1
|
Chen X, Wei Y, Li Z, Zhou C, Fan Y. Distinct role of Klotho in long bone and craniofacial bone: skeletal development, repair and regeneration. PeerJ 2024; 12:e18269. [PMID: 39465174 PMCID: PMC11505971 DOI: 10.7717/peerj.18269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024] Open
Abstract
Bone defects are highly prevalent diseases caused by trauma, tumors, inflammation, congenital malformations and endocrine abnormalities. Ideally effective and side effect free approach to dealing with bone defects remains a clinical conundrum. Klotho is an important protein, which plays an essential role in regulating aging and mineral ion homeostasis. More recently, research revealed the function of Klotho in regulating skeleton development and regeneration. Klotho has been identified in mesenchymal stem cells, osteoblasts, osteocytes and osteoclasts in different skeleton regions. The specific function and regulatory mechanisms of Klotho in long bone and craniofacial bone vary due to their different embryonic development, ossification and cell types, which remain unclear and without conclusion. Moreover, studies have confirmed that Klotho is a multifunctional protein that can inhibit inflammation, resist cancer and regulate the endocrine system, which may further accentuate the potential of Klotho to be the ideal molecule in inducing bone restoration clinically. Besides, as an endogenous protein, Klotho has a promising potential for clinical therapy without side effects. In the current review, we summarized the specific function of Klotho in long bone and craniofacial skeleton from phenotype to cellular alternation and signaling pathway. Moreover, we illustrated the possible future clinical application for Klotho. Further research on Klotho might help to solve the existing clinical difficulties in bone healing and increase the life quality of patients with bone injury and the elderly.
Collapse
Affiliation(s)
- Xinyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yali Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zucen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Kramer J, Aires R, Keeley SD, Schröder TA, Lauer G, Sandoval-Guzmán T. Axolotl mandible regeneration occurs through mechanical gap closure and a shared regenerative program with the limb. Dis Model Mech 2024; 17:dmm050743. [PMID: 39206627 PMCID: PMC11449444 DOI: 10.1242/dmm.050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The mandible plays an essential part in human life and, thus, defects in this structure can dramatically impair the quality of life in patients. Axolotls, unlike humans, are capable of regenerating their lower jaws; however, the underlying mechanisms and their similarities to those in limb regeneration are unknown. In this work, we used morphological, histological and transcriptomic approaches to analyze the regeneration of lateral resection defects in the axolotl mandible. We found that this structure can regenerate all missing tissues in 90 days through gap minimization, blastema formation and, finally, tissue growth, differentiation and integration. Moreover, transcriptomic comparisons of regenerating mandibles and limbs showed that they share molecular phases of regeneration, that these similarities peak during blastema stages and that mandible regeneration occurs at a slower pace. Altogether, our study demonstrates the existence of a shared regenerative program used in two different regenerating body structures with different embryonic origins in the axolotl and contributes to our understanding of the minimum requirements for a successful regeneration in vertebrates, bringing us closer to understand similar lesions in human mandibles.
Collapse
Affiliation(s)
- Julia Kramer
- Clinic of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Rita Aires
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Sean D. Keeley
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tom Alexander Schröder
- Clinic of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Günter Lauer
- Clinic of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
3
|
Yildizer E, Odabaşı O. Differences in clinical and radiographic features between bilateral and unilateral adult degenerative temporomandibular joint disease: A retrospective cross-sectional study. Int Orthod 2023; 21:100731. [PMID: 36780795 DOI: 10.1016/j.ortho.2023.100731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 02/13/2023]
Abstract
OBJECTIVE To study the correlations of clinical findings and the severity of osseous alterations between bilateral and unilateral degenerative joint disease (DJD) of the temporomandibular joint (TMJ). MATERIALS AND METHODS Forty-eight joints from 35 adult patients with DJD were retrospectively examined. The joints were divided into two groups: bilateral DJD (BDJD) (26 joints) and unilateral DJD (UDJD) (22 joints). We collected data on patient characteristics and symptoms, including pain on palpation, limited mouth opening, pain during mandibular movement, and joint noises. Cone beam Computed Tomography (CBCT) was used to assess bony changes, including maximum condylar bone change, severity of erosion, severity of osteophytes, glenoid fossa changes, and superior joint space measurements. Data were correlated between subgroups. RESULTS There was no significant difference between the two groups in terms of age or gender. However, pain on palpation was significantly more common in UDJD joints (81.8%) compared to BDJD joints (53.9%). Limitation of mouth opening was also significantly more common in BDJD cases (61.5%) compared to UDJD cases (22.7%). The number of joints with painless degeneration was more common in BDJD TMJs (38.4%) than in UDJD TMJs (9%). There was no significant difference between the two subgroups with regard to pain during mandibular movements or joint sounds and severity of bony changes. CONCLUSIONS This study provided important results outlining clinical the clinical profiles of DJD patients. While painful degeneration was more frequent in UDJD joints, painless degeneration was higher in BDJD joints. Limitation of mouth opening was more common in BDJD patients.
