1
|
Askari E, Shakeri S, Roustaei H, Fotouhi M, Sadeghi R, Harsini S, Vali R. Superscan Pattern on Bone Scintigraphy: A Comprehensive Review. Diagnostics (Basel) 2024; 14:2229. [PMID: 39410633 PMCID: PMC11475626 DOI: 10.3390/diagnostics14192229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES The superscan pattern is a characteristic finding on bone scintigraphy, associated with a variety of metabolic bone diseases, malignancies, and other conditions. This pattern is characterized by a diffuse and intense uptake of radiotracer throughout the entire skeleton. Despite being a relatively rare finding, the superscan pattern can have significant clinical implications. METHODS This comprehensive review summarizes the available literature on the superscan pattern, focusing on its pathophysiology, clinical significance, and differential diagnoses. Relevant studies and case reports were analyzed to outline the diagnostic challenges associated with the interpretation of bone scintigraphy featuring the superscan pattern. RESULTS The literature highlights the clinical significance of the superscan pattern in various metabolic and oncologic conditions. Misinterpretation of this pattern can lead to diagnostic challenges, especially in distinguishing it from other pathologic conditions. Differential diagnosis remains crucial in the accurate interpretation and subsequent management of patients with this finding. CONCLUSIONS This review provides a comprehensive overview of the superscan pattern on bone scintigraphy, aiming to assist clinicians in recognizing and managing this rare yet clinically important finding.
Collapse
Affiliation(s)
- Emran Askari
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (E.A.); (S.S.); (H.R.); (R.S.)
| | - Sara Shakeri
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (E.A.); (S.S.); (H.R.); (R.S.)
| | - Hessamoddin Roustaei
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (E.A.); (S.S.); (H.R.); (R.S.)
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Maryam Fotouhi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1419733141, Iran;
| | - Ramin Sadeghi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran; (E.A.); (S.S.); (H.R.); (R.S.)
| | - Sara Harsini
- BC Cancer Research Institute, Vancouver, BC V5Z 1LL3, Canada;
| | - Reza Vali
- Department of Nuclear Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
2
|
Alqahtani FF. SPECT/CT and PET/CT, related radiopharmaceuticals, and areas of application and comparison. Saudi Pharm J 2023; 31:312-328. [PMID: 36942267 PMCID: PMC10023548 DOI: 10.1016/j.jsps.2022.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The paper begins by identifying the key historical elements in the development of nuclear medicine imaging, focusing on the Anger camera and single photon emission computed tomography (SPECT) technologies. In this context, key reference is made to the physics of detection in Anger camera systems, especially key components such as the sodium iodide crystal, the function and performance of photomultiplier tubes, and the collimator design. It is discovered that within each component of technology, there are fundamental physical relationships that govern the performance of each component, and that overall image quality is the result of the complex interaction of all such elements. The increasing use of SPECT/CT imaging is described and illustrated with a range of typical clinical applications, which include brain, spinal, cardiac, and cancer studies. The use of CT imaging functionality allows for SPECT image correction based on compensation for absorption within tissue. Reference is also made to the basics of positron emission tomography (PET) imaging and, in particular, to the integration of PET/CT systems where the anatomy profile of the CT image is used to provide correction for photon absorption. A summary is provided of the radionuclides and radiopharmaceuticals commonly used in PET/CT imaging and a range of image studies referenced includes those of nasopharyngeal carcinoma, lung cancer investigation, brain investigation (cancer detection and dementia) and cardiac function. Reference is made to the development of "time of flight" (TOF) technology for improving of image resolution in PET/CT systems. Furthermore, SPECT/CT and PET/CT imaging systems are compared, where a key factor identified is the significantly higher number of photons detected with PET/CT technology and improved image resolution.
