1
|
Nuzulia NA, Mart T, Ahmed I, Sari YW. The Use of Microspheres for Cancer Embolization Therapy: Recent Advancements and Prospective. ACS Biomater Sci Eng 2024; 10:637-656. [PMID: 38276875 DOI: 10.1021/acsbiomaterials.3c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Embolization therapy involving biomaterials has improved the therapeutic strategy for most liver cancer treatments. Developing biomaterials as embolic agents has significantly improved patients' survival rates. Various embolic agents are present in liquid agents, foam, particulates, and particles. Some of the most applied embolic agents are microparticles, such as microspheres (3D micrometer-sized spherical particles). Microspheres with added functionalities are currently being developed for effective therapeutic embolization. Their excellent properties of high surface area and capacity for being loaded with radionuclides and alternate active or therapeutic agents provide an additional advantage to overcome limitations from traditional cancer treatments. Microspheres (non-radioactive and radioactive) have been widely used and explored for localized cancer treatment. Non-radioactive microspheres exhibit improved clinical performance as drug delivery vehicles in chemotherapy due to their controlled and sustained drug release to the target site. They offer better flow properties and are beneficial for the ease of delivery via injection procedures. In addition, radioactive microspheres have also been exploited for use as an embolic platform in internal radiotherapy as an alternative to cancer treatment. This short review summarizes the progressive development of non-radioactive and radioactive embolic microspheres, emphasizing material characteristics. The use of embolic microspheres for various modalities of therapeutic arterial embolization and their impact on therapeutic performance are also discussed.
Collapse
Affiliation(s)
- Nur Aisyah Nuzulia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Terry Mart
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Yessie Widya Sari
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
2
|
Andel D, van den Bent L, Ernest Hendrik Lam MG, Johannes Smits ML, Molenaar IQ, de Bruijne J, Laclé MM, Kranenburg O, Max Borel Rinkes IH, Hagendoorn J. 90Y-/ 166Ho- 'Radiation lobectomy' for liver tumors induces abnormal morphology and impaired drainage of peritumor lymphatics. JHEP Rep 2024; 6:100981. [PMID: 38298739 PMCID: PMC10827593 DOI: 10.1016/j.jhepr.2023.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/26/2023] [Accepted: 11/21/2023] [Indexed: 02/02/2024] Open
Abstract
Background & Aims High-dose unilobar radioembolization, or 'radiation lobectomy' (RL), is an induction therapy that achieves contralateral future liver remnant hypertrophy while simultaneously irradiating the tumor. As such, it may prevent further growth, but it is unknown whether RL affects intrahepatic lymphatics, a major route via which liver tumors disseminate. Methods This was a case-control study conducted at University Medical Center Utrecht. The study compared lymph vessels in livers that had undergone RL (cases) with those in livers that had not undergone RL (controls). Histological samples were acquired from patients diagnosed with hepatocellular carcinoma (HCC) or colorectal liver metastases (CRLM) between 2017 and 2022. Lymph vessel morphology was analyzed by two researchers using podoplanin, a protein that is expressed in lymphatic endothelium. In vivo liver lymph drainage of radioembolized livers was assessed using intraoperative liver lymphangiography (ILL): during liver surgery, patent blue dye was injected into the liver parenchyma, followed by inspection for staining of perihepatic lymph structures. ILL results were compared to a previously published cohort. Results Immunohistochemical analysis on post-RL tumor tissues from ten patients with CRLM and nine patients with HCC revealed aberrant morphology of irradiated liver lymphatics when compared to controls (n = 3 per group). Irradiated lymphatics were tortuous (p <0.05), thickened (p <0.05) and discontinuous (p <0.05). Moreover, post-RL lymphatics had larger lumens (1.5-1.7x, p <0.0001), indicating lymph stasis. ILL revealed diminished lymphatic drainage to perihepatic lymph nodes and vessels in irradiated livers when compared to non-radioembolized controls (p = 1.0x10-4). Conclusions Radioembolization impairs peritumoral lymph vessel function. Further research is needed to evaluate if radioembolization impairs tumor dissemination via this route. Impact and implications Unilobar radioembolization can serve as an alternative to portal venous embolization for patients who are considered unresectable due to an insufficient future liver remnant. This research suggests that radioembolization impairs the function of peritumoral liver lymph vessels, potentially hindering dissemination via this route. These findings provide support for considering unilobar radioembolization over standard portal venous embolization.
