1
|
Bello-Rivero I, Crombet-Ramos T, Mesa-Pardillo C, Morera-Díaz Y, Mazorra-Herrera Z, Garcia-Rivera D, Nodarse-Cuní H, Hernández-Bernal F, Muzio-Gonzalez V, Aguilera-Barreto A, Vazquez-Blomquist D, Domínguez-Horta MDC, Guillen-Nieto G. BioHabana 2022: Preventive and Immunotherapeutic Strategies Against COVID-19 and Cancer in Cuba. J Interferon Cytokine Res 2023; 43:571-580. [PMID: 38048299 DOI: 10.1089/jir.2023.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
The convergence of life sciences with neurosciences, nanotechnology, data management, and engineering has caused a technological diversification of the biotechnology, pharmaceutical, and medical technology industries, including the phenomenon of digital transformation, which has given rise to the so-called Fourth Industrial Revolution (Industry 4.0). Confronting the COVID-19 pandemic revealed the outstanding response capacity of the scientific community and the biopharmaceutical industry, based on a multidisciplinary and interinstitutional approach that has achieved an unprecedented integration in the history of biomedical science. Cuba, a small country, with scarce material resources, has had remarkable success in controlling the disease, which also highlights the impact of social factors. This report presents a summary of the most relevant presentations of selected topics during the scientific meeting, "BioHabana 2022: Cancer Immunotherapy and the COVID-19 Pandemic," which was held in Havana Cuba in April 2022.
Collapse
Affiliation(s)
- Iraldo Bello-Rivero
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Tania Crombet-Ramos
- Clinical Trial Directions, Center for Molecular Immunology (CIM), Havana, Cuba
| | - Circe Mesa-Pardillo
- Clinical Trial Directions, Center for Molecular Immunology (CIM), Havana, Cuba
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | | | - Hugo Nodarse-Cuní
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Francisco Hernández-Bernal
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Verena Muzio-Gonzalez
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Ana Aguilera-Barreto
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Dania Vazquez-Blomquist
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Maria Del Carmen Domínguez-Horta
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Gerardo Guillen-Nieto
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| |
Collapse
|
2
|
Bergado-Báez G, Gonzalez Suarez N, García LC, Pérez-Martínez D, Hernández-Fernández DR, Fundora-Barrios T, Rodríguez-Álvarez A, Díaz-Ordaz GD, Lindzen M, Yarden Y, Sánchez-Ramírez B. Polyclonal antibody-induced downregulation of HER1/EGFR and HER2 surpasses the effect of combinations of specific registered antibodies. Front Oncol 2022; 12:951267. [PMID: 36408164 PMCID: PMC9667895 DOI: 10.3389/fonc.2022.951267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Background Antitumor therapies targeting HER1/EGFR and HER2, such as monoclonal antibodies (MAbs) and tyrosine-kinase inhibitors (TKIs), have demonstrated a significant clinical benefit, but the emergence of resistance limits long-term efficacy. While secondary HER1 mutations confer tolerance to TKI, compensatory upregulation of HER2 drives resistance to anti-HER1 MAbs, which identifies MAb combinations targeting both receptors as an attractive therapeutic strategy. Nevertheless, toxicity hampers the clinical validation of this approach. Alternatively, cancer vaccines may induce antibodies directed against several antigens with less concern about induced toxicity. Methods Polyclonal antibodies (PAbs) targeting HER1 and HER2 were induced in mice or rabbits through immunization. Recognition of different epitopes on targets by PAbs was validated by phage-display technology. Receptor downregulation was evaluated by flow cytometry, immunofluorescence, and Western blot. MTT assays assessed cytotoxicity, while the antitumor effect of PAbs was assayed in nude mice. Results PAbs promoted degradation of HER1 and HER2 regarding clinical MAbs or their combinations. As a result, inhibition of cytotoxicity on tumor cell lines was improved, even in the presence of oncogenic mutations in HER1, as well as in cetuximab-insensitive cells. Accordingly, the antitumor effect of vaccination-induced PAbs was observed in lung tumor lines representative of sensitivity or resistance to HER1 targeting therapies. Conclusions Immunization against HER1 and HER2 receptors offers an alternative to passive administration of combinations of MAbs, since vaccination-induced PAbs promote the downregulation of both receptors and they have a higher impact on the survival of tumor cells.
