1
|
Schmidt BC, Leiderer MT, Amin T, Viol F, Huber S, Henes FO, Schrader J. Does gamma-glutamyltransferase correlate with liver tumor burden in neuroendocrine tumors? Endocrine 2024; 83:511-518. [PMID: 37770647 PMCID: PMC10850195 DOI: 10.1007/s12020-023-03545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE In patients with neuroendocrine tumors (NETs) and liver metastases, increased gamma-glutamyltransferase (GGT) is commonly assumed as an indicator for progressive disease. To date, however, empirical data are lacking. This study aimed to investigate associations between GGT and liver tumor burden. In longitudinal analyses, associations of GGT and radiographic responses of liver metastases under therapy were investigated. METHODS The cross-sectional sample consisted of 104 patients who were treated at the University Medical Center Hamburg-Eppendorf from 2008 to 2021 (mean age 62.3 ± 12.6 years, 58.7% male). GGT and liver imaging were identified in a time range of 3 months. Radiologic reassessments were performed to estimate liver tumor burden. In a separate longitudinal sample (n = 15), the course of GGT levels under chemotherapy was analyzed. Data were retrospectively analyzed with a univariate ANOVA, linear regression analyses, and Wilcoxon tests. RESULTS Of 104 cross-sectionally analyzed patients, 54 (51.9%) showed a GGT elevation. GGT levels and liver tumor burden were positively correlated (p < 0.001), independently from age, gender, primary tumor location, grading, and cholestasis. Notably, GGT increase was associated with a liver tumor burden of >50%. In the longitudinal sample, 10 of 11 patients with progressive disease showed increasing GGT, whereas 4 of 4 patients with regressive disease showed declining GGT. CONCLUSION Our findings indicate that GGT is associated with liver tumor burden. Over the course of therapy, GGT appears to change in line with radiographic responses. Further longitudinal studies with larger sample sizes are required to define GGT as a reliable marker for tumor response.
Collapse
Affiliation(s)
- Benjamin Christopher Schmidt
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Medicine II, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Miriam Theresa Leiderer
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tania Amin
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabrice Viol
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Oliver Henes
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Schrader
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, Klinikum Nordfriesland, Husum, Germany
| |
Collapse
|
2
|
Brzozowa-Zasada M, Piecuch A, Bajdak-Rusinek K, Gołąbek K, Michalski M, Matysiak N, Czuba Z. A Prognostic Activity of Glutaredoxin 1 Protein (Grx1) in Colon Cancer. Int J Mol Sci 2024; 25:1007. [PMID: 38256082 PMCID: PMC10816104 DOI: 10.3390/ijms25021007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Glutaredoxin 1 (Grx1) is an essential enzyme that regulates redox signal transduction and repairs protein oxidation by reversing S-glutathionylation, an oxidative modification of protein cysteine residues. Grx1 removes glutathione from proteins to restore their reduced state (protein-SH) and regulate protein-SSG levels in redox signaling networks. Thus, it can exert an influence on the development of cancer. To further investigate this problem, we performed an analysis of Grx1 expression in colon adenocarcinoma samples from the Polish population of patients with primary colon adenocarcinoma (stages I and II of colon cancer) and those with regional lymph node metastasis (stage III of colon cancer). Our study revealed a significant correlation between the expression of Grx1 protein through immunohistochemical analysis and various clinical characteristics of patients, such as histological grade, depth of invasion, angioinvasion, staging, regional lymph node invasion, and PCNA expression. It was found that almost 88% of patients with stage I had high levels of Grx1 expression, while only 1% of patients with stage III exhibited high levels of Grx1 protein expression. Furthermore, the study discovered that high levels of Grx1 expression were present in samples of colon mucosa without any pathological changes. These results were supported by in vitro analysis conducted on colorectal cancer cell lines that corresponded to stages I, II, and III of colorectal cancer, using qRT-PCR and Western blot.
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Adam Piecuch
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed—Research and Implementation Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Natalia Matysiak
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland;
| |
Collapse
|
3
|
Lu Q, Yu H, Zhao T, Zhu G, Li X. Nanoparticles with transformable physicochemical properties for overcoming biological barriers. NANOSCALE 2023; 15:13202-13223. [PMID: 37526946 DOI: 10.1039/d3nr01332d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
In recent years, tremendous progress has been made in the development of nanomedicines for advanced therapeutics, yet their unsatisfactory targeting ability hinders the further application of nanomedicines. Nanomaterials undergo a series of processes, from intravenous injection to precise delivery at target sites. Each process faces different or even contradictory requirements for nanoparticles to pass through biological barriers. To overcome biological barriers, researchers have been developing nanomedicines with transformable physicochemical properties in recent years. Physicochemical transformability enables nanomedicines to responsively switch their physicochemical properties, including size, shape, surface charge, etc., thus enabling them to cross a series of biological barriers and achieve maximum delivery efficiency. In this review, we summarize recent developments in nanomedicines with transformable physicochemical properties. First, the biological dilemmas faced by nanomedicines are analyzed. Furthermore, the design and synthesis of nanomaterials with transformable physicochemical properties in terms of size, charge, and shape are summarized. Other switchable physicochemical parameters such as mobility, roughness and mechanical properties, which have been sought after most recently, are also discussed. Finally, the prospects and challenges for nanomedicines with transformable physicochemical properties are highlighted.
Collapse
Affiliation(s)
- Qianqian Lu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Hongyue Yu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Guanjia Zhu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China.
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
4
|
Wang Z, Wu X, Chen HN, Wang K. Amino acid metabolic reprogramming in tumor metastatic colonization. Front Oncol 2023; 13:1123192. [PMID: 36998464 PMCID: PMC10043324 DOI: 10.3389/fonc.2023.1123192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Metastasis is considered as the major cause of cancer death. Cancer cells can be released from primary tumors into the circulation and then colonize in distant organs. How cancer cells acquire the ability to colonize in distant organs has always been the focus of tumor biology. To enable survival and growth in the new environment, metastases commonly reprogram their metabolic states and therefore display different metabolic properties and preferences compared with the primary lesions. For different microenvironments in various colonization sites, cancer cells must transfer to specific metabolic states to colonize in different distant organs, which provides the possibility of evaluating metastasis tendency by tumor metabolic states. Amino acids provide crucial precursors for many biosynthesis and play an essential role in cancer metastasis. Evidence has proved the hyperactivation of several amino acid biosynthetic pathways in metastatic cancer cells, including glutamine, serine, glycine, branched chain amino acids (BCAAs), proline, and asparagine metabolism. The reprogramming of amino acid metabolism can orchestrate energy supply, redox homeostasis, and other metabolism-associated pathways during cancer metastasis. Here, we review the role and function of amino acid metabolic reprogramming in cancer cells colonizing in common metastatic organs, including lung, liver, brain, peritoneum, and bone. In addition, we summarize the current biomarker identification and drug development of cancer metastasis under the amino acid metabolism reprogramming, and discuss the possibility and prospect of targeting organ-specific metastasis for cancer treatment.