Collapse
Affiliation(s)
- Elif Yildizer
- Department of Oral Diagnosis and Dentomaxillofacial Radiology, Ankara Yildirim Beyazit University Faculty of Dentistry, Ankara, Turkey.
| | - Onur Odabaşı
- Department of Oral and Dentomaxillofacial Surgery, Ankara Yildirim Beyazit University Faculty of Dentistry, Ankara, Turkey
| |
Collapse
|
4
|
Roberts WE, Mangum JE, Schneider PM. Pathophysiology of Demineralization, Part I: Attrition, Erosion, Abfraction, and Noncarious Cervical Lesions. Curr Osteoporos Rep 2022; 20:90-105. [PMID: 35129809 PMCID: PMC8930910 DOI: 10.1007/s11914-022-00722-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE REVIEW Compare pathophysiology for infectious and noninfectious demineralization disease relative to mineral maintenance, physiologic fluoride levels, and mechanical degradation. RECENT FINDINGS Environmental acidity, biomechanics, and intercrystalline percolation of endemic fluoride regulate resistance to demineralization relative to osteopenia, noncarious cervical lesions, and dental caries. Demineralization is the most prevalent chronic disease in the world: osteoporosis (OP) >10%, dental caries ~100%. OP is severely debilitating while caries is potentially fatal. Mineralized tissues have a common physiology: cell-mediated apposition, protein matrix, fluid logistics (blood, saliva), intercrystalline ion percolation, cyclic demineralization/remineralization, and acid-based degradation (microbes, clastic cells). Etiology of demineralization involves fluid percolation, metabolism, homeostasis, biomechanics, mechanical wear (attrition or abrasion), and biofilm-related infections. Bone mineral density measurement assesses skeletal mass. Attrition, abrasion, erosion, and abfraction are diagnosed visually, but invisible subsurface caries <400μm cannot be detected. Controlling demineralization at all levels is an important horizon for cost-effective wellness worldwide.
Collapse
Affiliation(s)
- W. Eugene Roberts
- grid.257413.60000 0001 2287 3919Indiana University & Purdue University at Indianapolis, 8260 Skipjack Drive, Indianapolis, IN 46236 USA
| | - Jonathan E. Mangum
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Pharmacology, Dentistry and Health Sciences, University of Melbourne, Corner Grattan Street and Royal Parade, Parkville, Victoria 3010 Australia
| | - Paul M. Schneider
- grid.1008.90000 0001 2179 088XMelbourne Dental School, University of Melbourne, 720 Swanston St, Melbourne, Victoria 3010 Australia
| |
Collapse
|
5
|
Morice A, Cornette R, Giudice A, Collet C, Paternoster G, Arnaud É, Galliani E, Picard A, Legeai-Mallet L, Khonsari RH. Early mandibular morphological differences in patients with FGFR2 and FGFR3-related syndromic craniosynostoses: A 3D comparative study. Bone 2020; 141:115600. [PMID: 32822871 DOI: 10.1016/j.bone.2020.115600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023]
Abstract
Syndromic craniosynostoses are defined by the premature fusion of one or more cranial and facial sutures, leading to skull vault deformation, and midfacial retrusion. More recently, mandibular shape modifications have been described in FGFR-related craniosynostoses, which represent almost 75% of the syndromic craniosynostoses. Here, further characterisation of the mandibular phenotype in FGFR-related craniosynostoses is provided in order to confirm mandibular shape modifications, as this could contribute to a better understanding of the involvement of the FGFR pathway in craniofacial development. The aim of our study was to analyse early mandibular morphology in a cohort of patients with FGFR2- (Crouzon and Apert) and FGFR3- (Muenke and Crouzonodermoskeletal) related syndromic craniosynostoses. We used a comparative geometric morphometric approach based on 3D imaging. Thirty-one anatomical landmarks and eleven curves with sliding semi-landmarks were defined to model the shape of the mandible. In total, 40 patients (12 with Crouzon, 12 with Apert, 12 with Muenke and 4 with Crouzonodermoskeletal syndromes) and 40 age and sex-matched controls were included (mean age: 13.7 months ±11.9). Mandibular shape differed significantly between controls and each patient group based on geometric morphometrics. Mandibular shape in FGFR2-craniosynostoses was characterized by open gonial angle, short ramus height, and high and prominent symphysis. Short ramus height appeared more pronounced in Apert than in Crouzon syndrome. Additionally, narrow inter-condylar and inter-gonial distances were observed in Crouzon syndrome. Mandibular shape in FGFR3-craniosynostoses was characterized by high and prominent symphysis and narrow inter-gonial distance. In addition, narrow condylar processes affected patients with Crouzonodermoskeletal syndrome. Statistical analysis of variance showed significant clustering of Apert and Crouzon, Crouzon and Muenke, and Apert and Muenke patients (p < 0.05). Our results confirm distinct mandibular shapes at early ages in FGFR2- (Crouzon and Apert syndromes) and FGFR3-related syndromic craniosynostoses (Muenke and Crouzonodermoskeletal syndromes) and reinforce the hypothesis of genotype-phenotype correspondence concerning mandibular morphology.
