK, Ott MJ, Mostofa AGM, Chen Z, Chen YA, Kroeger J, Cao B, Mailloux AW, Agrawal A, Schaible BJ, Sarnaik A, Weber JS, Berglund AE, Mulé JJ, Markowitz J. Multi-Dimensional Flow Cytometry Analyses Reveal a Dichotomous Role for Nitric Oxide in Melanoma Patients Receiving Immunotherapy. Front Immunol 2020; 11:164. [PMID: 32161584 PMCID: PMC7052497 DOI: 10.3389/fimmu.2020.00164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Phenotyping of immune cell subsets in clinical trials is limited to well-defined phenotypes, due to technological limitations of reporting flow cytometry multi-dimensional phenotyping data. We developed a multi-dimensional phenotyping analysis tool and applied it to detect nitric oxide (NO) levels in peripheral blood immune cells before and after adjuvant ipilimumab co-administration with a peptide vaccine in melanoma patients. We analyzed inhibitory and stimulatory markers for immune cell phenotypes that were felt to be important in the NO analysis. The pipeline allows visualization of immune cell phenotypes without knowledge of clustering techniques and to categorize cells by association with relapse-free survival (RFS). Using this analysis, we uncovered the potential for a dichotomous role of NO as a pro- and anti-melanoma factor. NO was found in subsets of immune-suppressor cells associated with shorter-term (≤ 1 year) RFS, whereas NO was also present in immune-stimulatory effector cells obtained from patients with significant longer-term (> 1 year) RFS. These studies provide insights into the cell-specific immunomodulatory role of NO. The methods presented herein can be applied to monitor the pro- and anti-tumor effects of a variety of immune-based therapeutics in cancer patients. Clinical Trial Registration Number: NCT00084656 (https://clinicaltrials.gov/ct2/show/NCT00084656).
Collapse
Affiliation(s)
- Saurabh K Garg
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Matthew J Ott
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - A G M Mostofa
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Zhihua Chen
- Cancer Informatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Y Ann Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Jodi Kroeger
- Flow Cytometry Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Biwei Cao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Adam W Mailloux
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Alisha Agrawal
- Department of Oncologic Sciences, USF Health Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Braydon J Schaible
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Amod Sarnaik
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Department of Oncologic Sciences, USF Health Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jeffrey S Weber
- Department of Medicine, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - James J Mulé
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Department of Oncologic Sciences, USF Health Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
4
|
de Goeje PL, Poncin M, Bezemer K, Kaijen-Lambers MEH, Groen HJM, Smit EF, Dingemans AMC, Kunert A, Hendriks RW, Aerts JGJV. Induction of Peripheral Effector CD8 T-cell Proliferation by Combination of Paclitaxel, Carboplatin, and Bevacizumab in Non-small Cell Lung Cancer Patients. Clin Cancer Res 2019; 25:2219-2227. [PMID: 30642911 DOI: 10.1158/1078-0432.ccr-18-2243] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/03/2018] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Chemotherapy has long been the standard treatment for advanced stage non-small cell lung cancer (NSCLC), but checkpoint inhibitors are now approved for use in several patient groups and combinations. To design optimal combination strategies, a better understanding of the immune-modulatory capacities of conventional treatments is needed. Therefore, we investigated the immune-modulatory effects of paclitaxel/carboplatin/bevacizumab (PCB), focusing on the immune populations associated with the response to checkpoint inhibitors in peripheral blood. EXPERIMENTAL DESIGN A total of 223 patients with stage IV NSCLC, enrolled in the NVALT12 study, received PCB, with or without nitroglycerin patch. Peripheral blood was collected at baseline and after the first and second treatment cycle, proportions of T cells, B cells, and monocytes were determined by flow cytometry. Furthermore, several subsets of T cells and the expression of Ki67 and coinhibitory receptors on these subsets were determined. RESULTS Although proliferation of CD4 T cells remained stable following treatment, proliferation of peripheral blood CD8 T cells was significantly increased, particularly in the effector memory and CD45RA+ effector subsets. The proliferating CD8 T cells more highly expressed programmed death receptor (PD)-1 and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) compared with nonproliferating CD8 T cells. Immunologic responders (iR; >2 fold increased proliferation after treatment) did not show an improved progression-free (PFS) or overall survival (OS). CONCLUSIONS Paclitaxel/carboplatin/bevacizumab induces proliferation of CD8 T cells, consisting of effector cells expressing coinhibitory checkpoint molecules. Induction of proliferation was not correlated to clinical outcome in the current clinical setting. Our findings provide a rationale for combining PCB with checkpoint inhibition in lung cancer.