Collapse
Affiliation(s)
- Zihao Wang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingyun Wu
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kui Wang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Obrador E, Salvador-Palmer R, López-Blanch R, Oriol-Caballo M, Moreno-Murciano P, Estrela JM. Survival Mechanisms of Metastatic Melanoma Cells: The Link between Glucocorticoids and the Nrf2-Dependent Antioxidant Defense System. Cells 2023; 12:cells12030418. [PMID: 36766760 PMCID: PMC9913432 DOI: 10.3390/cells12030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Circulating glucocorticoids increase during stress. Chronic stress, characterized by a sustained increase in serum levels of cortisol, has been associated in different cases with an increased risk of cancer and a worse prognosis. Glucocorticoids can promote gluconeogenesis, mobilization of amino acids, fat breakdown, and impair the body's immune response. Therefore, conditions that may favor cancer growth and the acquisition of radio- and chemo-resistance. We found that glucocorticoid receptor knockdown diminishes the antioxidant protection of murine B16-F10 (highly metastatic) melanoma cells, thus leading to a drastic decrease in their survival during interaction with the vascular endothelium. The BRAFV600E mutation is the most commonly observed in melanoma patients. Recent studies revealed that VMF/PLX40-32 (vemurafenib, a selective inhibitor of mutant BRAFV600E) increases mitochondrial respiration and reactive oxygen species (ROS) production in BRAFV600E human melanoma cell lines. Early-stage cancer cells lacking Nrf2 generate high ROS levels and exhibit a senescence-like growth arrest. Thus, it is likely that a glucocorticoid receptor antagonist (RU486) could increase the efficacy of BRAF-related therapy in BRAFV600E-mutated melanoma. In fact, during early progression of skin melanoma metastases, RU486 and VMF induced metastases regression. However, treatment at an advanced stage of growth found resistance to RU486 and VMF. This resistance was mechanistically linked to overexpression of proteins of the Bcl-2 family (Bcl-xL and Mcl-1 in different human models). Moreover, melanoma resistance was decreased if AKT and NF-κB signaling pathways were blocked. These findings highlight mechanisms by which metastatic melanoma cells adapt to survive and could help in the development of most effective therapeutic strategies.
Collapse
Affiliation(s)
- Elena Obrador
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
- Correspondence: (E.O.); (J.M.E.); Tel.: +34-963864646 (J.M.E.)
| | - Rosario Salvador-Palmer
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rafael López-Blanch
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
| | - María Oriol-Caballo
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
| | | | - José M. Estrela
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
- Correspondence: (E.O.); (J.M.E.); Tel.: +34-963864646 (J.M.E.)
| |
Collapse
|
6
|
Gu J, Xie R, Zhao Y, Zhao Z, Xu D, Ding M, Lin T, Xu W, Nie Z, Miao E, Tan D, Zhu S, Shen D, Fei J. A machine learning-based approach to predicting the malignant and metastasis of thyroid cancer. Front Oncol 2022; 12:938292. [PMID: 36601485 PMCID: PMC9806162 DOI: 10.3389/fonc.2022.938292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Thyroid Cancer (TC) is the most common malignant disease of endocrine system, and its incidence rate is increasing year by year. Early diagnosis, management of malignant nodules and scientific treatment are crucial for TC prognosis. The first aim is the construction of a classification model for TC based on risk factors. The second aim is the construction of a prediction model for metastasis based on risk factors. Methods We retrospectively collected approximately 70 preoperative demographic and laboratory test indices from 1735 TC patients. Machine learning pipelines including linear regression model ridge, Logistic Regression (LR) and eXtreme Gradient Boosting (XGBoost) were used to select the best model for predicting deterioration and metastasis of TC. A comprehensive comparative analysis with the prediction model using only thyroid imaging reporting and data system (TI-RADS). Results The XGBoost model achieved the best performance in the final thyroid nodule diagnosis (AUC: 0.84) and metastasis (AUC: 0.72-0.77) predictions. Its AUCs for predicting Grade 4 TC deterioration and metastasis reached 0.84 and 0.97, respectively, while none of the AUCs for Only TI-RADS reached 0.70. Based on multivariate analysis and feature selection, age, obesity, prothrombin time, fibrinogen, and HBeAb were common significant risk factors for tumor progression and metastasis. Monocyte, D-dimer, T3, FT3, and albumin were common protective factors. Tumor size (11.14 ± 7.14 mm) is the most important indicator of metastasis formation. In addition, GGT, glucose, platelet volume distribution width, and neutrophil percentage also contributed to the development of metastases. The abnormal levels of blood lipid and uric acid were closely related to the deterioration of tumor. The dual role of mean erythrocytic hemoglobin concentration in TC needs to be verified in a larger patient cohort. We have established a free online tool (http://www.cancer-thyroid.com/) that is available to all clinicians for the prognosis of patients at high risk of TC. Conclusion It is feasible to use XGBoost algorithm, combined with preoperative laboratory test indexes and demographic characteristics to predict tumor progression and metastasis in patients with TC, and its performance is better than that of Only using TI-RADS. The web tools we developed can help physicians with less clinical experience to choose the appropriate clinical decision or secondary confirmation of diagnosis results.