Collapse
Affiliation(s)
- A Morice
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France; Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France.
| | - R Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Sorbonne Université, Ecole Pratique des Hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - A Giudice
- Università Degli Studi di Catanzaro 'Magna Graecia', Catanzaro, Italy
| | - C Collet
- BIOSCAR, INSERM U1132, Université de Paris, Hôpital Lariboisière, 75010 Paris, France; Service de Biochimie et Biologie Moléculaire, CHU-Paris-GH Saint Louis Lariboisière Widal, Paris, France
| | - G Paternoster
- Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| | - É Arnaud
- Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| | - E Galliani
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France
| | - A Picard
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France
| | - L Legeai-Mallet
- Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France
| | - R H Khonsari
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France; Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France; Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| |
Collapse
|
6
|
Roberts WE, Goodacre CJ. The Temporomandibular Joint: A Critical Review of Life-Support Functions, Development, Articular Surfaces, Biomechanics and Degeneration. J Prosthodont 2020; 29:772-779. [PMID: 32424952 DOI: 10.1111/jopr.13203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
The temporomandibular joint is a highly conserved articulation because it promotes survival and propagation via the essential functions of mastication, communication, and routine mating success (dentofacial esthetics). The temporomandibular joint is a unique secondary joint formed between the endochondral temporal bone and the mandibular secondary condylar cartilage via Indian hedgehog and bone morphogenetic protein signaling that is closely related to ear development. A dynamic epigenetic environment is provided by Spry1 and Spry2 genetic induction of the lateral pterygoid and temporalis muscles. Mechanical loading of the condylar periosteum during fetal development produces a superficial layer of fibrocartilage that separates from the condyle to form the interposed temporomandibular joint disc. The articular surfaces of the condyle and fossa are dynamically modified periosteum that has healing and regenerative capability. This unique tissue is composed of a superficial fibrous layer (synovial surface) with an underlying proliferative (cambium) layer that produces a cushioning layer of fibrocartilage which subsequently forms bone. Prior to occlusion of the first primary (deciduous) molars at about 16 months, facial development is dominated by primary genetic mechanisms. After achieving posterior functional occlusion, biomechanics enhances temporomandibular joint maturation, and assumes control of facial growth, development and adaptation. Concurrently, hypothalamus control of musculoskeletal physiology shifts from insulin-like growth factor IGF2 to IGF1, which affects bone via muscular loading (biomechanics). Three layers of temporomandibular joint fibrocartilage are resistant to heavy functional loading, but parafunctional clenching may result in degeneration that is first manifest as trabecular sclerosis of the mandibular condyle.
Collapse
Affiliation(s)
- W Eugene Roberts
- Orthodontics and Mechanical Engineering, Indiana University & Purdue University, Indianapolis, IN
| | | |
Collapse
|
7
|
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018; 185:240-275. [PMID: 30261426 PMCID: PMC6445367 DOI: 10.1016/j.biomaterials.2018.09.028] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
The development, maintenance of healthy bone and regeneration of injured tissue in the human body comprise a set of intricate and finely coordinated processes. However, an analysis of current bone regeneration strategies shows that only a small fraction of well-reported bone biology aspects has been used as inspiration and transposed into the development of therapeutic products. Specific topics that include inter-scale bone structural organization, developmental aspects of bone morphogenesis, bone repair mechanisms, role of specific cells and heterotypic cell contact in the bone niche (including vascularization networks and immune system cells), cell-cell direct and soluble-mediated contact, extracellular matrix composition (with particular focus on the non-soluble fraction of proteins), as well as mechanical aspects of native bone will be the main reviewed topics. In this Review we suggest a systematic parallelization of (i) fundamental well-established biology of bone, (ii) updated and recent advances on the understanding of biological phenomena occurring in native and injured tissue, and (iii) critical discussion of how those individual aspects have been translated into tissue regeneration strategies using biomaterials and other tissue engineering approaches. We aim at presenting a perspective on unexplored aspects of bone physiology and how they could be translated into innovative regeneration-driven concepts.
Collapse
Affiliation(s)
- Diana Lopes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Cláudia Martins-Cruz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Elucidate temporomandibular joint (TMJ) development and pathophysiology relative to regeneration, degeneration, and adaption. RECENT FINDINGS The pharyngeal arch produces a highly conserved stomatognathic system that supports airway and masticatory function. An induced subperiosteal layer of fibrocartilage cushions TMJ functional and parafunctional loads. If the fibrocartilage disc is present, a fractured mandibular condyle (MC) regenerates near the eminence of the fossa via a blastema emanating from the medial periosteal surface of the ramus. TMJ degenerative joint disease (DJD) is a relatively painless osteoarthrosis, resulting in extensive sclerosis, disc destruction, and lytic lesions. Facial form and symmetry may be affected, but the residual bone is vital because distraction continues to lengthen the MC with anabolic bone modeling. Extensive TMJ adaptive, healing, and regenerative potential maintains optimal, life support functions over a lifetime. Unique aspects of TMJ development, function, and pathophysiology may be useful for innovative management of other joints.
