1
|
Raidal SL, van Diggelen M, Catanchin CSM, Lehmann HS, Quinn CT. Use of prototype bi-nasal prongs for noninvasive ventilation in foals. J Vet Intern Med 2024. [PMID: 39375942 DOI: 10.1111/jvim.17170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/31/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Noninvasive ventilation (NIV) provides effective respiratory support in foals, but face masks are poorly tolerated and associated with hypercapnia. Bi-nasal prongs might be a more effective device interface in foals. OBJECTIVES To compare bi-nasal prongs and masks for NIV in foals with pharmacologically induced respiratory insufficiency. ANIMALS Six healthy foals. METHODS In a randomized cross-over study, sedated foals received NIV delivered by mask or bi-nasal prongs, with the treatment repeated using the alternative device interface after a 3-day rest period. After periods of spontaneous ventilation through the allocated interface, with and without supplementary O2 (T2-T3), foals were subject to 10-minute treatment periods of NIV at different pressure support (5 or 10 cmH2O) and end-expiratory pressure settings (5 or 10 cmH2O), with and without supplementary O2 (T4-T7). Vital signs, arterial blood gases, spirometry, and gas exchange data were measured in the final 2 minutes of each treatment window. RESULTS Bi-nasal prongs were well tolerated and required less manual positioning or monitoring compared to the mask. Partial pressure of carbon dioxide did not increase during NIV with bi-nasal prongs and was lower than observed with masks (mean difference, 8.2 mmHg [95% confidence interval, 4.1-12.2 mmHg] at T6). Oxygenation and respiratory mechanics were improved in all foals and not different between device interfaces. CONCLUSIONS AND CLINICAL IMPORTANCE Nasal prongs were well tolerated, had similar effects on respiratory function, and appeared to ameliorate hypercapnia observed previously during NIV in foals.
Collapse
Affiliation(s)
- Sharanne L Raidal
- Veterinary Clinical Centre, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Michael van Diggelen
- Veterinary Clinical Centre, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Chee Sum M Catanchin
- Veterinary Clinical Centre, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Heidi S Lehmann
- Veterinary Clinical Centre, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Chris T Quinn
- Veterinary Clinical Centre, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
2
|
García-Sanz V, Canfrán S, Gómez de Segura IA, Aguado D. Effect of end-inspiratory pause duration on respiratory system compliance calculation in mechanically ventilated dogs with healthy lungs. Vet Anaesth Analg 2024; 51:333-342. [PMID: 38772855 DOI: 10.1016/j.vaa.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVE To compare respiratory system compliance (CRS), expressed per kilogram of bodyweight (CRSBW), calculated without end-inspiratory pause (EIP) and after three EIP times (0.2, 0.5 and 1 seconds) with that after 3 second EIP (considered the reference EIP for static CRS) and to determine the EIP times that provided CRSBW values in acceptable agreement with static CRSBW during controlled mechanical ventilation (CMV) in anaesthetized dogs. STUDY DESIGN Prospective, randomized, nonblinded, crossover clinical study. ANIMALS A group of 24 client-owned dogs with healthy lungs undergoing surgery in lateral recumbency. METHODS During CMV in dogs undergoing general anaesthesia, five EIPs [0 (no EIP), 0.2, 0.5, 1 and 3 seconds] were consecutively applied in random order. Tidal volume (Vt) was set at 10 mL kg-1 and positive end-expiratory pressure (PEEP) was not applied. Respiratory rate and inspiratory time were established according to each EIP time, setting EIP between 0 and 50% of the inspiratory time. The CRSBW was calculated as [expired Vt/(plateau pressure - PEEP)]/bodyweight and recorded every 15 seconds for 2 minutes after a 5 minute equilibration period with each EIP. One-way anova for repeated measures and the Bland-Altman analysis were used to compare CRSBW and evaluate agreement between EIP times, respectively. RESULTS The CRSBW was significantly greater as the EIP time increased up to 1 second (p < 0.05). In the Bland-Altman analysis, none of the tested EIPs (0, 0.2, 0.5 and 1 seconds) provided 95% confidence intervals for limits of agreement within the maximum allowed difference considered for acceptable agreement with 3 second EIP. CONCLUSIONS and clinical relevance An EIP ≤ to 1 second does not provide a CRSBW value in acceptable agreement with static CRSBW in healthy dogs. Besides, the application of an EIP ≤ to 0.5 seconds underestimates the static CRSBW to an increasing extent as the EIP time decreases.