Collapse
Affiliation(s)
- Jianhua Gu
- Department of General Surgery, Shanghai Punan Hospital of Pudong New District, Shanghai, China,Department of General Surgery, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Rongli Xie
- Department of General Surgery, Ruijin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanna Zhao
- Department of Ultrasound, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhifeng Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingyu Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Xu
- Department of General Surgery, Shanghai Punan Hospital of Pudong New District, Shanghai, China,Department of General Surgery, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Zihuai Nie
- Department of General Surgery, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Enjun Miao
- Department of General Surgery, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Dan Tan
- Department of General Surgery, Ruijin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai, China,*Correspondence: Jian Fei, ; Dongjie Shen, ; Sibo Zhu,
| | - Dongjie Shen
- Department of General Surgery, Ruijin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Jian Fei, ; Dongjie Shen, ; Sibo Zhu,
| | - Jian Fei
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jian Fei, ; Dongjie Shen, ; Sibo Zhu,
| |
Collapse
|
7
|
Obrador E, Salvador-Palmer R, López-Blanch R, Oriol-Caballo M, Moreno-Murciano P, Estrela JM. N-Acetylcysteine Promotes Metastatic Spread of Melanoma in Mice. Cancers (Basel) 2022; 14:cancers14153614. [PMID: 35892873 PMCID: PMC9331881 DOI: 10.3390/cancers14153614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Malignant melanoma is a cancer derived from melanocytes, the cells that produce pigment (melanin) in the skin. It develops on the skin, but can also appear on the mucous membranes and in other locations. Melanomas are responsible for 80% of deaths related to skin cancers. In recent years, the number of cases has increased alarmingly, likely in relation to sun exposure habits. Once melanoma spreads to distant parts of the body, the 5-year survival rate is about 10%. N-acetylcysteine (NAC) is a drug with antioxidant properties, and thereby could play a role in preventing cancer. NAC is commonly used as a mucolytic in different respiratory diseases, to treat acetaminophen (Tylenol) poisoning, and is also present in different nutritional supplements. Nevertheless, the use of NAC and other antioxidants in cancer has been questioned. Here, we show that high therapeutic doses of NAC may cause metastatic spread of a malignant melanoma. Abstract N-acetylcysteine (NAC) is a direct Cys donor and a promoter of glutathione (GSH) synthesis. GSH regulates melanoma growth and NAC has been suggested to increase melanoma metastases in mice. We found that high therapeutic doses of NAC do not increase the growth of melanoma xenografts, but can cause metastatic spread and distant metastases. Nevertheless, this is not due to an antioxidant effect since NAC, in fact, increases the generation of reactive oxygen species in the growing metastatic melanoma. Trolox, an antioxidant vitamin E derivative, administered in vivo, decreased metastatic growth. Metastatic cells isolated from NAC-treated mice showed an increase in the nuclear translocation of Nrf2, as compared to controls. Nrf2, a master regulator of the antioxidant response, controls the expression of different antioxidant enzymes and of the γ-glutamylcysteine ligase (the rate-limiting step in GSH synthesis). Cystine uptake through the xCT cystine-glutamate antiporter (generating intracellular Cys) and the γ-glutamylcysteine ligase activity are key to control metastatic growth. This is associated to an increase in the utilization of L-Gln by the metastatic cells, another metastases promoter. Our results demonstrate the potential of NAC as an inducer of melanoma metastases spread, and suggest that caution should be taken when administering GSH promoters to cancer patients.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
- Scientia BioTech S.L., 46002 Valencia, Spain;
- Correspondence: (E.O.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
| | - Rafael López-Blanch
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
- Scientia BioTech S.L., 46002 Valencia, Spain;
| | - María Oriol-Caballo
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
| | | | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
- Scientia BioTech S.L., 46002 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
- Correspondence: (E.O.); (J.M.E.)
| |
Collapse
|
8
|
Zhang P, Chen D, Li L, Sun K. Charge reversal nano-systems for tumor therapy. J Nanobiotechnology 2022; 20:31. [PMID: 35012546 PMCID: PMC8751315 DOI: 10.1186/s12951-021-01221-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
Surface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems.
Collapse
Affiliation(s)
- Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.
| | - Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Lin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd, Yantai, 264003, People's Republic of China
| |
Collapse
|
9
|
Varshavi D, Varshavi D, McCarthy N, Veselkov K, Keun HC, Everett JR. Metabonomics study of the effects of single copy mutant KRAS in the presence or absence of WT allele using human HCT116 isogenic cell lines. Metabolomics 2021; 17:104. [PMID: 34822010 PMCID: PMC8616861 DOI: 10.1007/s11306-021-01852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/31/2021] [Indexed: 12/02/2022]
Abstract
INTRODUCTION KRAS was one of the earliest human oncogenes to be described and is one of the most commonly mutated genes in different human cancers, including colorectal cancer. Despite KRAS mutants being known driver mutations, KRAS has proved difficult to target therapeutically, necessitating a comprehensive understanding of the molecular mechanisms underlying KRAS-driven cellular transformation. OBJECTIVES To investigate the metabolic signatures associated with single copy mutant KRAS in isogenic human colorectal cancer cells and to determine what metabolic pathways are affected. METHODS Using NMR-based metabonomics, we compared wildtype (WT)-KRAS and mutant KRAS effects on cancer cell metabolism using metabolic profiling of the parental KRAS G13D/+ HCT116 cell line and its isogenic, derivative cell lines KRAS +/- and KRAS G13D/-. RESULTS Mutation in the KRAS oncogene leads to a general metabolic remodelling to sustain growth and counter stress, including alterations in the metabolism of amino acids and enhanced glutathione biosynthesis. Additionally, we show that KRASG13D/+ and KRASG13D/- cells have a distinct metabolic profile characterized by dysregulation of TCA cycle, up-regulation of glycolysis and glutathione metabolism pathway as well as increased glutamine uptake and acetate utilization. CONCLUSIONS Our study showed the effect of a single point mutation in one KRAS allele and KRAS allele loss in an isogenic genetic background, hence avoiding confounding genetic factors. Metabolic differences among different KRAS mutations might play a role in their different responses to anticancer treatments and hence could be exploited as novel metabolic vulnerabilities to develop more effective therapies against oncogenic KRAS.
Collapse
Affiliation(s)
- Dorna Varshavi
- Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK
- Department of Biological Sciences, University of Alberta, 116 Street & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Dorsa Varshavi
- Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK
- Department of Biological Sciences, University of Alberta, 116 Street & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Nicola McCarthy
- Horizon Discovery Ltd., Cambridge Research Park, 8100 Beach Dr, Waterbeach, Cambridge, CB25 9TL, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Kirill Veselkov
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK
| | - Hector C Keun
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN, UK
| | - Jeremy R Everett
- Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK.
| |
Collapse
|
10
|
Jiang T, Lyu SC, Zhou L, Wang J, Li H, He Q, Lang R. Carbohydrate antigen 19-9 as a novel prognostic biomarker in distal cholangiocarcinoma. World J Gastrointest Surg 2021; 13:1025-1038. [PMID: 34621478 PMCID: PMC8462080 DOI: 10.4240/wjgs.v13.i9.1025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/18/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Distal cholangiocarcinoma (DCC) presents as one of the relatively rare malignant tumors in the digestive system and has a poor long-term prognosis. Curative resection is currently the most appropriate therapy for patients with DCC because of the lack of effective adjuvant therapies. Therefore, it is important to accurately predict the prognosis for formulating a reasonable treatment plan and avoiding unnecessary surgical trauma.
AIM To minimize the interference of obstructive jaundice on carbohydrate antigen 19-9 (CA19-9) level by adapting CA19-9 to γ-glutamyltransferase (GGT) as an indicator, to determine the strong associations between CA19-9/GGT and postoperative neoplasm recurrence and long-term outcome of DCC.
METHODS We enrolled 186 patients who were diagnosed with DCC between January 2010 and December 2019 and performed radical excision with strict criteria as follows in our hospital. Receiver operating characteristic curves were drawn according to preoperative CA19-9/GGT and 1-year survival. Based on this, patients were divided into two groups (group 1, low-ratio, n = 81; group 2, high-ratio, n = 105). Afterwards, by the way of univariate and multivariate analysis, the risk factors influencing postoperative tumor recrudesce and long-term prognosis of patients with DCC were screened out.