Collapse
Affiliation(s)
- W Eugene Roberts
- School of Dentistry, Department of Orthodontics and Oral Facial Genetics, Indiana University-Purdue University (IUPUI), Indianapolis, IN, USA.
- Department of Orthodontics, Loma Linda University, Loma Linda, CA, USA.
- Advanced Dental Education, St. Louis University, St. Louis, MO, USA.
| | - David L Stocum
- School of Science, Department of Biology, Indiana University-Purdue University (IUPUI), Indianapolis, IN, USA
| |
Collapse
|
9
|
Gruszczyńska K, Likus W, Onyszczuk M, Wawruszczak R, Gołdyn K, Olczak Z, Machnikowska-Sokołowska M, Mandera M, Baron J. How does nonsyndromic craniosynostosis affect on bone width of nasal cavity in children? - Computed tomography study. PLoS One 2018; 13:e0200282. [PMID: 30005068 PMCID: PMC6044528 DOI: 10.1371/journal.pone.0200282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/22/2018] [Indexed: 11/19/2022] Open
Abstract
Craniosynostosis is caused by premature fusion of one or more cranial sutures, restricting skull, brain and face growth. Nonsyndromic craniosynostosis could disturb the proportions of face. Although morphometric diameters of nasal cavity in healthy children are already known, they have not been established yet in children with nonsyndromic craniosynostosis. The aim our study was to check whether diameters of bone structures of nasal cavity in children with nonsyndromic craniosynostosis measured in CT are within normal range. 249 children aged 0–36 months (96 with clinical diagnosis of nonsyndromic craniosynostosis and 153 in control group) were included into the study. The following diameters were measured on head CT scans: anterior bony width (ABW), bony choanal aperture width (BCAW), right and left posterior bony width (between bone sidewall and nasal cavity septum—RPBW and LPBW). The study group has been divided into 4 categories, depending on child’s age. The dimensions measured between bone structures of nasal cavity were statistically significantly lower in comparison to the control group. They did not depend on the sex for ABW, nor on age in groups 7–12 months and < 2 years for BCAW, RPBW and LPBW. The measured dimensions increased with age. In children with nonsyndromic craniosynostosis the diameter of pyriform aperture and bony choanal aperture were lower than in controls, what may be described as fronto-orbital anomalies. Morphometric measurements of anthropometric indicators on CT scans could be used as standards in the clinical identification of craniosynostosis type and may help in planning surgical procedures, particularly in the facial skeleton in children.
Collapse
Affiliation(s)
- Katarzyna Gruszczyńska
- Department of Diagnostic Imaging, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wirginia Likus
- Department of Anatomy, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- * E-mail:
| | | | - Rita Wawruszczak
- Students’ Scientific Organization, Department of Radiology and Nuclear Medicine, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Kamila Gołdyn
- Students’ Scientific Organization, Department of Radiology and Nuclear Medicine, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Zbigniew Olczak
- Department of Diagnostic Imaging and Intervention Radiology, The Independent Public Clinical Hospital no. 6 of the Medical University of Silesia in Katowice, John Paul II Upper Silesian Child Health Centre, Katowice, Poland
| | | | - Marek Mandera
- Department of Emergency Medicine and Pediatric Neurosurgery, School of Public Health in Bytom, Medical University of Silesia, Katowice, Poland
| | - Jan Baron
- Department of Radiodiagnostics and Invasive Radiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
10
|
Çırak E, Özyurt A, Peker T, Ömeroğlu S, Güngör MN. Comparative evaluation of various low-level laser therapies on bone healing following tooth extraction: An experimental animal study. J Craniomaxillofac Surg 2018; 46:1147-1152. [DOI: 10.1016/j.jcms.2018.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/20/2018] [Accepted: 05/02/2018] [Indexed: 11/28/2022] Open
|
11
|
Özyurt A, Elmas Ç, Seymen CM, Peker VT, Altunkaynak B, Güngör MN. Effects of Low-Level Laser Therapy With a Herbal Extract on Alveolar Bone Healing. J Oral Maxillofac Surg 2018; 76:287.e1-287.e10. [DOI: 10.1016/j.joms.2017.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 01/24/2023]
|
12
|
Nguyen MV, Codrington J, Fletcher L, Dreyer CW, Sampson WJ. Influence of cortical bone thickness on miniscrew microcrack formation. Am J Orthod Dentofacial Orthop 2017; 152:301-311. [DOI: 10.1016/j.ajodo.2016.12.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 11/17/2022]
|
13
|
Shen G, Darendeliler MA. The Adaptive Remodeling of Condylar Cartilage— A Transition from Chondrogenesis to Osteogenesis. J Dent Res 2016; 84:691-9. [PMID: 16040724 DOI: 10.1177/154405910508400802] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mandibular condylar cartilage is categorized as articular cartilage but markedly distinguishes itself in many biological aspects, such as its embryonic origin, ontogenetic development, post-natal growth mode, and histological structures. The most marked uniqueness of condylar cartilage lies in its capability of adaptive remodeling in response to external stimuli during or after natural growth. The adaptation of condylar cartilage to mandibular forward positioning constitutes the fundamental rationale for orthodontic functional therapy, which partially contributes to the correction of jaw discrepancies by achieving mandibular growth modification. The adaptive remodeling of condylar cartilage proceeds with the biomolecular pathway initiating from chondrogenesis and finalizing with osteogenesis. During condylar adaptation, chondrogenesis is activated when the external stimuli, e.g., condylar repositioning, generate the differentiation of mesenchymal cells in the articular layer of cartilage into chondrocytes, which proliferate and then progressively mature into hypertrophic cells. The expression of regulatory growth factors, which govern and control phenotypic conversions of chondrocytes during chondrogenesis, increases during adaptive remodeling to enhance the transition from chondrogenesis into osteogenesis, a process in which hypertrophic chondrocytes and matrices degrade and are replaced by bone. The transition is also sustained by increased neovascularization, which brings in osteoblasts that finally result in new bone formation beneath the degraded cartilage.