Collapse
Affiliation(s)
- Pauline L de Goeje
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Myrthe Poncin
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Koen Bezemer
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Margaretha E H Kaijen-Lambers
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Harry J M Groen
- Groningen University Medical Center, Department of Respiratory Disease, Groningen, the Netherlands
| | - Egbert F Smit
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anne-Marie C Dingemans
- Department of Respiratory Disease, Maastricht University Medical Center, Maastricht, the Netherlands
| | - André Kunert
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,Erasmus MC Cancer Institute, Rotterdam, the Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands. .,Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Zeidan AM, Knaus HA, Robinson TM, Towlerton AMH, Warren EH, Zeidner JF, Blackford AL, Duffield AS, Rizzieri D, Frattini MG, Levy YM, Schroeder MA, Ferguson A, Sheldon KE, DeZern AE, Gojo I, Gore SD, Streicher H, Luznik L, Smith BD. A Multi-center Phase I Trial of Ipilimumab in Patients with Myelodysplastic Syndromes following Hypomethylating Agent Failure. Clin Cancer Res 2018; 24:3519-3527. [PMID: 29716921 DOI: 10.1158/1078-0432.ccr-17-3763] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/11/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Purpose: After failure of hypomethylating agents (HMA), patients with myelodysplastic syndromes (MDS) have dismal survival and no approved treatment options.Patients and Methods: We conducted a phase 1b investigator-initiated trial of ipilimumab in patients with higher risk MDS who have failed HMAs. Patients received monotherapy at two dose levels (DL; 3 and 10 mg/kg) with an induction followed by a maintenance phase. Toxicities and responses were evaluated with CTCAE.4 and IWG-2006 criteria, respectively. We also performed immunologic assays and T-cell receptor sequencing on serial samples.Results: Twenty-nine patients from 7 centers were enrolled. In the initial DL1 (3 mg), 3 of 6 patients experienced grade 2-4 immune-related adverse events (IRAE) that were reversible with drug discontinuation and/or systemic steroids. In DL2, 4 of 5 patients experienced grade 2 or higher IRAE; thus, DL1 (3 mg/kg) was expanded with no grade 2-4 IRAEs reported in 18 additional patients. Best responses included marrow complete response (mCR) in one patient (3.4%). Prolonged stable disease (PSD) for ≥46 weeks occurred in 7 patients (24% of entire cohort and 29% of those treated with 3 mg/kg dose), including 3 patients with more than a year of SD. Five patients underwent allografting without excessive toxicity. Median survival for the group was 294 days (95% CI, 240-671+). Patients who achieved PSD or mCR had significantly higher frequency of T cells expressing ICOS (inducible T-cell co-stimulator).Conclusions: Our findings suggest that ipilimumab dosed at 3 mg/kg in patients with MDS after HMA failure is safe but has limited efficacy as a monotherapy. Increased frequency of ICOS-expressing T cells might predict clinical benefit. Clin Cancer Res; 24(15); 3519-27. ©2018 AACR.
Collapse
Affiliation(s)
- Amer M Zeidan
- Section of Hematology, Department of Medicine, and the Smilow Cancer Center at Yale University, New Haven, Connecticut
| | - Hanna A Knaus
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Tara M Robinson
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Andrea M H Towlerton
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington
| | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington
| | - Joshua F Zeidner
- Lineberger Comprehensive Cancer Center at University of North Carolina, Raleigh, North Carolina
| | - Amanda L Blackford
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Amy S Duffield
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | | | | | - Yair M Levy
- Texas Oncology at Baylor University Medical Center, Dallas, Texas
| | - Mark A Schroeder
- Siteman Cancer Center at Washington University, St. Louis, Missouri
| | - Anna Ferguson
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Katherine E Sheldon
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Ivana Gojo
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Steven D Gore
- Section of Hematology, Department of Medicine, and the Smilow Cancer Center at Yale University, New Haven, Connecticut
| | | | - Leo Luznik
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - B Douglas Smith
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
| |
Collapse
|
6
|
Wilden SM, Lang BM, Mohr P, Grabbe S. Immune checkpoint inhibitors: a milestone in the treatment of melanoma. J Dtsch Dermatol Ges 2018; 14:685-95. [PMID: 27373242 DOI: 10.1111/ddg.13012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It has been known for decades that the immune system is able to detect and destroy tumor cells. In the past, this knowledge - mostly acquired through animal experiments - could not be used to benefit our patients, because immuno-oncological therapeutic approaches in humans had constantly failed over recent decades. With the exception of adjuvant interferon therapy, none of these approaches had found its way into everyday clinical practice, and only very few patients were able to enjoy long-term survival associated with good quality of life. With the advent of novel immunological approaches, the meaning of long-term survival as well as quality of life has been redefined for oncological patients. For the first time, a significant percentage of patients responds to treatment with immune checkpoint inhibitors, showing long-term remission and even cure. It has already become apparent that immunotherapy will in the future be one of the therapeutic mainstays in the treatment of metastatic melanoma as well as many other tumor types. The present review article presents the most important new treatment modalities, their mechanism of action, clinical data regarding treatment response, and adverse events to be expected.
Collapse
Affiliation(s)
- Sophia M Wilden
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Berenice M Lang
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe Hospital, Buxtehude, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
7
|
Balatoni T, Mohos A, Papp E, Sebestyén T, Liszkay G, Oláh J, Varga A, Lengyel Z, Emri G, Gaudi I, Ladányi A. Tumor-infiltrating immune cells as potential biomarkers predicting response to treatment and survival in patients with metastatic melanoma receiving ipilimumab therapy. Cancer Immunol Immunother 2018; 67:141-151. [PMID: 28988380 PMCID: PMC11028067 DOI: 10.1007/s00262-017-2072-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/27/2017] [Indexed: 12/20/2022]
Abstract
Monoclonal antibodies targeting immune checkpoints are gaining ground in the treatment of melanoma and other cancers, and considerable effort is made to identify biomarkers predicting the efficacy of these therapies. Our retrospective study was performed on surgical tissue samples (52 lymph nodes and 34 cutaneous/subcutaneous metastases) from 30 patients with metastatic melanoma treated with ipilimumab. Using a panel of 11 antibodies against different immune cell types, intratumoral immune cell densities were determined and evaluated in relation to response to ipilimumab treatment and disease outcome. For most markers studied, median immune cell densities were at least two times higher in lymph node metastases compared to skin/subcutaneous ones; therefore, the prognostic and predictive associations of immune cell infiltration were evaluated separately in the two groups of metastases as well as in all samples as a whole. Higher prevalence of several immune cell types was seen in lymph node metastases of the responders compared to non-responders, particularly FOXP3+ cells and CD8+ T lymphocytes. In subcutaneous or cutaneous metastases, on the other hand, significant difference could be observed only in the case of CD16 and CD68. Associations of labeled cell densities with survival were also found for most cell types studied in nodal metastases, and for CD16+ and CD68+ cells in skin/s.c. metastatic cases. Our results corroborate the previous findings suggesting an association between an immunologically active tumor microenvironment and response to ipilimumab treatment, and propose new potential biomarkers for predicting treatment efficacy and disease outcome.