RESULTS Optimum cut-off value of CA19-9/GGT was 0.12. Patients in group 2 represented higher CA19-9 and lymphatic metastasis rate accompanied by lower GGT, when compared with group 1 (P < 0.05). The 1-, 3- and 5-year overall survival rates of patients in groups 1 and 2 were 88.3%, 59.2% and 48.1%, and 61.0%, 13.6% and 13.6%, respectively (P = 0.000). Multivariate analysis indicated that CA19-9/GGT, lymphatic metastasis and tumor differentiation were independent risk factors for tumor recurrence and long-term prognosis of DCC.
CONCLUSION Elevation of CA19-9/GGT performed better as a biomarker of aggressive carcinoma and predictor of poor clinical outcomes by reducing the effect of obstruction of biliary tract on CA19-9 concentration in patients with DCC.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shao-Cheng Lyu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Lin Zhou
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jing Wang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Han Li
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
11
|
Shimomura T, Hirakawa N, Ohuchi Y, Ishiyama M, Shiga M, Ueno Y. Simple Fluorescence Assay for Cystine Uptake via the xCT in Cells Using Selenocystine and a Fluorescent Probe. ACS Sens 2021; 6:2125-2128. [PMID: 34080411 DOI: 10.1021/acssensors.1c00496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cystine/glutamate antiporter (xCT) is a crucial transporter that maintains cellular redox balance by regulating intracellular glutathione synthesis via cystine uptake. However, no robust and simple method to determine the cystine uptake activity of xCT is currently available. We have developed a method to measure the xCT activity via the reaction of selenocysteine and fluorescein O,O'-diacrylate (FOdA). Selenocystine, a cystine analogue, is transported into cells through xCT on the cell membrane. The amount of the transported selenocystine was then determined by a reaction using tris(2-carboxyethyl)phosphine (TCEP) and FOdA in a weak acidic buffer at pH 6. Using this method, the cystine uptake activity of xCT in various cells and the inhibitory efficiency of xCT inhibitors, were evaluated.
Collapse
Affiliation(s)
- Takashi Shimomura
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Norio Hirakawa
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Yuya Ohuchi
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Munetaka Ishiyama
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Masanobu Shiga
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Yuichiro Ueno
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| |
Collapse
|
12
|
A Systematic Review of Serum γ-Glutamyltransferase as a Prognostic Biomarker in Patients with Genitourinary Cancer. Antioxidants (Basel) 2021; 10:antiox10040549. [PMID: 33916150 PMCID: PMC8066142 DOI: 10.3390/antiox10040549] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
γ-Glutamyltransferase (GGT), a membrane-bound enzyme, contributes to the metabolism of glutathione (GSH), which plays a critical physiological role in protecting cells against oxidative stress. GGT has been proposed as a biomarker of carcinogenesis and tumor progression given that GGT activity is important during both the promotion and invasion phases in cancer cells. Moreover, GGT expression is reportedly related to drug-resistance possibly because a wide range of drugs are conjugated with GSH, the availability of which is influenced by GGT activity. While serum GGT activity is commonly used as a quick, inexpensive, yet reliable means of assessing liver function, recent epidemiological studies have shown that it may also be an indicator of an increased risk of prostate cancer development. Moreover, elevated serum GGT is reportedly an adverse prognostic predictor in patients with urologic neoplasms, including renal cell carcinoma, prostate cancer, and urothelial carcinoma, although the background mechanisms have still not been well-characterized. The present review article summarizes the possible role of GGT in cancer cells and focuses on evidence evaluation through a systematic review of the latest literature on the prognostic role of serum GGT in patients with genitourinary cancer.
Collapse
|
13
|
Jagust P, Alcalá S, Jr BS, Heeschen C, Sancho P. Glutathione metabolism is essential for self-renewal and chemoresistance of pancreatic cancer stem cells. World J Stem Cells 2020; 12:1410-1428. [PMID: 33312407 PMCID: PMC7705467 DOI: 10.4252/wjsc.v12.i11.1410] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/19/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cellular metabolism regulates stemness in health and disease. A reduced redox state is essential for self-renewal of normal and cancer stem cells (CSCs). However, while stem cells rely on glycolysis, different CSCs, including pancreatic CSCs, favor mitochondrial metabolism as their dominant energy-producing pathway. This suggests that powerful antioxidant networks must be in place to detoxify mitochondrial reactive oxygen species (ROS) and maintain stemness in oxidative CSCs. Since glutathione metabolism is critical for normal stem cell function and CSCs from breast, liver and gastric cancer show increased glutathione content, we hypothesized that pancreatic CSCs also rely on this pathway for ROS detoxification.
AIM To investigate the role of glutathione metabolism in pancreatic CSCs.
METHODS Primary pancreatic cancer cells of patient-derived xenografts (PDXs) were cultured in adherent or CSC-enriching sphere conditions to determine the role of glutathione metabolism in stemness. Real-time polymerase chain reaction (PCR) was used to validate RNAseq results involving glutathione metabolism genes in adherent vs spheres, as well as the expression of pluripotency-related genes following treatment. Public TCGA and GTEx RNAseq data from pancreatic cancer vs normal tissue samples were analyzed using the webserver GEPIA2. The glutathione-sensitive fluorescent probe monochlorobimane was used to determine glutathione content by fluorimetry or flow cytometry. Pharmacological inhibitors of glutathione synthesis and recycling [buthionine-sulfoximine (BSO) and 6-Aminonicotinamide (6-AN), respectively] were used to investigate the impact of glutathione depletion on CSC-enriched cultures. Staining with propidium iodide (cell cycle), Annexin-V (apoptosis) and CD133 (CSC content) were determined by flow cytometry. Self-renewal was assessed by sphere formation assay and response to gemcitabine treatment was used as a readout for chemoresistance.
RESULTS Analysis of our previously published RNAseq dataset E-MTAB-3808 revealed up-regulation of genes involved in the KEGG (Kyoto Encyclopedia of Genes and Genomes) Pathway Glutathione Metabolism in CSC-enriched cultures compared to their differentiated counterparts. Consistently, in pancreatic cancer patient samples the expression of most of these up-regulated genes positively correlated with a stemness signature defined by NANOG, KLF4, SOX2 and OCT4 expression (P < 10-5). Moreover, 3 of the upregulated genes (MGST1, GPX8, GCCT) were associated with reduced disease-free survival in patients [Hazard ratio (HR) 2.2-2.5; P = 0.03-0.0054], suggesting a critical role for this pathway in pancreatic cancer progression. CSC-enriched sphere cultures also showed increased expression of different glutathione metabolism-related genes, as well as enhanced glutathione content in its reduced form (GSH). Glutathione depletion with BSO induced cell cycle arrest and apoptosis in spheres, and diminished the expression of stemness genes. Moreover, treatment with either BSO or the glutathione recycling inhibitor 6-AN inhibited self-renewal and the expression of the CSC marker CD133. GSH content in spheres positively correlated with intrinsic resistance to gemcitabine treatment in different PDXs r = 0.96, P = 5.8 × 1011). Additionally, CD133+ cells accumulated GSH in response to gemcitabine, which was abrogated by BSO treatment (P < 0.05). Combined treatment with BSO and gemcitabine-induced apoptosis in CD133+ cells to levels comparable to CD133- cells and significantly diminished self-renewal (P < 0.05), suggesting that chemoresistance of CSCs is partially dependent on GSH metabolism.