Collapse
Affiliation(s)
- Daan Andel
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - Lotte van den Bent
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | | | - Maarten Leonard Johannes Smits
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - Isaac Quintus Molenaar
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - Joep de Bruijne
- Department Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Miangela Marie Laclé
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Onno Kranenburg
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - Inne Hildbrand Max Borel Rinkes
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - Jeroen Hagendoorn
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| |
Collapse
|
3
|
Liu R, Li H, Qiu Y, Liu H, Cheng Z. Recent Advances in Hepatocellular Carcinoma Treatment with Radionuclides. Pharmaceuticals (Basel) 2022; 15:1339. [PMID: 36355512 PMCID: PMC9694760 DOI: 10.3390/ph15111339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 06/20/2024] Open
Abstract
As the third leading cause of cancer death worldwide, hepatocellular carcinoma (HCC) is characterized by late detection, difficult diagnosis and treatment, rapid progression, and poor prognosis. Current treatments for liver cancer include surgical resection, radiofrequency ablation, liver transplantation, chemotherapy, external radiation therapy, and internal radionuclide therapy. Radionuclide therapy is the use of high-energy radiation emitted by radionuclides to eradicate tumor cells, thus achieving the therapeutic effect. Recently, with the continuous development of biomedical technology, the application of radionuclides in treatment of HCC has progressed steadily. This review focuses on three types of radionuclide-based treatment regimens, including transarterial radioembolization (TARE), radioactive seed implantation, and radioimmunotherapy. Their research progress and clinical applications are summarized. The advantages, limitations, and clinical potential of radionuclide treatment of HCC are discussed.
Collapse
Affiliation(s)
- Ruiqi Liu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang 110000, China
| | - Hong Li
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang 110000, China
| | - Yihua Qiu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang 110000, China
| | - Hongguang Liu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang 110000, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
4
|
Kutlu R, Karatoprak S. Radioembolization for Hepatocellular Carcinoma in Downstaging and Bridging for Liver Transplantation. J Gastrointest Cancer 2021; 51:1157-1164. [PMID: 32880041 DOI: 10.1007/s12029-020-00492-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is the most common primary liver tumor. Only about one third of them are eligible for curative treatments like liver transplantation. Various interventional oncologic treatment options could be employed for some of the HCC patients outside the acceptable liver transplantation criteria to make them suitable for transplantation by downstaging and keeping them inside the criteria by bridging to transplantation. METHODS We reviewed the literature by the terms of downstaging and bridging therapy for liver transplantation. RESULTS About only 30% of the patients are suitable for curative procedures like transplantation at the time of diagnosis of HCC. Even the Milan Criteria is expanded or new criteria are defined, still there are many patients who need downstaging to be eligible for transplantation. There are different procedures in interventional oncology for primary and metastatic liver lesions. Radioembolization (RE) is one of the locoregional therapies which is more effective than others for downstaging and bridging for liver transplantation. CONCLUSION Downstaging by RE is an effective and reasonable method for unresectable HCC cases initially beyond established criteria for liver transplantation by selecting suitable and favorable tumor biology.
Collapse
Affiliation(s)
- Ramazan Kutlu
- Department of Radiology, Inonu University School of Medicine & Liver Transplantation Institute, 44280, Malatya, Turkey.