Collapse
Affiliation(s)
- Tímea Balatoni
- Department of Oncodermatology, National Institute of Oncology, Budapest, Hungary
| | - Anita Mohos
- 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Eszter Papp
- Department of Surgical and Molecular Pathology, National Institute of Oncology, 7-9. Ráth György u., Budapest, H-1122, Hungary
| | - Tímea Sebestyén
- Department of Pathology, St. John's Hospital, Budapest, Hungary
| | - Gabriella Liszkay
- Department of Oncodermatology, National Institute of Oncology, Budapest, Hungary
| | - Judit Oláh
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical Center, University of Szeged, Szeged, Hungary
| | - Anita Varga
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical Center, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Lengyel
- Department of Dermatology, Venerology and Oncodermatology, University of Pécs, Pécs, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Gaudi
- National Korányi Institute of TB and Pulmonology, Budapest, Hungary
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology, National Institute of Oncology, 7-9. Ráth György u., Budapest, H-1122, Hungary.
| |
Collapse
|
8
|
Tucci M, Passarelli A, Mannavola F, Stucci LS, Ascierto PA, Capone M, Madonna G, Lopalco P, Silvestris F. Serum exosomes as predictors of clinical response to ipilimumab in metastatic melanoma. Oncoimmunology 2017; 7:e1387706. [PMID: 29308314 DOI: 10.1080/2162402x.2017.1387706] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy is effective in metastatic melanoma (MM) but most studies failed in discovering a biomarker predictive of clinical response. Exosomes (Exo) from melanoma cells are detectable in sera of MM patients similarly to those produced by immune cells that control the tumor progression. Here, we investigated by flow-cytometry the levels of Exo from both T-cells and dendritic cells (DCs) in 59 patients with MM treated with IPI and the relative expression of PD-1, CD28 and ICOS as well as CD80 and CD86. We found a significant increment of PD-1 and CD28 expression in patients achieving a clinical response reflected by improvement of both PFS and OS. Furthermore, MM patients receiving IPI who showed extended PFS underwent increased expression of CD80 and CD86 on DC-derived Exo at the end of treatment. These results suggest a possible association of both PD-1 and CD28 up-regulation on immune cell-derived Exo in patients with better clinical response to IPI.
Collapse
Affiliation(s)
- Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Anna Passarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Mannavola
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, 'G. Pascale Tumor National Institute' - Naples, Naples, Italy
| | - Marilena Capone
- Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, 'G. Pascale Tumor National Institute' - Naples, Naples, Italy
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, 'G. Pascale Tumor National Institute' - Naples, Naples, Italy
| | - Patrizia Lopalco
- Department of basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
9
|
Jacquelot N, Roberti MP, Enot DP, Rusakiewicz S, Ternès N, Jegou S, Woods DM, Sodré AL, Hansen M, Meirow Y, Sade-Feldman M, Burra A, Kwek SS, Flament C, Messaoudene M, Duong CPM, Chen L, Kwon BS, Anderson AC, Kuchroo VK, Weide B, Aubin F, Borg C, Dalle S, Beatrix O, Ayyoub M, Balme B, Tomasic G, Di Giacomo AM, Maio M, Schadendorf D, Melero I, Dréno B, Khammari A, Dummer R, Levesque M, Koguchi Y, Fong L, Lotem M, Baniyash M, Schmidt H, Svane IM, Kroemer G, Marabelle A, Michiels S, Cavalcanti A, Smyth MJ, Weber JS, Eggermont AM, Zitvogel L. Predictors of responses to immune checkpoint blockade in advanced melanoma. Nat Commun 2017; 8:592. [PMID: 28928380 PMCID: PMC5605517 DOI: 10.1038/s41467-017-00608-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoint blockers (ICB) have become pivotal therapies in the clinical armamentarium against metastatic melanoma (MMel). Given the frequency of immune related adverse events and increasing use of ICB, predictors of response to CTLA-4 and/or PD-1 blockade represent unmet clinical needs. Using a systems biology-based approach to an assessment of 779 paired blood and tumor markers in 37 stage III MMel patients, we analyzed association between blood immune parameters and the functional immune reactivity of tumor-infiltrating cells after ex vivo exposure to ICB. Based on this assay, we retrospectively observed, in eight cohorts enrolling 190 MMel patients treated with ipilimumab, that PD-L1 expression on peripheral T cells was prognostic on overall and progression-free survival. Moreover, detectable CD137 on circulating CD8+ T cells was associated with the disease-free status of resected stage III MMel patients after adjuvant ipilimumab + nivolumab (but not nivolumab alone). These biomarkers should be validated in prospective trials in MMel.The clinical management of metastatic melanoma requires predictors of the response to checkpoint blockade. Here, the authors use immunological assays to identify potential prognostic/predictive biomarkers in circulating blood cells and in tumor-infiltrating lymphocytes from patients with resected stage III melanoma.