CONCLUSION Our data suggest that pancreatic CSCs depend on glutathione metabolism. Pharmacological targeting of this pathway showed that high GSH content is essential to maintain CSC functionality in terms of self-renewal and chemoresistance.
Collapse
Affiliation(s)
- Petra Jagust
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sonia Alcalá
- Department of Biochemistry, Autónoma University of Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid 28029, Spain
| | - Bruno Sainz Jr
- Department of Biochemistry, Autónoma University of Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid 28029, Spain
| | - Christopher Heeschen
- Center for Single-Cell Omics & Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Patricia Sancho
- Hospital Universitario Miguel Servet, IIS Aragon, Zaragoza 50009, Spain
| |
Collapse
|
14
|
Rajaram R, Kanagavalli P, Senthilkumar S, Mathiyarasu J. Au Nanoparticle-decorated Nanoporous PEDOT Modified Glassy Carbon Electrode: A New Electrochemical Sensing Platform for the Detection of Glutathione. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0065-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Prognostic role of gamma-glutamyl transferase in metastatic melanoma patients treated with immune checkpoint inhibitors. Cancer Immunol Immunother 2020; 70:1089-1099. [PMID: 33113003 DOI: 10.1007/s00262-020-02768-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hepatic immune-related adverse events (irAE) including elevated liver function tests (transaminases) occur in 1.4-22.3% of melanoma patients receiving immune checkpoint inhibitors (ICPI) and constitute a potentially serious toxicity that is challenging to treat. In contrast to the liver transaminases alanine aminotransferase (ALT) and aspartate aminotransferase (AST), only little is known about the frequency and impact of gamma-glutamyl transferase (GGT) elevations. METHODS GGT determined prior to and during therapy of metastatic melanoma patients treated with ICPI were retrospectively assessed in two independent cohorts (PD-1: n = 218, Ipi + Nivo: n = 148). Overall survival (OS) and best objective response were analyzed according to baseline and immune-related GGT (irGGT) elevations during treatment. RESULTS In multivariate analysis, OS was reduced in patients with elevated baseline GGT (PD-1 group: hazard ratio [HR] 1.76, p = .0073; Ipi + Nivo group: HR 1.77, p = .032). Immune-related GGT elevation was recorded in 17% (PD-1 group) and 38.5% (Ipi + Nivo group). Of these patients, the majority (81 and 68%, respectively) had normal ALT and AST and showed no clinical signs of hepatotoxicity. Patients who experienced irGGT elevation had superior response (PD-1 group: odds ratio [OR] 3.57, p = .00072; Ipi + Nivo group: OR 1.74, p = .12) and OS (PD-1 group: HR 0.37, p = .0016; Ipi + Nivo group: HR 0.33, p = .00050). CONCLUSIONS The frequency of hepatic irAE is currently underestimated. The addition of the sensitive enzyme GGT to the laboratory panel before and during therapy with ICPI allows to detect two to three times more patients developing hepatic or hepatobiliary toxicity than known so far. Immune-related GGT elevations correlate with response and favorable survival. Precis for use in the Table of Contents The frequency of hepatotoxicity under immune checkpoint blockade is currently underestimated. We suggest the addition of gamma-glutamyl transferase to the laboratory panel in checkpoint inhibitor patients for the detection of hepatobiliary toxicity.
Collapse
|
16
|
Yang N, Qiu F, Zhu F, Qi L. Therapeutic Potential of Zinc Oxide-Loaded Syringic Acid Against in vitro and in vivo Model of Lung Cancer. Int J Nanomedicine 2020; 15:8249-8260. [PMID: 33149573 PMCID: PMC7602902 DOI: 10.2147/ijn.s272997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/29/2020] [Indexed: 01/02/2023] Open
Abstract
Introduction Lung cancer is one of the most aggressive forms of cancer that leads to a high mortality rate amongst several cancer types and it is a widely recurrent cancer globally. The use of zinc oxide nanoparticles (ZnONPs) in the formulation of sun cream, food flavors, and colorings due to its varied biological properties. The extensive significance of nanoparticles encourages their production but the approaches are a common challenge in concluding the direct beneficial effect for the disease treatment. Hence, in the present study, zinc oxide-loaded syringic acid (ZnO-SYR) phytochemical was used to elucidate the therapeutic effect against lung cancer. Methods The ZnO-SYR nanoparticles were synthesized and characterized by UV-visible spectroscopy, X-ray diffraction, dynamic light scattering, and FT-IR analysis. The characterized ZnO-SYR was tested on in vivo mouse model of lung cancer (benzo(a)pyrene (BAP)) and in vitro A549 cells. Results The results demonstrated the significant restoration of body weight with attenuated serum marker enzymes compared to BAP-treated animals. In addition, cytokine estimation revealed ameliorated levels of TNF-α, interleukins, IL-6, IL-1β with evidenced histological observations in ZnO-SYR-treated mice compared to BAP-induced lung cancer mice. Discussion Furthermore, cytotoxicity analysis demonstrated the altered mitochondrial membrane potential (MMP), with a profound increase in reactive oxygen species (ROS) levels, and apoptosis mechanism by ZnO-SYR compared to control cells. The conclusions of the present study put forward an evident confirmation of the protective and beneficial effects of zincoxide-loaded syringic acid against the BAP-induced lung cancer model.