Collapse
Affiliation(s)
- G Shen
- Discipline of Orthodontics, Faculty of Dentistry, Sydney Dental Hospital, The University of Sydney, 2 Chalmers Street, Surry Hills, NSW 2010, Australia.
| | | |
Collapse
|
14
|
Biosse Duplan M, Komla-Ebri D, Heuzé Y, Estibals V, Gaudas E, Kaci N, Benoist-Lasselin C, Zerah M, Kramer I, Kneissel M, Porta DG, Di Rocco F, Legeai-Mallet L. Meckel's and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible. Hum Mol Genet 2016; 25:2997-3010. [PMID: 27260401 PMCID: PMC5181594 DOI: 10.1093/hmg/ddw153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 02/07/2023] Open
Abstract
Activating FGFR3 mutations in human result in achondroplasia (ACH), the most frequent form of dwarfism, where cartilages are severely disturbed causing long bones, cranial base and vertebrae defects. Because mandibular development and growth rely on cartilages that guide or directly participate to the ossification process, we investigated the impact of FGFR3 mutations on mandibular shape, size and position. By using CT scan imaging of ACH children and by analyzing Fgfr3Y367C/+ mice, a model of ACH, we show that FGFR3 gain-of-function mutations lead to structural anomalies of primary (Meckel’s) and secondary (condylar) cartilages of the mandible, resulting in mandibular hypoplasia and dysmorphogenesis. These defects are likely related to a defective chondrocyte proliferation and differentiation and pan-FGFR tyrosine kinase inhibitor NVP-BGJ398 corrects Meckel’s and condylar cartilages defects ex vivo. Moreover, we show that low dose of NVP-BGJ398 improves in vivo condyle growth and corrects dysmorphologies in Fgfr3Y367C/+ mice, suggesting that postnatal treatment with NVP-BGJ398 mice might offer a new therapeutic strategy to improve mandible anomalies in ACH and others FGFR3-related disorders.
Collapse
Affiliation(s)
- Martin Biosse Duplan
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France.,Service d'Odontologie, Hôpital Bretonneau, HUPNVS, AP-HP, Paris, France
| | - Davide Komla-Ebri
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Yann Heuzé
- UMR5199 PACEA, Université de Bordeaux, Bordeaux Archaeological Sciences Cluster Of Excellence, Université de Bordeaux, Bordeaux, France
| | - Valentin Estibals
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Emilie Gaudas
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Nabil Kaci
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | | | - Michel Zerah
- Neurochirurgie Pédiatrique, Unité de Chirurgie Craniofaciale, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Ina Kramer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Federico Di Rocco
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France.,Neurochirurgie Pédiatrique, Unité de Chirurgie Craniofaciale, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Laurence Legeai-Mallet
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France .,Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
15
|
Shintcovsk RL, Knop L, Tanaka OM, Maruo H. Nicotine effect on bone remodeling during orthodontic tooth movement: histological study in rats. Dental Press J Orthod 2015; 19:96-107. [PMID: 24945520 PMCID: PMC4296601 DOI: 10.1590/2176-9451.19.2.096-107.oar] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Nicotine is harmful to angiogenesis, osteogenesis and synthesis of collagen. OBJECTIVE The aim of this study was to investigate the effect of nicotine on bone remodeling during orthodontic movement in rats. METHODS Eighty male Wistar rats were randomly divided into three groups: Group C (control), group CM (with orthodontic movement) and group NM (nicotine with orthodontic movement) groups. The animals comprising groups C and CM received 0.9% saline solution while group NM received nicotine solution (2 mg/kg). A nickel-titanium closed-coil spring was used to induce tooth movement. The animals were euthanized and tissue specimens were histologically processed. Blood vessels, Howship's lacunae and osteoclast-like cells present in the tension and compression areas of periodontal ligaments were quantified. The extent of bone formation was evaluated under polarized light, to determine the percentage of immature/mature collagen. RESULTS It was observed lower blood vessel densities in the NM group in comparison to the CM group, three (p < 0.001) and seven (p < 0.05) days after force application. Osteoclast-like cells and Howship's lacunae in the NM group presented lower levels of expression, in comparison to the CM group, with significant differences on day 7 (p < 0.05 for both variables) and day 14 (p < 0.05 for osteoclast-like cells and p < 0.01 for Howship's lacunae). The percentage of immature collagen was increased in the NM group in comparison to the CM group, with a statistically significant difference on day 3 (p < 0.05), day 7 (p < 0.001), day 14 (p < 0.001) and day 21 (p < 0.001). CONCLUSIONS Nicotine affects bone remodeling during orthodontic movement, reducing angiogenesis, osteoclast-like cells and Howship's lacunae, thereby delaying the collagen maturation process in new bone matrix.