Collapse
Affiliation(s)
- N Jacquelot
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France.,University Paris-Saclay, Kremlin Bicêtre, 94 276, France.,Gustave Roussy Cancer Campus, Villejuif, 94800, France
| | - M P Roberti
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France.,Gustave Roussy Cancer Campus, Villejuif, 94800, France
| | - D P Enot
- Gustave Roussy Cancer Campus, Villejuif, 94800, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, 94800, France
| | - S Rusakiewicz
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France.,Gustave Roussy Cancer Campus, Villejuif, 94800, France.,CIC1428, Gustave Roussy Cancer Campus, Villejuif, 94800, France
| | - N Ternès
- University Paris-Saclay, Kremlin Bicêtre, 94 276, France.,Gustave Roussy Cancer Campus, Villejuif, 94800, France.,Gustave Roussy, Université Paris-Saclay, Service de Biostatistique et d'Epidémiologie, Villejuif, F-94805, France
| | - S Jegou
- Saint Antoine Hospital, INSERM ERL 1157-CNRS UMR 7203, Paris, 75005, France
| | - D M Woods
- Laura & Isaac Perlmutter Cancer Center, New York University Medical Center, New York, NY, 10016, USA
| | - A L Sodré
- Laura & Isaac Perlmutter Cancer Center, New York University Medical Center, New York, NY, 10016, USA
| | - M Hansen
- Center for Cancer Immune Therapy, Department of Hematology and Oncology, Copenhagen University Hospital, Herlev, DK-2730, Denmark
| | - Y Meirow
- The Lautenberg Center for General and Tumor Immunology, BioMedical Research institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - M Sade-Feldman
- The Lautenberg Center for General and Tumor Immunology, BioMedical Research institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - A Burra
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - S S Kwek
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - C Flament
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France.,University Paris-Saclay, Kremlin Bicêtre, 94 276, France.,Gustave Roussy Cancer Campus, Villejuif, 94800, France.,CIC1428, Gustave Roussy Cancer Campus, Villejuif, 94800, France
| | - M Messaoudene
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France.,Gustave Roussy Cancer Campus, Villejuif, 94800, France
| | - C P M Duong
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France.,Gustave Roussy Cancer Campus, Villejuif, 94800, France
| | - L Chen
- Department of Immunobiology, Yale School of Medicine, 10 Amistad Street, New Haven, CT, 06519, USA
| | - B S Kwon
- Eutilex, Suite# 1401 Daeryung Technotown 17 Gasan Digital 1-ro 25, Geumcheon-gu, Seoul, 08594, Korea.,Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - A C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - V K Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - B Weide
- Department of Dermatology, University Medical Center Tübingen, Tübingen, 72076, Germany
| | - F Aubin
- Université de Franche Comté, EA3181, SFR4234, Service de Dermatologie, Centre Hospitalier Universitaire (CHU), Besançon, 25000, France
| | - C Borg
- Department of Medical Oncology, University Hospital of Besancon, 3 Boulevard Alexander Fleming, Besancon, F-25030, France.,Clinical Investigational Centre, CIC-1431, University Hospital of Besançon, Besançon, 25030, France.,INSERM U1098, University of Franche-Comté, Besançon, 25020, France
| | - S Dalle
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon and University Claude Bernard Lyon 1, Lyon, 69000, France.,Centre de Recherche en Cancérologie de Lyon, Lyon, 69000, France
| | - O Beatrix
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon and University Claude Bernard Lyon 1, Lyon, 69000, France
| | - M Ayyoub
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France.,Gustave Roussy Cancer Campus, Villejuif, 94800, France
| | - B Balme
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon and University Claude Bernard Lyon 1, Lyon, 69000, France.,Department of Pathology, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Lyon, 69000, France
| | - G Tomasic
- Gustave Roussy Cancer Campus, Villejuif, 94800, France.,Department of Pathology, Gustave Roussy Cancer Campus, Villejuif, 94800, France
| | - A M Di Giacomo
- Medical Oncology and Immunotherapy Division, University Hospital of Siena, Viale Bracci, 14, Siena, 53100, Italy
| | - M Maio
- Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Instituto Toscano Tumori, Siena, 53100, Italy
| | - D Schadendorf
- Department of Dermatology, University Hospital, University Duisburg-Essen, Essen, Germany & German Cancer Consortium (DKTZ), Heidelberg, D-69120, Germany
| | - I Melero
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research, Pamplona, 31008, Spain.,Oncology Department, University Clinic of Navarra, Pamplona, 31008, Spain.,Centro de Investigación cBiomedica en Red de Oncologia, Pamplona, 31008, Spain
| | - B Dréno
- Department of Onco-dermatology, CIC Biotherapy, INSERM U1232, CHU Nantes, Nantes, 44000, France
| | - A Khammari
- Department of Onco-dermatology, CIC Biotherapy, INSERM U1232, CHU Nantes, Nantes, 44000, France
| | - R Dummer
- Department of Dermatology, University Hospital Zürich and University of Zürich, Zürich, 8091, Switzerland