Collapse
Affiliation(s)
- Ning Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China
| | - Feng Qiu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Feng Zhu
- Department of Thoracic Surgery, Shandong Provincial Chest Hospital, Jinan, Shandong 250013, People's Republic of China
| | - Lei Qi
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| |
Collapse
|
17
|
Negm NA, Abubshait HA, Abubshait SA, Abou Kana MTH, Mohamed EA, Betiha MM. Performance of chitosan polymer as platform during sensors fabrication and sensing applications. Int J Biol Macromol 2020; 165:402-435. [PMID: 33007321 DOI: 10.1016/j.ijbiomac.2020.09.130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Chitosan is an important polymer produced from deacetylation of several sea and insects crusts. Due to its environmental fate and biological biocompatibility, it can be used in several biological and environmental applications. Sensing of biological compounds in human bodies and also in serum, blood, and different body fluids has found an important application instead of direct determination of the body fluids using complicated tools. Sensing process of biological compounds during bio-analysis of the biological systems, especially human fluids lack of several parameters including: high sensitivity, repeatability, speed of analysis and biocompatibility of the used analytical methods, especially in-vivo analysis. That was due to the time between sample handling and sample determination can change various components and concentrations of the bio-compounds. The need for in-situ analysis was directed the researchers for biosensors to overcome the upgrading problems of bio-analysis. Biosensors were the future of this issue. Chitosan can reserve as great platform for fabrication of different sensors to determine the elements, compounds and body bioactive compounds. The presence of different terminal amino and hydroxyl groups within chitosan framework facilitates the immobilization of different biomarkers to be used as sensing elements for the determined compounds. The use of chitosan as sensors platform was enhanced by using chitosan in its nanoforms.
Collapse
Affiliation(s)
- Nabel A Negm
- Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt.
| | - Haya A Abubshait
- Basic Sciences Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Samar A Abubshait
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Maram T H Abou Kana
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Egypt
| | - Eslam A Mohamed
- Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | | |
Collapse
|
18
|
Xiao B, Peng J, Tang J, Deng Y, Zhao Y, Wu X, Ding P, Lin J, Pan Z. Serum Gamma Glutamyl transferase is a predictor of recurrence after R0 hepatectomy for patients with colorectal cancer liver metastases. Ther Adv Med Oncol 2020; 12:1758835920947971. [PMID: 32913447 PMCID: PMC7444105 DOI: 10.1177/1758835920947971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/13/2020] [Indexed: 01/17/2023] Open
Abstract
Objectives: Gamma glutamyl-transpeptidase (GGT) has been shown as a prognostic marker in many cancers. The aim of this study was to explore whether serum GGT could predict tumor recurrence in patients with liver-confined colorectal cancer liver metastases (CRCLM) undergoing R0 resection. Methods: We reviewed patients who had underwent liver surgery for CRCLM. Patients with liver-only metastases that underwent R0 resection were included. Pre-operative serum GGT were classified into either high or low using a cut-off value of 33 U/L for female and 51 U/L for male. Relapse-free survival (RFS) was compared in relation to GGT and other clinicopathological factors. Results: Of the 350 patients included, 108 (30.9%) had a high serum GGT. Patients with metachronous liver metastases, number of metastases ⩾2, size of the largest metastasis ⩾3 cm, or a history of neoadjuvant chemotherapy had a higher GGT level (p = 0.001, 0.027, 0.001, and 0.002, respectively). In survival analyses, patients with a high GGT had a shorter RFS than those with a low GGT, with a median RFS of 11.8 versus 30.3 months (p < 0.001). RFS was also associated with the number of metastases, size of the largest metastasis and the delivery of neoadjuvant chemotherapy. In multivariate analysis, GGT remained an independent prognostic factor of RFS. Conclusions: Our study demonstrates that the serum GGT level before liver surgery is an adverse prognostic factor of RFS for patients with liver-confined CRCLM.
Collapse
Affiliation(s)
- Binyi Xiao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jianhong Peng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jinghua Tang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuxiang Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yujie Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaojun Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Peirong Ding
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Junzhong Lin
- Department of Colorectal Surgery, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China
| | - Zhizhong Pan
- Department of Colorectal Surgery, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China
| |
Collapse
|
19
|
Obrador E, Salvador R, López-Blanch R, Jihad-Jebbar A, Alcácer J, Benlloch M, Pellicer JA, Estrela JM. Melanoma in the liver: Oxidative stress and the mechanisms of metastatic cell survival. Semin Cancer Biol 2020; 71:109-121. [PMID: 32428715 DOI: 10.1016/j.semcancer.2020.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 12/16/2022]
Abstract
Metastatic melanoma is a fatal disease with a rapid systemic dissemination. The most frequent target sites are the liver, bone, and brain. Melanoma metastases represent a heterogeneous cell population, which associates with genomic instability and resistance to therapy. Interaction of melanoma cells with the hepatic sinusoidal endothelium initiates a signaling cascade involving cytokines, growth factors, bioactive lipids, and reactive oxygen and nitrogen species produced by the cancer cell, the endothelium, and also by different immune cells. Endothelial cell-derived NO and H2O2 and the action of immune cells cause the death of most melanoma cells that reach the hepatic microvascularization. Surviving melanoma cells attached to the endothelium of pre-capillary arterioles or sinusoids may follow two mechanisms of extravasation: a) migration through vessel fenestrae or b) intravascular proliferation followed by vessel rupture and microinflammation. Invading melanoma cells first form micrometastases within the normal lobular hepatic architecture via a mechanism regulated by cross-talk with the stroma and multiple microenvironment-related molecular signals. In this review special emphasis is placed on neuroendocrine (systemic) mechanisms as potential promoters of liver metastatic growth. Growing metastatic cells undergo functional and metabolic changes that increase their capacity to withstand oxidative/nitrosative stress, which favors their survival. This adaptive process also involves upregulation of Bcl-2-related antideath mechanisms, which seems to lead to the generation of more resistant cell subclones.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | | | - Ali Jihad-Jebbar
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - Javier Alcácer
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | - María Benlloch
- Department of Health & Functional Valorization, San Vicente Martir Catholic University, 46001, Valencia, Spain
| | - José A Pellicer
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - José M Estrela
- Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
20
|
Silva L, Coelho P, Teixeira D, Monteiro A, Pinto G, Soares R, Prudêncio C, Vieira M. Oxidative Stress Modulation and Radiosensitizing Effect of Quinoxaline-1,4-Dioxides Derivatives. Anticancer Agents Med Chem 2020; 20:111-120. [DOI: 10.2174/1871520619666191028091547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Background:
Quinoxaline-1,4-dioxide (QNX) derivatives are synthetic heterocyclic compounds with
multiple biological and pharmacological effects.
Objective:
In this study, we investigated the oxidative status of quinoxaline-1,4-dioxides derivatives in modulating
melanoma and glioma cell lines, based on previous results from the research group and their capability to
promote cell damage by the production of Reactive Oxygen Species (ROS).
Methods:
Using in vitro cell cultures, the influence of 2-amino-3-cyanoquinoxaline-1,4-dioxide (2A3CQNX), 3-
methyl-2-quinoxalinecarboxamide-1,4-dioxide (3M2QNXC) and 2-hydroxyphenazine-1,4-dioxide (2HF) was
evaluated in metabolic activity, catalase activity, glutathione and 3-nitrotyrosine (3-NT) quantitation by HPLC
in malignant melanocytes (B16-F10, MeWo) and brain tumor cells (GL-261 and BC3H1) submitted to radiotherapy
treatments (total dose of 6 Gy).