Collapse
|
16
|
Reni Muller K, Piñeiro S. Malos hábitos orales: rehabilitacion neuromuscular y crecimiento facial. REVISTA MÉDICA CLÍNICA LAS CONDES 2014. [DOI: 10.1016/s0716-8640(14)70050-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Spongiosa primary development: a biochemical hypothesis by Turing patterns formations. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012. [PMID: 23193429 PMCID: PMC3447359 DOI: 10.1155/2012/748302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification.
Collapse
|
18
|
Owtad P, Potres Z, Shen G, Petocz P, Darendeliler MA. A histochemical study on condylar cartilage and glenoid fossa during mandibular advancement. Angle Orthod 2011; 81:270-6. [PMID: 21208079 DOI: 10.2319/021710-99.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To evaluate cellular hypertrophic activities in the mandibular condylar cartilage (MCC) and the glenoid fossa (GF) during mandibular advancement in the temporomandibular joint (TMJ) of Sprague-Dawley rats, as evidenced by fibroblast growth factor 8 (FGF8). METHODS AND MATERIALS Fifty-five female 24-day-old Sprague-Dawley rats were randomly divided into four experimental and control groups, with a mandibular advancement appliance on the experimental rats' lower incisors. The rats were euthanized on days 3, 14, 21, and 30 of the study, and their TMJ was prepared for a immunohistochemical staining procedure to detect FGF8. RESULTS FGF8 expression was significantly higher among the experimental rats (P = .002). Patterns of ascension and descension of FGF8 expression were similar in experimental and control samples. The results show an overall enhanced osteogenic transition occurring in both the MCC and the GF in experimental rats in comparison with controls. The level of cellular changes in the MCC is remarkably higher than in the GF. CONCLUSION In the MCC and the GF, cellular morphologic and hypertrophic differentiations increase significantly during mandibular advancement. It is also concluded that endochondral ossification in the MCC and intramembranous ossification in the GF occur during adaptive remodeling.
Collapse
Affiliation(s)
- Payam Owtad
- Department of Orthodontics, University of Sydney, Sydney Dental Hospital, NSW Australia
| | | | | | | | | |
Collapse
|
19
|
Zomer Volpato F, Fernandes Ramos SL, Motta A, Migliaresi C. Physical and in vitro biological evaluation of a PA 6/MWCNT electrospun composite for biomedical applications. J BIOACT COMPAT POL 2010. [DOI: 10.1177/0883911510391449] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Significant progress in the study of scaffolds for cell growth has taken place that has led to the development of a wide variety of metallic, polymeric, ceramic, and composite biomaterials. This article describes the fabrication and characterization of an electrospun net with tunable morphological and mechanical properties composed by aligned fibers of polyamide 6 (PA 6) and carboxyl-functionalized multi-walled carbon nanotubes (MWCNT). Physical and short-term biological properties of the nets were evaluated, focusing on the effect of the filler addition. The production technique used, induced the alignment of MWCNT within the nanofiber axis and the formation of a roughness on the fiber’s surface. The proliferation and activation of MG63 cell line osteoblasts were enhanced due to surface modification caused by the filler addition compared to the purely PA 6 networks.