| | - M Levesque
- Department of Dermatology, University Hospital Zürich and University of Zürich, Zürich, 8091, Switzerland
| | - Y Koguchi
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, 97213, USA
| | - L Fong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - M Lotem
- Sharett Institute of Oncology, Hadassah Medical Organization, Jerusalem, 91120, Israel
| | - M Baniyash
- The Lautenberg Center for General and Tumor Immunology, BioMedical Research institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - H Schmidt
- Department of Oncology, Aarhus University Hospital, Aarhus, DK-8200, Denmark
| | - I M Svane
- Center for Cancer Immune Therapy, Department of Hematology and Oncology, Copenhagen University Hospital, Herlev, DK-2730, Denmark
| | - G Kroemer
- Gustave Roussy Cancer Campus, Villejuif, 94800, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, 94800, France.,INSERM U1138, Centre de Recherche des Cordeliers, Paris, 75006, France.,Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.,Université Pierre et Marie Curie, Paris, 75005, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, 75015, France
| | - A Marabelle
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France.,Gustave Roussy Cancer Campus, Villejuif, 94800, France.,CIC1428, Gustave Roussy Cancer Campus, Villejuif, 94800, France
| | - S Michiels
- Gustave Roussy Cancer Campus, Villejuif, 94800, France.,Gustave Roussy, Université Paris-Saclay, Service de Biostatistique et d'Epidémiologie, Villejuif, F-94805, France
| | - A Cavalcanti
- Gustave Roussy Cancer Campus, Villejuif, 94800, France.,Department of Surgery, Gustave Roussy Cancer Center, Villejuif, 94800, France.,Department of Dermatology, Gustave Roussy Cancer Center, Villejuif, 94800, France
| | - M J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.,School of Medicine, University of Queensland, Herston, QLD, 4006, Australia
| | - J S Weber
- Laura & Isaac Perlmutter Cancer Center, New York University Medical Center, New York, NY, 10016, USA
| | - A M Eggermont
- Gustave Roussy Cancer Campus, Villejuif, 94800, France
| | - L Zitvogel
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France. .,University Paris-Saclay, Kremlin Bicêtre, 94 276, France. .,Gustave Roussy Cancer Campus, Villejuif, 94800, France. .,CIC1428, Gustave Roussy Cancer Campus, Villejuif, 94800, France. .,Gustave Roussy, Université Paris-Saclay, Service de Biostatistique et d'Epidémiologie, Villejuif, F-94805, France.
| |
Collapse
|
10
|
Shi VJ, Rodic N, Gettinger S, Leventhal JS, Neckman JP, Girardi M, Bosenberg M, Choi JN. Clinical and Histologic Features of Lichenoid Mucocutaneous Eruptions Due to Anti-Programmed Cell Death 1 and Anti-Programmed Cell Death Ligand 1 Immunotherapy. JAMA Dermatol 2017; 152:1128-1136. [PMID: 27411054 DOI: 10.1001/jamadermatol.2016.2226] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Importance Antagonist antibodies to programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) have shown remarkable activity in multiple tumor types. Recent US Food and Drug Administration approval of such agents for advanced melanoma, non-small cell lung cancer, and renal cell carcinoma has hastened the need to better characterize their unique toxicity profiles. Objective To provide a clinical and pathologic description of the lichenoid mucocutaneous adverse effects seen in patients receiving anti-PD-1/PD-L1 treatment. Design, Setting, and Participants Patients with advanced cancer who were referred to dermatology at Yale-New Haven Hospital, a tertiary care hospital, after developing cutaneous adverse effects while receiving an anti-PD-1 or PD-L1 antibody therapy either as monotherapy or in combination with another agent were identified. Medical records from 2010 to 2015 and available skin biopsy specimens were retrospectively reviewed. Main Outcomes and Measures Patient demographic characteristics, concurrent medications, therapeutic regimen, type of disease, previous oncologic therapies, clinical morphology of cutaneous lesions, treatment of rash, peripheral blood eosinophil count, tumor response, and skin histologic characteristics if biopsies were available. Results Patients were 13 men and 7 women, with a mean (range) age of 64 (46-86) years. The majority of cases (16 [80%]) had a clinical morphology consisting of erythematous papules with scale in a variety of distributions. Biopsies were available from 17 patients; 16 (94%) showed features of lichenoid interface dermatitis. Eighteen patients were treated with topical corticosteroids, and only 1 patient required discontinuation of anti-PD-1/PD-L1 therapy. Only 4 of 20 patients (20%) developed peripheral eosinophilia. Sixteen patients (80%) were concurrently taking medications that have been previously reported to cause lichenoid drug eruptions. Conclusions and Relevance Papular and nodular eruptions with scale, as well as mucosal erosions, with lichenoid features on histologic analysis were a distinct finding seen with anti-PD-1/PD-L1 therapies and were generally manageable with topical steroids. Concurrent medications may play a role in the development of this cutaneous adverse effect.