| | - Sinan Karatoprak
- Department of Radiology, Inonu University School of Medicine & Liver Transplantation Institute, 44280, Malatya, Turkey
| |
Collapse
|
5
|
Alhalmi A, Beg S, Kohli K, Waris M, Singh T. Nanotechnology Based Approach for Hepatocellular Carcinoma Targeting. Curr Drug Targets 2021; 22:779-792. [PMID: 33302831 DOI: 10.2174/1389450121999201209194524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the primary liver cancer that has shown a high incidence and mortality rate worldwide among several types of cancers. A large variety of chemotherapeutic agents employed for the treatment have a limited success rate owing to their limited site-specific drug targeting ability. Thus, there is a demand to develop novel approaches for the treatment of HCC. With advancements in nanotechnology-based drug delivery approaches, the challenges of conventional chemotherapy have been continuously decreasing. Nanomedicines constituted of lipidic and polymeric composites provide a better platform for delivering and opening new pathways for HCC treatment. A score of nanocarriers such as surface-engineered liposomes, nanoparticles, nanotubes, micelles, quantum dots, etc., has been investigated in the treatment of HCC. These nanocarriers are considered to be highly effective clinically for delivering chemotherapeutic drugs with high site-specificity ability and therapeutic efficiency. The present review highlights the current focus on the application of nanocarrier systems using various ligand-based receptor-specific targeting strategies for the treatment and management of HCC. Moreover, the article has also included information on the current clinically approved drug therapy for hepatocellular carcinoma treatment and updates of regulatory requirements for approval of such nanomedicines.
Collapse
Affiliation(s)
- Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Waris
- Department of Botany, Thakur Prasad Singh College, Patna, Magadh University, Bodh Gaya, India
| | - Tanuja Singh
- University Department of Botany, Patliputra University, Patna, Bihar, India
| |
Collapse
|
6
|
Wei L, Cui C, Xu J, Kaza R, El Naqa I, Dewaraja YK. Tumor response prediction in 90Y radioembolization with PET-based radiomics features and absorbed dose metrics. EJNMMI Phys 2020; 7:74. [PMID: 33296050 PMCID: PMC7726084 DOI: 10.1186/s40658-020-00340-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose To evaluate whether lesion radiomics features and absorbed dose metrics extracted from post-therapy 90Y PET can be integrated to better predict outcomes in microsphere radioembolization of liver malignancies Methods Given the noisy nature of 90Y PET, first, a liver phantom study with repeated acquisitions and varying reconstruction parameters was used to identify a subset of robust radiomics features for the patient analysis. In 36 radioembolization procedures, 90Y PET/CT was performed within a couple of hours to extract 46 radiomics features and estimate absorbed dose in 105 primary and metastatic liver lesions. Robust radiomics modeling was based on bootstrapped multivariate logistic regression with shrinkage regularization (LASSO) and Cox regression with LASSO. Nested cross-validation and bootstrap resampling were used for optimal parameter/feature selection and for guarding against overfitting risks. Spearman rank correlation was used to analyze feature associations. Area under the receiver-operating characteristics curve (AUC) was used for lesion response (at first follow-up) analysis while Kaplan-Meier plots and c-index were used to assess progression model performance. Models with absorbed dose only, radiomics only, and combined models were developed to predict lesion outcome. Results The phantom study identified 15/46 reproducible and robust radiomics features that were subsequently used in the patient models. A lesion response model with zone percentage (ZP) and mean absorbed dose achieved an AUC of 0.729 (95% CI 0.702–0.758), and a progression model with zone size nonuniformity (ZSN) and absorbed dose achieved a c-index of 0.803 (95% CI 0.790–0.815) on nested cross-validation (CV). Although the combined models outperformed the radiomics only and absorbed dose only models, statistical significance was not achieved with the current limited data set to establish expected superiority. Conclusion We have developed new lesion-level response and progression models using textural radiomics features, derived from 90Y PET combined with mean absorbed dose for predicting outcome in radioembolization. These encouraging, but limited results, will need further validation in independent and larger datasets prior to any clinical adoption. Supplementary Information Supplementary information accompanies this paper at 10.1186/s40658-020-00340-9.
Collapse
Affiliation(s)
- Lise Wei
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Can Cui
- Department of Electrical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jiarui Xu
- Department of Electrical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ravi Kaza
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Issam El Naqa
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.,Machine Learning Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Yuni K Dewaraja
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Moadel RM, Cynamon J. Letter from the Guest Editors. Semin Nucl Med 2019; 49:168-169. [PMID: 30954181 DOI: 10.1053/j.semnuclmed.2019.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|