Collapse
Affiliation(s)
- Fawaz F. Alqahtani
- Corresponding author at: Department of Radiological Sciences, College of Applied Medical Sciences, Najran University, Najran 1988, Saudi Arabia.
| |
Collapse
|
3
|
Harada GK, Siyaji ZK, Younis S, Louie PK, Samartzis D, An HS. Imaging in Spine Surgery: Current Concepts and Future Directions. Spine Surg Relat Res 2019; 4:99-110. [PMID: 32405554 PMCID: PMC7217684 DOI: 10.22603/ssrr.2020-0011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/03/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To review and highlight the historical and recent advances of imaging in spine surgery and to discuss current applications and future directions. METHODS A PubMed review of the current literature was performed on all relevant articles that examined historical and recent imaging techniques used in spine surgery. Studies were examined for their thoroughness in description of various modalities and applications in current and future management. RESULTS We reviewed 97 articles that discussed past, present, and future applications for imaging in spine surgery. Although most historical approaches relied heavily upon basic radiography, more recent advances have begun to expand upon advanced modalities, including the integration of more sophisticated equipment and artificial intelligence. CONCLUSIONS Since the days of conventional radiography, various modalities have emerged and become integral components of the spinal surgeon's diagnostic armamentarium. As such, it behooves the practitioner to remain informed on the current trends and potential developments in spinal imaging, as rapid adoption and interpretation of new techniques may make significant differences in patient management and outcomes. Future directions will likely become increasingly sophisticated as the implementation of machine learning, and artificial intelligence has become more commonplace in clinical practice.
Collapse
Affiliation(s)
- Garrett K Harada
- Department of Orthopaedic Surgery, Division of Spine Surgery, Rush University Medical Center, Chicago, USA
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, USA
| | - Zakariah K Siyaji
- Department of Orthopaedic Surgery, Division of Spine Surgery, Rush University Medical Center, Chicago, USA
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, USA
| | - Sadaf Younis
- Department of Orthopaedic Surgery, Division of Spine Surgery, Rush University Medical Center, Chicago, USA
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, USA
| | - Philip K Louie
- Department of Orthopaedic Surgery, Division of Spine Surgery, Rush University Medical Center, Chicago, USA
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, USA
| | - Dino Samartzis
- Department of Orthopaedic Surgery, Division of Spine Surgery, Rush University Medical Center, Chicago, USA
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, USA
| | - Howard S An
- Department of Orthopaedic Surgery, Division of Spine Surgery, Rush University Medical Center, Chicago, USA
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, USA
| |
Collapse
|
4
|
Schiano C, Soricelli A, De Nigris F, Napoli C. New challenges in integrated diagnosis by imaging and osteo-immunology in bone lesions. Expert Rev Clin Immunol 2019; 15:289-301. [PMID: 30570412 DOI: 10.1080/1744666x.2019.1561283] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION High-resolution imaging is the gold standard to measure the functional and biological features of bone lesions. Imaging markers have allowed the characterization both of tumour heterogeneity and metabolic data. Besides, ongoing studies are evaluating a combined use of 'imaging markers', such as SUVs, MATV, TLG, ADC from PET and MRI techniques respectively, and several 'biomarkers' spanning from chemokine immune-modulators, such as PD-1, RANK/RANKL, CXCR4/CXCL12 to transcription factors, such as TP53, RB1, MDM2, RUNX family, EZH2, YY1, MAD2. Osteoimmunology may improve diagnosis and prognosis leading to precision medicine in bone lesion treatment. Areas covered: We investigated modalities (molecular and imaging approach) useful to identify bone lesions deriving both from primary bone tumours and from osteotropic tumours, which have a higher incidence, prevalence and prognosis. Here, we summarized the recent advances in imaging techniques and osteoimmunology biomarkers which could play a pivotal role in personalized treatment. Expert commentary: Although imaging and molecular integration could allow both early diagnosis and stratification of cancer prognosis, large scale clinical trials will be necessary to translate pilot studies in the current clinical setting. ABBREVIATIONS ADC: apparent diffusion coefficient; ALCAM: Activated Leukocyte Cell Adhesion Molecule; ALP: Alkaline phosphatases; BC: Breast cancer; BSAP: B-Cell Lineage Specific Activator; BSAP: bone-specific alkaline phosphatase; BSP: bone sialoprotein; CRIP1: cysteine-rich intestinal protein 1; CD44: cluster of differentiation 44; CT: computed tomography; CXCL12: C-X-C motif ligand 12; CXCR4: C-X-C C-X-C chemokine receptor type 4; CTLA-4: Cytotoxic T-lymphocyte antigen 4; CTX-1: C-terminal end of the telopeptide of type I collagen; DC: dendritic cell; DWI: Diffusion-weighted MR image; EMT: mesenchymal transition; ET-1: endothelin-1; FDA: Food and Drug Administration; FDG: 18F-2-fluoro-2-deoxy-D-glucose; FGF: fibroblast growth factor; FOXC2: forkhead box protein C2: HK-2: hexokinase-2; ICTP: carboxyterminal cross-linked telopeptide of type I collagen; IGF-1R: Insulin Like Growth Factor 1 Receptor; ILC: innate lymphocytes cells; LC: lung cancer; IL-1: interleukin-1; LYVE1: lymphatic vessel endothelial hyaluronic acid receptor 1; MAD2: mitotic arrest deficient 2; MATV: metabolically active tumour volume; M-CSF: macrophage colony stimulating factor; MM: multiple myeloma; MIP1a: macrophage inflammatory protein 1a; MSC: mesenchymal stem cell; MRI: magnetic resonance imaging; PC: prostate cancer; NRP2: neuropilin 2; OPG: osteoprotogerin; PDGF: platelet-derived growth factor; PD-1: Programmed Cell Death 1; PET: positron emission tomography; PINP: procollagen type I N propeptide; PROX1: prospero homeobox protein 1; PSA: Prostate-specific antigen; PTH: parathyroid hormone; RANK: Receptor activator of NF-kB ligand; RECK: Reversion-inducing-cysteine-rich protein; SEMAs: semaphorins; SPECT: single photon computed tomography; SUV: standard uptake value; TLG: total lesion glycolysis; TP53: tumour protein 53; VCAM-1: vascular endothelial molecule-1; VOI: volume of interest; YY1: Yin Yang 1.
Collapse
Affiliation(s)
- Concetta Schiano
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy
| | - Andrea Soricelli
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy.,b Department of Motor Sciences and Healthiness , University of Naples Parthenope , Naples , Italy
| | - Filomena De Nigris
- c Department of Precision Medicine , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Claudio Napoli
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy.,d Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy
| |
Collapse
|
5
|
Krumme JW, Lauer MF, Stowell JT, Beteselassie NM, Kotwal SY. Bone Scintigraphy: A Review of Technical Aspects and Applications in Orthopedic Surgery. Orthopedics 2019; 42:e14-e24. [PMID: 30484853 DOI: 10.3928/01477447-20181120-05] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/23/2018] [Indexed: 02/03/2023]
Abstract
Due to its high sensitivity, low cost, accessibility, and ease of use, bone scintigraphy is used in orthopedic surgery for the diagnosis and management of varied pathology. It is commonly used for insufficiency fractures, metastatic neoplasia, staging and surveillance of sarcoma, and nonaccidental trauma. It augments diagnoses, including stress or occult fractures, musculoskeletal neoplasia or infection, and chronic regional pain syndrome, in patients presenting with normal results on radiographs. Bone scan images are resistant to metal-based implant artifact, allowing effective evaluation of failed total joint prostheses. Bone scintigraphy remains an underused tool in the evaluation and management of orthopedic patients. [Orthopedics. 2019; 42(1):e14-e24.].
Collapse
|
6
|
Clinical spectrum and diagnostic pitfalls of multiple abnormal uptakes on bone scintigraphy. Jpn J Radiol 2016; 34:771-778. [DOI: 10.1007/s11604-016-0585-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
|
7
|
|
8
|
Charfi H, Nouira M, Ezzairi F, Sfar R, Guezguez M, Essabbah H. Brown tumors mimicking bone and lung metastases: Key role of radionuclide imaging. Presse Med 2015; 44:860-4. [DOI: 10.1016/j.lpm.2015.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/14/2015] [Accepted: 04/28/2015] [Indexed: 11/16/2022] Open
|
9
|
Brazenor GA, Malham GM, Ballok ZE. Co-registration of isotope bone scan with CT scan and MRI in the investigation of spinal pathology. J Clin Neurosci 2014; 21:1617-21. [PMID: 24798908 DOI: 10.1016/j.jocn.2013.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/16/2013] [Indexed: 10/25/2022]
Abstract
Image fusion software enables technetium(99m)-methylene diphosphonate (Tc(99m)-MDP) bone scan images to be co-registered with CT scan or MRI, allowing greater anatomical discrimination. We examined the role of bone scan images co-registered with CT scan or MRI in the investigation of patients presenting with axial spinal pain and/or limb pain. One hundred and thirty-nine consecutive patients were examined, and thereafter investigated with CT scan, MRI, and/or dynamic plain films. At this point diagnosis (pathology type and anatomical site) and treatment intention were declared. The co-registered Tc(99m)-MDP bone scan images were then studied, after which diagnosis (pathology type and anatomical site) and treatment intention were re-declared. This data were then analysed to determine whether the addition of co-registered bone scan images resulted in any change in diagnosis or treatment intention. The most significant change in diagnosis was pathology type (10%). Anatomical site changed markedly without overlap of the pre and post-isotope fields in 5%, and with overlap in 10%. Treatment intention had a major change in 3.6% and minor change in 8.6%. In the two groups where there was (i) no obvious pathology after full pre-isotope investigation, or (ii) a spinal fusion under suspicion, addition of the bone scan information led to a major change in the pathology and/or anatomical localisation in 18% and 19%, respectively. The addition of co-registered Tc(99m)-MDP bone scan images offers significant diagnostic assistance, particularly in the difficult diagnostic groups where a failed spinal fusion may be the suspected pain generator, or when no pain generator can otherwise be found.