Collapse
Affiliation(s)
- Veronica J Shi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Nemanja Rodic
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut2Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Scott Gettinger
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | - Julia P Neckman
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Marcus Bosenberg
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut2Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Jennifer N Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
11
|
Seetharamu N, Preeshagul IR, Sullivan KM. New PD-L1 inhibitors in non-small cell lung cancer - impact of atezolizumab. LUNG CANCER-TARGETS AND THERAPY 2017; 8:67-78. [PMID: 28761384 PMCID: PMC5516873 DOI: 10.2147/lctt.s113177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The era of immunotherapy has changed the face of how we approach treatment for many oncologic and hematologic malignancies. Lung cancer has been in the forefront of checkpoint inhibition for the past 2 years and has paved the path for other subspecialties. While PD-1 inhibitors nivolumab and pembrolizumab have been approved for non-small cell lung cancer (NSCLC), this review focuses on atezolizumab, its landmark studies, and ongoing trials. Atezolizumab is the first programmed death ligand 1 (PD-L1) inhibitor to receive US Food and Drug Administration (FDA) approval for metastatic NSCLC patients who have progressed on frontline chemotherapy. This approval was based on two open-label Phase II multicenter trials, POPLAR (NCT01903993) and BIRCH (NCT02031458). Both studies revealed a benefit in overall survival (OS), progression-free survival, and response rate in the atezolizumab arm when compared to single-agent docetaxol. There were also fewest Grade 3–5 treatment-related adverse events (TRAEs) in the atezolizumab cohort. The open-label randomized Phase III OAK trial (NCT02008227) further established the role of atezolizumab in previously treated NSCLC. This study compared atezolizumab with docetaxel in patients with advanced NSCLC (squamous or nonsquamous histologies) who had progressed on one to two prior chemotherapy regimens. OS in the PD-L1-enriched population was superior in the atezolizumab arm (n=241) at 15.7 months compared with docetaxel (n=222) at 10.3 months (hazard ratio [HR] 0.74, 95% confidence interval [CI] 0.58–0.93; p=0.0102). Patients lacking PD-L1 also had survival benefit with atezolizumab with a median OS (mOS) of 12.6 months versus 8.9 months with chemotherapy (HR 0.75, 95% CI 0.59–0.96). Benefit was noted in both squamous and nonsquamous NSCLC subsets and regardless of PD-L1 expressivity. As seen in the POPLAR and BIRCH studies, the toxicity profile was significantly better with immunotherapy. The future is unfolding rapidly as new checkpoint inhibitors are gaining FDA approval. It is still not known if these agents will be used in combination with chemotherapy, with other immune-modulating agents, radiation therapy, or all of the above. The results of these studies investigating their use in combination with chemotherapy agents, with other immunotherapy agents such as CTLA-4 inhibitors, and with radiation therapy, are eagerly awaited.
Collapse
Affiliation(s)
- Nagashree Seetharamu
- Monter Cancer Center, Hofstra-Northwell Health School of Medicine, Lake Success, NY, USA
| | - Isabel R Preeshagul
- Monter Cancer Center, Hofstra-Northwell Health School of Medicine, Lake Success, NY, USA
| | - Kevin M Sullivan
- Monter Cancer Center, Hofstra-Northwell Health School of Medicine, Lake Success, NY, USA
| |
Collapse
|
12
|
Hegde PS, Karanikas V, Evers S. The Where, the When, and the How of Immune Monitoring for Cancer Immunotherapies in the Era of Checkpoint Inhibition. Clin Cancer Res 2016; 22:1865-74. [PMID: 27084740 DOI: 10.1158/1078-0432.ccr-15-1507] [Citation(s) in RCA: 656] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/26/2016] [Indexed: 12/13/2022]
Abstract
Clinical trials with immune checkpoint inhibitors have provided important insights into the mode of action of anticancer immune therapies and potential mechanisms of immune escape. Development of the next wave of rational clinical combination strategies will require a deep understanding of the mechanisms by which combination partners influence the battle between the immune system's capabilities to fight cancer and the immune-suppressive processes that promote tumor growth. This review focuses on our current understanding of tumor and circulating pharmacodynamic correlates of immune modulation and elaborates on lessons learned from human translational research with checkpoint inhibitors. Actionable tumor markers of immune activation including CD8(+)T cells, PD-L1 IHC as a pharmacodynamic marker of T-cell function, T-cell clonality, and challenges with conduct of trials that ask scientific questions from serial biopsies are addressed. Proposals for clinical trial design, as well as future applications of peripheral pharmacodynamic endpoints as potential surrogates of early clinical activity, are discussed. On the basis of emerging mechanisms of response and immune escape, we propose the concept of the tumor immunity continuum as a framework for developing rational combination strategies.
Collapse
Affiliation(s)
- Priti S Hegde
- Oncology Biomarker Development, Genentech, South San Francisco, California.