Results:
2HF increased the levels of 3-NT in non-irradiated MeWo and glioma cell lines and decreased cell
viability in these cell lines with and without irradiation.
Conclusions:
Quinoxaline-1,4-dioxides derivatives modulate the oxidative status in malignant melanocytes and
brain tumor cell lines and exhibited a potential radiosensitizer in vitro action on the tested radioresistant cell
lines.
Collapse
Affiliation(s)
- Liliana Silva
- Centro de Investigacao em Saude Ambiental (CISA), Escola Superior de Saude do Porto, Politecnico do Porto, Porto, Portugal
| | - Pedro Coelho
- Centro de Investigacao em Saude Ambiental (CISA), Escola Superior de Saude do Porto, Politecnico do Porto, Porto, Portugal
| | - Dulce Teixeira
- Centro de Investigacao em Saude Ambiental (CISA), Escola Superior de Saude do Porto, Politecnico do Porto, Porto, Portugal
| | - Armanda Monteiro
- Servico de Radioterapia, Centro Hospitalar de Sao Joao, Porto, Portugal
| | - Gabriela Pinto
- Servico de Radioterapia, Centro Hospitalar de Sao Joao, Porto, Portugal
| | - Raquel Soares
- Departamento de Biomedicina, Unidade de Bioquimica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Cristina Prudêncio
- Centro de Investigacao em Saude Ambiental (CISA), Escola Superior de Saude do Porto, Politecnico do Porto, Porto, Portugal
| | - Mónica Vieira
- Centro de Investigacao em Saude Ambiental (CISA), Escola Superior de Saude do Porto, Politecnico do Porto, Porto, Portugal
| |
Collapse
|
21
|
Yamashita S, Kato A, Akatsuka T, Sawada T, Asai T, Koyama N, Okita K. Clinical relevance of increased serum preneoplastic antigen in hepatitis C-related hepatocellular carcinoma. World J Gastroenterol 2020; 26:1463-1473. [PMID: 32308347 PMCID: PMC7152515 DOI: 10.3748/wjg.v26.i13.1463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The prognosis of hepatocellular carcinoma (HCC) patients remains poor despite advances in treatment modalities and diagnosis. It is important to identify useful markers for the early detection of HCC in patients. Preneoplastic antigen (PNA), originally reported in a rat carcinogenesis model, is increased in the tissues and serum of HCC patients.
AIM To determine the diagnostic value of PNA for discriminating HCC and to characterize PNA-positive HCC.
METHODS Patients with hepatitis C virus (HCV)-related hepatic disorders were prospectively enrolled in this study, which included patients with hepatitis, with cirrhosis, and with HCC. A novel enzyme-linked immunosorbent assay was developed to measure serum PNA concentrations in patients.
RESULTS Serum PNA concentrations were measured in 89 controls and 141 patients with HCV infections (50 hepatitis, 44 cirrhosis, and 47 HCC). Compared with control and non-HCC patients, PNA was increased in HCC. On receiver operating characteristic curve analysis, the sensitivity of PNA was similar to the HCC markers des-γ-carboxy-prothrombin (DCP) and α-fetoprotein (AFP), but the specificity of PNA was lower. There was no correlation between PNA and AFP and a significant but weak correlation between PNA and DCP in HCC patients. Importantly, the correlations with biochemical markers were completely different for PNA, AFP, and DCP; glutamyl transpeptidase was highly correlated with PNA, but not with AFP or DCP, and was significantly higher in PNA-high patients than in PNA-low patients with HCV-related HCC.
CONCLUSION PNA may have the potential to diagnose a novel type of HCC in which glutamyl transpeptidase is positively expressed but AFP or DCP is weakly or negatively expressed.
Collapse
Affiliation(s)
- Satoyoshi Yamashita
- Department of Gastroenterology and Hepatology, Japan Community Health Care Organization Shimonoseki Medical Center, Shimonoseki, Yamaguchi 7500061, Japan
| | - Akira Kato
- Department of Gastroenterology and Hepatology, Japan Community Health Care Organization Shimonoseki Medical Center, Shimonoseki, Yamaguchi 7500061, Japan
| | - Toshitaka Akatsuka
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama 3500495, Japan
| | - Takashi Sawada
- Research and Development Division, Sekisui Medical Company Limited, Ryugasaki, Ibaraki 3010852, Japan
| | - Tomohide Asai
- Research and Development Division, Sekisui Medical Company Limited, Ryugasaki, Ibaraki 3010852, Japan
| | - Noriyuki Koyama
- Clinical Research Department, Eidia Company Limited, Chiyoda-ku, Tokyo 1010032, Japan
- Eisai Company Limited, Shinjuku-ku, Tokyo 1620812, Japan
| | - Kiwamu Okita
- Department of Internal Medicine, Shunan Memorial Hospital, Kudamatsu, Yamaguchi 7440033, Japan
| |
Collapse
|
22
|
Obrador E, Liu-Smith F, Dellinger RW, Salvador R, Meyskens FL, Estrela JM. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biol Chem 2019; 400:589-612. [PMID: 30352021 DOI: 10.1515/hsz-2018-0327] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
The high number of somatic mutations in the melanoma genome associated with cumulative ultra violet (UV) exposure has rendered it one of the most difficult of cancers to treat. With new treatment approaches based on targeted and immune therapies, drug resistance has appeared as a consistent problem. Redox biology, including reactive oxygen and nitrogen species (ROS and RNS), plays a central role in all aspects of melanoma pathophysiology, from initiation to progression and to metastatic cells. The involvement of melanin production and UV radiation in ROS/RNS generation has rendered the melanocytic lineage a unique system for studying redox biology. Overall, an elevated oxidative status has been associated with melanoma, thus much effort has been expended to prevent or treat melanoma using antioxidants which are expected to counteract oxidative stress. The consequence of this redox-rebalance seems to be two-fold: on the one hand, cells may behave less aggressively or even undergo apoptosis; on the other hand, cells may survive better after being disseminated into the circulating system or after drug treatment, thus resulting in metastasis promotion or further drug resistance. In this review we summarize the current understanding of redox signaling in melanoma at cellular and systemic levels and discuss the experimental and potential clinic use of antioxidants and new epigenetic redox modifiers.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Feng Liu-Smith
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | | | - Rosario Salvador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Frank L Meyskens
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| | - José M Estrela
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
23
|
Jagust P, de Luxán-Delgado B, Parejo-Alonso B, Sancho P. Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells. Front Pharmacol 2019; 10:203. [PMID: 30967773 PMCID: PMC6438930 DOI: 10.3389/fphar.2019.00203] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer heterogeneity constitutes the major source of disease progression and therapy failure. Tumors comprise functionally diverse subpopulations, with cancer stem cells (CSCs) as the source of this heterogeneity. Since these cells bear in vivo tumorigenicity and metastatic potential, survive chemotherapy and drive relapse, its elimination may be the only way to achieve long-term survival in patients. Thanks to the great advances in the field over the last few years, we know now that cellular metabolism and stemness are highly intertwined in normal development and cancer. Indeed, CSCs show distinct metabolic features as compared with their more differentiated progenies, though their dominant metabolic phenotype varies across tumor entities, patients and even subclones within a tumor. Following initial works focused on glucose metabolism, current studies have unveiled particularities of CSC metabolism in terms of redox state, lipid metabolism and use of alternative fuels, such as amino acids or ketone bodies. In this review, we describe the different metabolic phenotypes attributed to CSCs with special focus on metabolism-based therapeutic strategies tested in preclinical and clinical settings.