Collapse
Affiliation(s)
- Graeme A Brazenor
- Neuroscience Clinical Institute, Epworth Hospital, Melbourne, VIC, Australia
| | - Gregory M Malham
- Neuroscience Clinical Institute, Epworth Hospital, Melbourne, VIC, Australia.
| | - Zita E Ballok
- Nuclear Medicine Department, Primary Healthcare Imaging, Epworth Hospital, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Abstract
Nuclear medicine imaging is often used in the diagnosis and management of several orthopaedic conditions. Bone scintigraphy measures gamma ray emission to detect the distribution of an injected radiolabeled tracer on multiple image projections. In general, this imaging modality has relatively high sensitivity but low specificity in the diagnosis of occult fractures, bone tumors, metabolic bone disease, and infection. Positron emission tomography measures tissue metabolism and perfusion by detecting short half-life positron ray emission of an injected radiopharmaceutical tracer. Historically, positron emission tomography has been used only to monitor bone metastasis and aid in the diagnosis of osteomyelitis; however, this technology has recently been applied to other orthopaedic conditions for which current imaging modalities are insufficient.
Collapse
|
11
|
Rosenberg RJ. Nuclear Medicine Procedures in the Diagnosis of Orthopedic Infections. Tech Orthop 2011. [DOI: 10.1097/bto.0b013e31823a0ab2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Changes observed in radionuclide bone scans during and after teriparatide treatment for osteoporosis. Eur J Nucl Med Mol Imaging 2011; 39:326-36. [PMID: 22057627 PMCID: PMC3261405 DOI: 10.1007/s00259-011-1974-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 10/12/2011] [Indexed: 11/20/2022]
Abstract
Purpose Visual changes on radionuclide bone scans have been reported with teriparatide treatment. To assess this, serial studies were evaluated and quantified in ten postmenopausal women with osteoporosis treated with teriparatide (20 μg/day subcutaneous) who had 99mTc-methylene diphosphonate (MDP) bone scans (baseline, 3 and 18 months, then after 6 months off therapy). Methods Women were injected with 600 MBq 99mTc-MDP, and diagnostic bone scan images were assessed at 3.5 h. Additional whole-body scans (10 min, 1, 2, 3 and 4 h) were analysed for 99mTc-MDP skeletal plasma clearance (Kbone). Regional Kbone differences were obtained for the whole skeleton and six regions (calvarium, mandible, spine, pelvis, upper and lower extremities). Bone turnover markers (BTM) were also measured. Results Most subjects showed visual changes on 3- and 18-month bone scan images that disappeared after 6 months off therapy. Enhanced uptake was seen predominantly in the calvarium and lower extremities. Whole skeleton Kbone displayed a median increase of 22% (3 months, p = 0.004) and 34% (18 months, p = 0.002) decreasing to 0.7% (6 months off therapy). Calvarium Kbone changes were three times larger than other sites. After 6 months off therapy, all Kbone and BTM values returned towards baseline. Conclusion The increased 99mTc-MDP skeletal uptake with teriparatide indicated increased bone formation which was supported by BTM increases. After 6 months off therapy, metabolic activity diminished towards baseline. The modulation of 99mTc-MDP skeletal uptake during treatment was the result of teriparatide’s metabolic activity. These findings may aid the radiological evaluation of similar teriparatide patients having radionuclide bone scans.
Collapse
|
13
|
|