| | - Vaios Karanikas
- Roche Pharmaceutical Research and Early Development, Translational Medicine Oncology, Roche Innovation Center, Zurich, Switzerland
| | - Stefan Evers
- Roche Pharmaceutical Research and Early Development, Translational Medicine Oncology, Roche Innovation Center, Zurich, Switzerland
| |
Collapse
|
13
|
Tallerico R, Cristiani CM, Staaf E, Garofalo C, Sottile R, Capone M, Pico de Coaña Y, Madonna G, Palella E, Wolodarski M, Carannante V, Mallardo D, Simeone E, Grimaldi AM, Johansson S, Frumento P, Gulletta E, Anichini A, Colucci F, Ciliberto G, Kiessling R, Kärre K, Ascierto PA, Carbone E. IL-15, TIM-3 and NK cells subsets predict responsiveness to anti-CTLA-4 treatment in melanoma patients. Oncoimmunology 2016; 6:e1261242. [PMID: 28344869 DOI: 10.1080/2162402x.2016.1261242] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
Abstract
Despite the success of immune checkpoint blockade in melanoma, the majority of patients do not respond. We hypothesized that the T and NK cell subset frequencies and expression levels of their receptors may predict responses and clinical outcome of anti-CTLA-4 treatment. We thus characterized the NK and T cell phenotype, as well as serum levels of several cytokines in 67 melanoma patients recruited in Italy and Sweden, using samples drawn prior to and during treatment. Survival correlated with low expression of the inhibitory receptor TIM-3 on circulating T and NK cells prior to and during treatment and with the increased frequency of mature circulating NK cells (defined as CD3-CD56dim CD16+) during treatment. Survival also correlated with low levels of IL-15 in the serum. Functional experiments in vitro demonstrated that sustained exposure to IL-15 enhanced the expression of PD-1 and TIM-3 on both T and NK cells, indicating a causative link between high IL-15 levels and enhanced expression of TIM-3 on these cells. Receptor blockade of TIM-3 improved NK cell-mediated elimination of melanoma metastasis cell lines in vitro. These observations may lead to the development of novel biomarkers to predict patient response to checkpoint blockade treatment. They also suggest that induction of additional checkpoints is a possibility that needs to be considered when treating melanoma patients with IL-15.
Collapse
Affiliation(s)
- Rossana Tallerico
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Costanza M Cristiani
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Elina Staaf
- Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Cinzia Garofalo
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Rosa Sottile
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto, Catanzaro, Italy; Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mariaelena Capone
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Yago Pico de Coaña
- Department of Oncology and Pathology, Karolinska Institutet , Stockholm, Sweden
| | - Gabriele Madonna
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Eleonora Palella
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Maria Wolodarski
- Department of Oncology and Pathology, Karolinska Institutet , Stockholm, Sweden
| | - Valentina Carannante
- Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Domenico Mallardo
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Ester Simeone
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Antonio M Grimaldi
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Sofia Johansson
- Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Paolo Frumento
- Karolinska Institutet Statistical Core Facility, Karolinska Institutet , Stockholm, Sweden
| | - Elio Gulletta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Andrea Anichini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Department of Experimental Oncology and Molecular Medicine , Milan, Italy
| | - Francesco Colucci
- Department of Obstetrics and Gynecology, University of Cambridge Clinical School , Cambridge, UK
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Rolf Kiessling
- Department of Oncology and Pathology, Karolinska Institutet , Stockholm, Sweden
| | - Klas Kärre
- Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Paolo A Ascierto
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Ennio Carbone
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto, Catanzaro, Italy; Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Antineoplastic Treatment and Renal Injury: An Update on Renal Pathology Due to Cytotoxic and Targeted Therapies. Adv Anat Pathol 2016; 23:310-29. [PMID: 27403615 DOI: 10.1097/pap.0000000000000122] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer patients experience kidney injury from multiple sources, including the tumor itself, diagnostic procedures, hypovolemia, infection, and drug exposure, superimposed upon baseline chronic damage. This review will focus on cytotoxic or targeted chemotherapy-associated renal injury. In this setting, tubulointerstitial injury and thrombotic microangiopathy (vascular injury) are more common than other forms of kidney injury including glomerular. Cisplatin, pemetrexed, and ifosfamide are well-known causes of acute tubular injury/necrosis. Acute interstitial nephritis seems underrecognized in this clinical setting. Interstitial nephritis is emerging as an "immune-related adverse effect" (irAE's) with immune checkpoint inhibitors in small numbers of patients. Acute kidney injury is rarely reported with targeted therapies such as BRAF inhibitors (vemurafinib, dabrafenib), ALK inhibitors (crizotinib), and mTOR inhibitors (everolimus, temsirolimus), but additional biopsy data are needed. Tyrosine kinase inhibitors and monoclonal antibodies that block the vascular endothelial growth factor pathway are most commonly associated with thrombotic microangiopathy. Other causes of thrombotic microangiopathy in the cancer patients include cytotoxic chemotherapies such as gemcitabine and mitomycin C, hematopoietic stem cell transplant, and cancer itself (usually high-stage adenocarcinoma with marrow and vascular invasion). Cancer patients are historically underbiopsied, but biopsy can reveal type, acuity, and chronicity of renal injury, and facilitate decisions concerning continuation of chemotherapy and/or initiation of renoprotective therapy. Biopsy may also reveal unrelated and unanticipated findings in need of treatment.
Collapse
|
15
|
Wilden SM, Lang BM, Mohr P, Grabbe S. Checkpoint-Inhibitoren in der Immuntherapie: Ein Meilenstein in der Behandlung des malignen Melanoms. J Dtsch Dermatol Ges 2016; 14:685-97. [PMID: 27373243 DOI: 10.1111/ddg.13012_g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Seit Jahrzehnten ist bekannt, dass Tumoren vom Immunsystem erkannt und zerstört werden können. Diese, vor allem in Tierversuchen gewonnene Erkenntnis konnte jedoch in der Vergangenheit nicht zum Nutzen unserer Patienten umgesetzt werden, da immunonkologische Therapieansätze in den letzten Jahrzehnten in der Anwendung beim Menschen stets versagt haben. Daher hat, mit Ausnahme der adjuvanten Interferontherapie, keines dieser Verfahren den Einzug in die klinische Versorgung gefunden. Langzeitüberleben unter guter Lebensqualität war dabei sehr wenigen Patienten vorbehalten. Mit den neuen immunologischen Therapieansätzen wird jedoch sowohl das Langzeitüberleben als auch die Lebensqualität onkologischer Patienten neu definiert. Auf die neuen "Immun-Checkpoint-Inhibitoren" spricht erstmals ein relevanter Teil der behandelten Patienten an und diese zeigen in der Regel langandauernde Remissionen bis hin zur Heilung. Schon jetzt ist klar, dass die Immuntherapie in Zukunft eine der wesentlichen Therapiesäulen bei der Behandlung des metastasierten Melanoms und auch vieler anderer fortgeschrittener Tumoren bilden wird. In dieser Übersicht werden die wichtigsten neuen Therapiemodalitäten besprochen und sowohl deren Wirkprinzip als auch klinische Daten zum Therapieansprechen und zu erwartenden Nebenwirkungen der Therapie referiert.