Collapse
Affiliation(s)
- Virginia García-Sanz
- Department of Animal Medicine and Surgery, Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Susana Canfrán
- Department of Animal Medicine and Surgery, Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain.
| | - Ignacio A Gómez de Segura
- Department of Animal Medicine and Surgery, Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Delia Aguado
- Department of Animal Medicine and Surgery, Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Agrawal DK, Smith BJ, Sottile PD, Hripcsak G, Albers DJ. Quantifiable identification of flow-limited ventilator dyssynchrony with the deformed lung ventilator model. Comput Biol Med 2024; 173:108349. [PMID: 38547660 DOI: 10.1016/j.compbiomed.2024.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Ventilator dyssynchrony (VD) can worsen lung injury and is challenging to detect and quantify due to the complex variability in the dyssynchronous breaths. While machine learning (ML) approaches are useful for automating VD detection from the ventilator waveform data, scalable severity quantification and its association with pathogenesis and ventilator mechanics remain challenging. OBJECTIVE We develop a systematic framework to quantify pathophysiological features observed in ventilator waveform signals such that they can be used to create feature-based severity stratification of VD breaths. METHODS A mathematical model was developed to represent the pressure and volume waveforms of individual breaths in a feature-based parametric form. Model estimates of respiratory effort strength were used to assess the severity of flow-limited (FL)-VD breaths compared to normal breaths. A total of 93,007 breath waveforms from 13 patients were analyzed. RESULTS A novel model-defined continuous severity marker was developed and used to estimate breath phenotypes of FL-VD breaths. The phenotypes had a predictive accuracy of over 97% with respect to the previously developed ML-VD identification algorithm. To understand the incidence of FL-VD breaths and their association with the patient state, these phenotypes were further successfully correlated with ventilator-measured parameters and electronic health records. CONCLUSION This work provides a computational pipeline to identify and quantify the severity of FL-VD breaths and paves the way for a large-scale study of VD causes and effects. This approach has direct application to clinical practice and in meaningful knowledge extraction from the ventilator waveform data.
Collapse
Affiliation(s)
- Deepak K Agrawal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India; Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, 80045, USA; Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Peter D Sottile
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - George Hripcsak
- Department of Biomedical Informatics, Columbia University, New York, NY, 10027, USA
| | - David J Albers
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Biomedical Informatics, Columbia University, New York, NY, 10027, USA; Department of Biomedical Informatics, Univerisity of Colorado Anschutz Medical Campus, Aurora, CO 80045.
| |
Collapse
|
4
|
Zersen KM. Setting the optimal positive end-expiratory pressure: a narrative review. Front Vet Sci 2023; 10:1083290. [PMID: 37538169 PMCID: PMC10395088 DOI: 10.3389/fvets.2023.1083290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
The primary goals of positive end-expiratory pressure (PEEP) are to restore functional residual capacity through recruitment and prevention of alveolar collapse. Through these mechanisms, PEEP improves arterial oxygenation and may reduce the risk of ventilator-induced lung injury (VILI). Because of the many potential negative effects associated with the use of PEEP, much research has concentrated on determining the optimal PEEP setting. Arterial oxygenation targets and pressure-volume loops have been utilized to set the optimal PEEP for decades. Several other techniques have been suggested, including the use of PEEP tables, compliance, driving pressure (DP), stress index (SI), transpulmonary pressures, imaging, and electrical impedance tomography. Each of these techniques has its own benefits and limitations and there is currently not one technique that is recommended above all others.
Collapse
|
5
|
Agrawal DK, Smith BJ, Sottile PD, Albers DJ. A Damaged-Informed Lung Ventilator Model for Ventilator Waveforms. Front Physiol 2021; 12:724046. [PMID: 34658911 PMCID: PMC8517122 DOI: 10.3389/fphys.2021.724046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
Motivated by a desire to understand pulmonary physiology, scientists have developed physiological lung models of varying complexity. However, pathophysiology and interactions between human lungs and ventilators, e.g., ventilator-induced lung injury (VILI), present challenges for modeling efforts. This is because the real-world pressure and volume signals may be too complex for simple models to capture, and while complex models tend not to be estimable with clinical data, limiting clinical utility. To address this gap, in this manuscript we developed a new damaged-informed lung ventilator (DILV) model. This approach relies on mathematizing ventilator pressure and volume waveforms, including lung physiology, mechanical ventilation, and their interaction. The model begins with nominal waveforms and adds limited, clinically relevant, hypothesis-driven features to the waveform corresponding to pulmonary pathophysiology, patient-ventilator interaction, and ventilator settings. The DILV model parameters uniquely and reliably recapitulate these features while having enough flexibility to reproduce commonly observed variability in clinical (human) and laboratory (mouse) waveform data. We evaluate the proof-in-principle capabilities of our modeling approach by estimating 399 breaths collected for differently damaged lungs for tightly controlled measurements in mice and uncontrolled human intensive care unit data in the absence and presence of ventilator dyssynchrony. The cumulative value of mean squares error for the DILV model is, on average, ≈12 times less than the single compartment lung model for all the waveforms considered. Moreover, changes in the estimated parameters correctly correlate with known measures of lung physiology, including lung compliance as a baseline evaluation. Our long-term goal is to use the DILV model for clinical monitoring and research studies by providing high fidelity estimates of lung state and sources of VILI with an end goal of improving management of VILI and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Deepak K. Agrawal