Collapse
Affiliation(s)
- Gretchen Bergado-Báez
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Narjara Gonzalez Suarez
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à, Montréal, QC, Canada
| | - Lisset Chao García
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Dayana Pérez-Martínez
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Talia Fundora-Barrios
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | | | | | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Belinda Sánchez-Ramírez
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
- *Correspondence: Belinda Sánchez-Ramírez,
| |
Collapse
|
3
|
Sánchez Ramírez J, Morera Díaz Y, Bequet-Romero M, Ayala Ávila M. Potential mechanisms involved on how systemic IgG antibodies specific to vascular endothelial growth factor (VEGF) and induced by active immunotherapy decrease platelet derived free-VEGF. Platelets 2022; 33:964-968. [DOI: 10.1080/09537104.2022.2042235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Javier Sánchez Ramírez
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, Cuba
| | - Yanelys Morera Díaz
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, Cuba
| | - Mónica Bequet-Romero
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, Cuba
| | - Marta Ayala Ávila
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, Cuba
| |
Collapse
|
4
|
Ni S, Shen Z, Zhang P, Liu G. Enhanced performance of an electrochemical aptasensor for real-time detection of vascular endothelial growth factor (VEGF) by nanofabrication and ratiometric measurement. Anal Chim Acta 2020; 1121:74-82. [PMID: 32493592 DOI: 10.1016/j.aca.2020.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Achieving a biosensing interface without baseline drift caused by variables in matrix samples is essential for real-time detection of analytes. In this study, we developed a molecular beacon based electrochemical aptasensor to realize the ratiometric signal quantification of VEGF in serum by surface modification of nanocomposites of graphene oxide/methylene blue (GO/MB) and AuNPs followed by the attachment of ferrocene-labeled aptamer (aptamer-Fc) against VEGF. The presence of VEGF can trigger the configuration change of aptamer-Fc, resulting in the redox probe Fc being far away from the electrode surface to attenuate the electrochemical communication between electrode and Fc. Meanwhile, signal of MB also decreased due to the impediment of aptamer-Fc to electron transfer passage. The achieved GC-rGO/MB-AuNPs-aptamer-Fc sensing interface was successfully used for the sensitive detection of VEGF in real-time with a linear detection range 2-500 pg mL-1 and detection limit of 0.1 pg mL-1 based on ratiometric dual signal (Fc and MB) read-out. It was observed loading MB and AuNPs to the GO based sensing interface was favorable to enhance the analytical performance in terms of sensitivity and capability to effectively eliminate background interference. This electrochemical aptasensor provides a universal and reliable biosensing platform which is potential for real-time and sensitive tracking of various cytokines in vivo.
Collapse
Affiliation(s)
- Shengnan Ni
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Zhuping Shen
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guozhen Liu
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China; Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, 2052, Australia; Australian Centre for NanoMedicine and UNSW Digital Grid Futures Institute, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
5
|
Sánchez Ramírez J, Morera Díaz Y, Bequet-Romero M, Hernández-Bernal F, Martín Bauta Y, Selman-Housein Bernal KH, de la Torre Santos AV, Pérez de la Iglesia M, Trimiño Lorenzo L, Ayala Avila M. Specific humoral response in cancer patients treated with a VEGF-specific active immunotherapy procedure within a compassionate use program. BMC Immunol 2020; 21:12. [PMID: 32171254 PMCID: PMC7071683 DOI: 10.1186/s12865-020-0338-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/14/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND CIGB-247 is a cancer therapeutic vaccine that uses as antigen a variant of human vascular endothelial growth factor (VEGF) mixed with the bacterially-derived adjuvant VSSP. CIGB-247 has been already evaluated in two phase I clinical trials (CENTAURO and CENTAURO-2), showing to be safe and immunogenic in advanced cancer patients selected under well-defined and controlled clinical conditions. Surviving patients were submitted to monthly re-immunizations and some of them showed objective clinical benefits. Based on these results, a compassionate use program (CUP) with CIGB-247 was initiated for patients that did not meet the strict entry criteria applied for the CENTAURO and CENTAURO-2 clinical trials, but could potentially benefit from the application of this cancer therapeutic vaccine. RESULTS Polyclonal IgM, IgA and IgG antibodies specific for VEGF were detected by ELISA in serum samples from patients vaccinated with 400 μg of antigen combined with 200 μg of VSSP. Polyclonal antibody response showed no cross reactivity for other VEGF family member molecules like VEGF-C and VEGF-D. Serum from immunized individuals was able to block the binding of VEGF to its receptors VEGFR2 and VEGFR1. IgG fraction purified from immune sera shared the aforementioned characteristics and also inhibited the interaction between VEGF and the therapeutic recombinant antibody bevacizumab, an anti-angiogenic drug approved for the treatment of different tumors. No serious adverse events attributable to CIGB-247 have been documented yet in participants of the CIGB-247 CUP. The present paper is a first report of our findings concerning the humoral response and safety characteristics in treated CIGB-247 CUP cancer patients. The study has provided the unique opportunity of not only testing CIGB-247 in a broader clinical spectrum sample of Cuban cancer patients, but also within the context of the day-to-day clinical practice and treatment settings for these diseases in Cuban medical institutions. CONCLUSIONS The CIGB-247 CUP has demonstrated that immunization and follow-up of a variety of cancer patients, under day-to-day clinical practice conditions in several Cuban medical institutions, replicate our previous findings in clinical trials: CIGB-247 is safe and immunogenic.
Collapse
Affiliation(s)
- Javier Sánchez Ramírez
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, 10600 Havana, Cuba
| | - Yanelys Morera Díaz
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, 10600 Havana, Cuba
| | - Mónica Bequet-Romero
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, 10600 Havana, Cuba
| | | | | | | | | | | | | | - Marta Ayala Avila
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, 10600 Havana, Cuba
| |
Collapse
|
6
|
Physical absorption vs covalent binding of graphene oxide on glassy carbon electrode towards a robust aptasensor for ratiometric electrochemical detection of vascular endothelial growth factor (VEGF) in serum. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|