Collapse
|
16
|
Manson G, Norwood J, Marabelle A, Kohrt H, Houot R. Biomarkers associated with checkpoint inhibitors. Ann Oncol 2016; 27:1199-206. [DOI: 10.1093/annonc/mdw181] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
|
17
|
Harris SJ, Brown J, Lopez J, Yap TA. Immuno-oncology combinations: raising the tail of the survival curve. Cancer Biol Med 2016; 13:171-93. [PMID: 27458526 PMCID: PMC4944548 DOI: 10.20892/j.issn.2095-3941.2016.0015] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/11/2016] [Indexed: 12/13/2022] Open
Abstract
There have been exponential gains in immuno-oncology in recent times through the development of immune checkpoint inhibitors. Already approved by the U.S. Food and Drug Administration for advanced melanoma and non-small cell lung cancer, immune checkpoint inhibitors also appear to have significant antitumor activity in multiple other tumor types. An exciting component of immunotherapy is the durability of antitumor responses observed, with some patients achieving disease control for many years. Nevertheless, not all patients benefit, and efforts should thus now focus on improving the efficacy of immunotherapy through the use of combination approaches and predictive biomarkers of response and resistance. There are multiple potential rational combinations using an immunotherapy backbone, including existing treatments such as radiotherapy, chemotherapy or molecularly targeted agents, as well as other immunotherapeutics. The aim of such antitumor strategies will be to raise the tail on the survival curve by increasing the number of long term survivors, while managing any additive or synergistic toxicities that may arise with immunotherapy combinations. Rational trial designs based on a clear understanding of tumor biology and drug pharmacology remain paramount. This article reviews the biology underpinning immuno-oncology, discusses existing and novel immunotherapeutic combinations currently in development, the challenges of predictive biomarkers of response and resistance and the impact of immuno-oncology on early phase clinical trial design.
Collapse
Affiliation(s)
| | | | | | - Timothy A. Yap
- Drug Development Unit
- Lung Unit, Royal Marsden Hospital and The Institute of Cancer Research, London SM2 5PT, UK
| |
Collapse
|
18
|
Jin C, Zhang X, Zhao K, Xu J, Zhao M, Xu X. The efficacy and safety of nivolumab in the treatment of advanced melanoma: a meta-analysis of clinical trials. Onco Targets Ther 2016; 9:1571-8. [PMID: 27051297 PMCID: PMC4803248 DOI: 10.2147/ott.s96762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Nivolumab has become a therapeutic regimen for the treatment of patients with advanced melanoma. The goal of this study was to assess the efficacy and safety of nivolumab in patients with advanced melanoma. Methods A systematic search from January 2008 to August 2015 with “nivolumab” and “advanced melanoma” as search terms was performed for possible clinical trials. According to the hazard ratio and the 95% confidence interval (CI) for progression-free survival (PFS), rates of objective response, complete response, partial response, rates of toxic effects, and the efficacy and safety of nivolumab were assessed. Using the software Review Manager (version 5.3) a meta-analysis was performed. Results There were four trials with 1,910 patients included. Based on the four trials, the pooled hazard ratio of PFS was 0.53 (95% CI, 0.43–0.66; P<0.001). The pooled risk ratio for the objective response rate, complete response, and partial response was 2.98% (95% CI, 2.38%–3.73%; P<0.001), 3.71% (95% CI, 2.67%–5.14%; P<0.001), and 2.51% (95% CI, 2.12%–2.99%; P<0.001), respectively. Nivolumab plus ipilimumab therapy significantly increased the risk of grade 3/4 rash and fatigue. Conclusion Nivolumab-based therapy prolonged PFS in treatment of advanced melanoma, with less adverse effects. Nivolumab appears to be a favorable treatment option as a novel, targeted anticancer agent, for patients with advanced melanoma.
Collapse
Affiliation(s)
- Conghui Jin
- Department of Medical Oncology, Nantong Tumor Hospital, Nantong, People's Republic of China
| | - Xunlei Zhang
- Department of Medical Oncology, Nantong Tumor Hospital, Nantong, People's Republic of China
| | - Kuiling Zhao
- Department of Medical Oncology, Nantong Tumor Hospital, Nantong, People's Republic of China
| | - Jun Xu
- Department of Medical Oncology, Nantong Tumor Hospital, Nantong, People's Republic of China
| | - Min Zhao
- Department of Medical Oncology, Nantong Tumor Hospital, Nantong, People's Republic of China
| | - Xiaohong Xu
- Department of Medical Oncology, Nantong Tumor Hospital, Nantong, People's Republic of China
| |
Collapse
|