- Department of Bioengineering, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, United States
- Section of Informatics and Data Science, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bradford J. Smith
- Department of Bioengineering, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, United States
- Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Peter D. Sottile
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - David J. Albers
- Department of Bioengineering, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, United States
- Section of Informatics and Data Science, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
| |
Collapse
|
6
|
Effect of recumbency and body condition score on open-lung positive end-expiratory pressure and respiratory system compliance following a stepwise lung recruitment manoeuvre in healthy dogs during general anaesthesia. Res Vet Sci 2020; 132:177-185. [PMID: 32593862 DOI: 10.1016/j.rvsc.2020.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
The aim was to assess the effects of recumbency and body condition score (BCS) on open-lung positive end-expiratory pressure (OL-PEEP) and quasistatic respiratory system compliance (Crs) following stepwise lung recruitment manoeuvre (RM) in healthy dogs under general anaesthesia. Thirty-four dogs were anaesthetised and mechanically ventilated (tidal volume of 10 mL/kg) without PEEP for 1 min (baseline). A stepwise RM was then performed and the individual OL-PEEP was subsequently applied. The Crs was registered at baseline and every 10-min for 50 min after RM. Dogs were classified into either dorsal or lateral recumbency groups, and as normal (score 4-5/9) or high (≥6/9) BCS groups. The OL-PEEP was higher in lateral than in dorsal recumbency (P = .002), but differences were not observed between normal and high BCS (P = .865). The Crs was increased from baseline at all time points after RM in all groups. The Crs did not differ between dorsally and laterally recumbent dogs at any time point. However, the baseline Crs was significantly lower in dogs with a high BCS than in those with a normal BCS (P < .001); therefore, the absolute change from baseline was considered when comparing Crs after the RM and it was similar in both BCS groups. In conclusion, in anaesthetised healthy dogs the OL-PEEP following RM was lower when dogs were positioned in dorsal than in lateral recumbency. The Crs after RM remained unchanged regardless of the dogs' recumbency. A stepwise RM followed by OL-PEEP could compensate for the potential negative impact of moderately increased BCS on Crs.
Collapse
|
7
|
García-Sanz V, Aguado D, Gómez de Segura IA, Canfrán S. Comparative effects of open-lung positive end-expiratory pressure (PEEP) and fixed PEEP on respiratory system compliance in the isoflurane anaesthetised healthy dog. Res Vet Sci 2019; 127:91-98. [PMID: 31683197 DOI: 10.1016/j.rvsc.2019.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
This study was performed to assess the effects of open-lung positive end-expiratory pressure (OL-PEEP) following stepwise recruitment manoeuvre (RM) and those of a fixed PEEP of 5 cm H2O without previous RM on respiratory system compliance (Crs) and selected cardiovascular variables in healthy dogs under general anaesthesia. Forty-five healthy client-owned dogs undergoing surgery were anaesthetised and mechanically ventilated (tidal volume, VT = 10-12 mL/kg; PEEP = 0 cm H2O) for 1 min (baseline) and randomly allocated into zero positive end-expiratory pressure (ZEEP), PEEP (5 cm H2O) and OL-PEEP treatment groups. In the OL-PEEP group, a stepwise RM was performed and the individual OL-PEEP was subsequently applied. The Crs, heart rate (HR) and non-invasive mean arterial pressure (NIMAP) were registered at baseline and then every 10 min during 60 min. In the ZEEP group, Crs decreased from baseline. In the PEEP group, Crs was not different from either baseline or ZEEP group values. In the OL-PEEP group, Crs was higher than both baseline and ZEEP group values at all time points as well as of those in the PEEP group during at least 20 min after RM. There were no differences for HR and NIMAP between groups. A clinically relevant hypotension following RM was observed in 40% of dogs. Therefore, an individually set OL-PEEP following stepwise RM improved Crs in anaesthetised healthy dogs, although transient but clinically relevant hypotension was observed during RM in some dogs. Fixed PEEP of 5 cm H2O without previous RM did not improve Crs, although it prevented it from decreasing.
Collapse
Affiliation(s)
- Virginia García-Sanz
- Anaesthesiology Service, Department of Animal Medicine and Surgery, Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain.
| | - Delia Aguado
- Anaesthesiology Service, Department of Animal Medicine and Surgery, Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain.
| | - Ignacio A Gómez de Segura
- Anaesthesiology Service, Department of Animal Medicine and Surgery, Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain.
| | - Susana Canfrán
- Anaesthesiology Service, Department of Animal Medicine and Surgery, Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain.
| |
Collapse
|