Collapse
Affiliation(s)
- Fabio Zomer Volpato
- Department of Materials Engineering and Industrial Technologies, BIOtech Research Center, University of Trento, Via delle Regole 101, Trento 38123, Italy
| | - Sérgio Lopes Fernandes Ramos
- Department of Materials Engineering, State University of Campinas, Cidade Universitária Zeferino Vaz, Campinas 13083-970, Brazil
| | - Antonella Motta
- Department of Materials Engineering and Industrial Technologies, BIOtech Research Center, University of Trento, Via delle Regole 101, Trento 38123, Italy
| | - Claudio Migliaresi
- Department of Materials Engineering and Industrial Technologies, BIOtech Research Center, University of Trento, Via delle Regole 101, Trento 38123, Italy,
| |
Collapse
|
20
|
Retamoso L, Knop L, Shintcovsk R, Maciel JV, Machado MA, Tanaka O. Influence of anti-inflammatory administration in collagen maturation process during orthodontic tooth movement. Microsc Res Tech 2010; 74:709-13. [PMID: 21780246 DOI: 10.1002/jemt.20947] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/31/2010] [Indexed: 01/20/2023]
Abstract
Bone formation is essential to orthodontic tooth movement and bone is formed by collagen. To analyze the collagen maturation process on bone matrix neoformed under nonsteroidal and steroidal treatment during orthodontic tooth movement by polarized microscopy, male Wistar rats (n = 90) were randomly divided into three groups (n = 30): C (control), NSAID (potassium diclofenac) and SAID (disodic phosphate dexamethasone). The animals of the C group received 0.9% saline solution; NSAID group received 5 mg/kg potassium diclofenac (CATAFLAM®); and SAID group received 2 mg/kg phosphate dissodic dexamethasone (DEXANIL®). Animals were sacrificed 3, 7 or 14 days after the placement of orthodontic appliances and the upper first molars were processed histologically and stained with picrosirius. Bone formation was evaluated under polarized light microscopy and 4.5 Image Pro-Plus® software calculated the percentage of immature/mature collagen present in the groups. On the third days after force application, SAID and NSAID groups showed greater proportion of immature collagen than C group. On the seventh and fourteenth days, there was a lower proportion of mature collagen only in the SAID group (P < 0.001). These data demonstrate that dexamethasone delays the collagen maturation process in established bone matrix.
Collapse
Affiliation(s)
- Luciana Retamoso
- Dental Materials, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, Patenon, Porto Alegre-RS, Brazil 90619-900
| | | | | | | | | | | |
Collapse
|
21
|
Römer P, Weingärtner J, Roldán JC, Proff P, Reicheneder C. Development dependent collagen gene expression in the rat cranial base growth plate. Ann Anat 2010; 192:205-9. [DOI: 10.1016/j.aanat.2010.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/13/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
|
22
|
Murakami T, Fukunaga T, Takeshita N, Hiratsuka K, Abiko Y, Yamashiro T, Takano-Yamamoto T. Expression of Ten-m/Odz3 in the fibrous layer of mandibular condylar cartilage during postnatal growth in mice. J Anat 2010; 217:236-44. [PMID: 20636325 DOI: 10.1111/j.1469-7580.2010.01267.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It has been speculated that the mandibular condyle develops via the differentiation of the fibroblast-like cells covering the condyle into chondrocytes; however, the developmental mechanisms behind this process have not been revealed. We used laser-capture microdissection and cDNA microarray analysis to elucidate the genes that are highly expressed in these fibroblast-like cells. Among these genes, the transcription of Ten-m/Odz3 was significantly increased in the fibroblast-like cells compared with other cartilage tissues. For the first time, we describe the temporal and spatial expression of Ten-m/Odz3 mRNA in relation to the expression of type I, II, and X collagen mRNA, as determined by in-situ hybridization in mouse mandibular condylar cartilage and mouse femoral cartilage during the early stages of development. Ten-m/Odz3 was expressed in the fibrous layer and the proliferating and mature chondrocyte layers, which expressed type I and II collagen, respectively, but was not detected in the hypertrophic chondrocyte layer. Furthermore, we evaluated the in-vitro expression of Ten-m/Odz3 using ATDC5 cells, a mouse chondrogenic cell line. Ten-m/Odz3 was expressed during the early stage of the differentiation of mesenchymal cells into chondrocytes. These findings suggest that Ten-m/Odz3 is involved in the differentiation of chondrocytes and that it acts as a regulatory factor in the early stages of the development of mandibular condylar cartilage.
Collapse
Affiliation(s)
- Takashi Murakami
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Cuccia AM, Caradonna C. Condylar growth after non-surgical advancement in adult subject: a case report. Head Face Med 2009; 5:15. [PMID: 19619334 PMCID: PMC2724385 DOI: 10.1186/1746-160x-5-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 07/20/2009] [Indexed: 11/25/2022] Open
Abstract
Background A defect of condylar morphology can be caused by several sources. Case report A case of altered condylar morphology in adult male with temporomandibular disorders was reported in 30-year-old male patient. Erosion and flattening of the left mandibular condyle were observed by panoramic x-ray. The patient was treated with splint therapy that determined mandibular advancement. Eight months after the therapy, reduction in joint pain and a greater opening of the mouth was observed, although crepitation sounds during mastication were still noticeable. Conclusion During the following months of gnatologic treatment, new bone growth in the left condyle was observed by radiograph, with further improvement of the symptoms.
Collapse
Affiliation(s)
- Antonino Marco Cuccia
- Section of Orthodontics, Department of Dental Sciences G. Messina, University of Palermo, 90127 Palermo, Italy.
| | | |
Collapse
|
24
|
Silva GA, Coutinho OP, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. 2. Applications in bone. J Tissue Eng Regen Med 2008; 1:97-109. [PMID: 18038398 DOI: 10.1002/term.1] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Materials in particulate form have been the subjects of intensive research in view of their use as drug delivery systems. While within this application there are still issues to be addressed, these systems are now being regarded as having a great potential for tissue engineering applications. Bone repair is a very demanding task, due to the specific characteristics of skeletal tissues, and the design of scaffolds for bone tissue engineering presents several difficulties. Materials in particulate form are now seen as a means of achieving higher control over parameters such as porosity, pore size, surface area and the mechanical properties of the scaffold. These materials also have the potential to incorporate biologically active molecules for release and to serve as carriers for cells. It is believed that the combination of these features would create a more efficient approach towards regeneration. This review focuses on the application of materials in particulate form for bone tissue engineering. A brief overview of bone biology and the healing process is also provided in order to place the application in its broader context. An original compilation of molecules with a documented role in bone tissue biology is listed, as they have the potential to be used in bone tissue engineering strategies. To sum up this review, examples of works addressing the above aspects are presented.
Collapse
Affiliation(s)
- G A Silva
- 3Bs Research Group--Biomaterials, Biodegradables, Biomimetics-University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | |
Collapse
|
25
|
Erdoğan O, Shafer DM, Taxel P, Freilich MA. A review of the association between osteoporosis and alveolar ridge augmentation. ACTA ACUST UNITED AC 2007; 104:738.e1-13. [PMID: 17656117 DOI: 10.1016/j.tripleo.2007.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 02/11/2007] [Accepted: 04/09/2007] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Because of increasing life expectancy and popularity of dental implants, surgeons face a larger number of osteoporotic patients who require bone augmentation. Relationship between low bone density/osteoporosis and bone graft success is still not clear. The purpose of this article is to review and summarize the literature regarding the success of alveolar bone augmentation in osteoporosis. STUDY DESIGN The study design includes a literature review of relevant preclinical and clinical articles that address the association between osteoporosis and alveolar bone augmentation. RESULTS Increased rate of complications such as resorption of bone graft, non-integration of bone graft, delayed healing time, and implant failure in augmented bone especially in the maxilla may be associated with compromised bone health. CONCLUSIONS Despite the decreased success rate, osteoporosis is not an absolute contraindication for bone augmentation and dental implant placement. The modifiable risk factors for osteoporosis should be eliminated before surgery.
Collapse
Affiliation(s)
- Ozgür Erdoğan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Cukurova University, Adana, Turkey
| | | | | | | |
Collapse
|
26
|
Roberts WE, Epker BN, Burr DB, Hartsfield JK, Roberts JA. Remodeling of Mineralized Tissues, Part II: Control and Pathophysiology. Semin Orthod 2006. [DOI: 10.1053/j.sodo.2006.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2006; 129:458-68. [PMID: 16627170 DOI: 10.1016/j.ajodo.2005.12.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 11/21/2022]
Abstract
Adaptive biochemical response to applied orthodontic force is a highly sophisticated process. Many layers of networked reactions occur in and around periodontal ligament and alveolar bone cells that change mechanical force into molecular events (signal transduction) and orthodontic tooth movement (OTM). Osteoblasts and osteoclasts are sensitive environment-to-genome-to-environment communicators, capable of restoring system homeostasis disturbed by orthodontic mechanics. Five micro-environments are altered by orthodontic force: extracellular matrix, cell membrane, cytoskeleton, nuclear protein matrix, and genome. Gene activation (or suppression) is the point at which input becomes output, and further changes occur in all 5 environments. Hundreds of genes and thousands of proteins participate in OTM. Gene-directed protein synthesis, modification, and integration form the essence of all life processes, including OTM. Bone adaptation to orthodontic force depends on normal osteoblast and osteoclast genes that correctly express needed proteins at the right times and places. Cell membrane receptor-ligand docking is an important initiator of signal transduction and a discovery target for new bone-enhancing drugs. Despite progress in identification of regulatory molecules, the genetic mechanism of "orchestrated synthesis" between different cells, tissues, and systems remains largely unknown. Interpatient variation in mechanobiological response is most likely due to differences in periodontal ligament and bone cell populations, genomes, and protein expression patterns. Discovery of mutations in OTM-associated genes of orthodontic patients, including those regulating osteoclast bone-matrix acidification, chloride channel function, and osteoblast-derived mineral and protein matrices, will permit gene therapy to restore normal matrix and protein synthesis and function. Achieving selectivity in targeting abnormal genes, cells, and tissues is a major obstacle to safe and effective clinical application of gene engineering and stem-cell mediated tissue growth. Orthodontic treatment is likely to evolve into a combination of mechanics and molecular-genetic-cellular interventions: a change from shotgun to tightly focused communication with OTM cells.
Collapse
Affiliation(s)
- Richard S Masella
- Department of Orthodontics, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | | |
Collapse
|