Collapse
Affiliation(s)
- Petra Jagust
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz de Luxán-Delgado
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz Parejo-Alonso
- Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Patricia Sancho
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| |
Collapse
|
24
|
Shi M, Huang Y, Zhao J, Li S, Liu R, Zhao S. Quantification of glutathione in single cells from rat liver by microchip electrophoresis with chemiluminescence detection. Talanta 2017; 179:466-471. [PMID: 29310261 DOI: 10.1016/j.talanta.2017.11.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/08/2017] [Accepted: 11/16/2017] [Indexed: 01/07/2023]
Abstract
Glutathione (GSH) is a major endogenous antioxidant that has a central role in cellular defense against toxins and free radicals. Rapid and accurate detection of GSH content in single cells is important to the early diagnosis of disease and biomedical research. In this work, a novel method based on microchip electrophoresis chemiluminescence (MCE-CL) detection was developed for the quantification of glutathione (GSH) in single cells from rat liver. The detection of GSH is based on the strong sensitization of mercapto compound to luminol-H2O2CL system. The injection, localization, and membrane dissolution of single cell were simply and rapidly carried out on the microchip by direct electric field force, which did not require any additional membrane dissolution reagent. Under optimized experimental conditions, single cell assay was achieved within 2min. The peak area of the GSH was taken as quantification of GSH, and a good linear relationship of GSH concentration to peak area in the range of 3.0 × 10-6M to 6.0 × 10-4M was obtained. The detection limit for GSH is 9.6 × 10-7M, calculated by S/N = 3. The measured GSH content in single cells from rat liver (n = 10) ranged from 7.8fmol to 13.fmol with a mean value of 10.8fmol.
Collapse
Affiliation(s)
- Ming Shi
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and pharmacy, Guangxi Normal University, Guilin 541004, China; Guilin Normal College, Guilin 541001, China
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and pharmacy, Guangxi Normal University, Guilin 541004, China.
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Shuting Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Rongjun Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and pharmacy, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
25
|
Hatem E, El Banna N, Huang ME. Multifaceted Roles of Glutathione and Glutathione-Based Systems in Carcinogenesis and Anticancer Drug Resistance. Antioxid Redox Signal 2017; 27:1217-1234. [PMID: 28537430 DOI: 10.1089/ars.2017.7134] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Glutathione is the most abundant antioxidant molecule in living organisms and has multiple functions. Intracellular glutathione homeostasis, through its synthesis, consumption, and degradation, is an intricately balanced process. Glutathione levels are often high in tumor cells before treatment, and there is a strong correlation between elevated levels of intracellular glutathione/sustained glutathione-mediated redox activity and resistance to pro-oxidant anticancer therapy. Recent Advances: Ample evidence demonstrates that glutathione and glutathione-based systems are particularly relevant in cancer initiation, progression, and the development of anticancer drug resistance. CRITICAL ISSUES This review highlights the multifaceted roles of glutathione and glutathione-based systems in carcinogenesis, anticancer drug resistance, and clinical applications. FUTURE DIRECTIONS The evidence summarized here underscores the important role played by glutathione and the glutathione-based systems in carcinogenesis and anticancer drug resistance. Future studies should address mechanistic questions regarding the distinct roles of glutathione in different stages of cancer development and cancer cell death. It will be important to study how metabolic alterations in cancer cells can influence glutathione homeostasis. Sensitive approaches to monitor glutathione dynamics in subcellular compartments will be an indispensible step. Therapeutic perspectives should focus on mechanism-based rational drug combinations that are directed against multiple redox targets using effective, specific, and clinically safe inhibitors. This new strategy is expected to produce a synergistic effect, prevent drug resistance, and diminish doses of single drugs. Antioxid. Redox Signal. 27, 1217-1234.
Collapse
Affiliation(s)
- Elie Hatem
- 1 CNRS UMR3348, Institut Curie, PSL Research University , Orsay, France .,2 CNRS UMR3348, Université Paris Sud, Université Paris-Saclay , Orsay, France
| | - Nadine El Banna
- 1 CNRS UMR3348, Institut Curie, PSL Research University , Orsay, France .,2 CNRS UMR3348, Université Paris Sud, Université Paris-Saclay , Orsay, France
| | - Meng-Er Huang
- 1 CNRS UMR3348, Institut Curie, PSL Research University , Orsay, France .,2 CNRS UMR3348, Université Paris Sud, Université Paris-Saclay , Orsay, France
| |
Collapse
|
26
|
Wang Q, Shu X, Dong Y, Zhou J, Teng R, Shen J, Chen Y, Dong M, Zhang W, Huang Y, Xie S, Wei Q, Zhao W, Chen W, Yuan X, Qi X, Wang L. Tumor and serum gamma-glutamyl transpeptidase, new prognostic and molecular interpretation of an old biomarker in gastric cancer. Oncotarget 2017; 8:36171-36184. [PMID: 28404903 PMCID: PMC5482647 DOI: 10.18632/oncotarget.15609] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gastric Cancer is one of the most lethal malignancies worldwide. Gamma-glutamyl transpeptidase (GGT) is an enzyme mainly involved in cellular glutathione homeostasis. We aim to explore the clinical value of GGT in gastric cancer. RESULTS Among 322 patients enrolled, 65/82 patients were determined as GGT positive in serum/tumor, respectively. High tumor GGT expression is significantly associated with lymph node metastasis, histological subtype, and Her2 expression. Kaplan-Meier curve shows that high tumor GGT patients have shorter overall survival (P log-rank=0.001) and progress-free survival (P log-rank =0.001). Patients with both high tumor and serum GGT have the poorest prognosis. The multivariable Cox analysis shows that the hazard ratio of overall survival for high tumor GGT is 1.69 (95% CI 1.19-2.37). High serum GGT is a poor prognostic factor in adjuvant chemotherapy hazard ratio=2.18, 95%CI (1.15-4.47). These findings were further validated in six online datasets. Gene Sets Enrichment Analysis showed that GGT promotes cancer progression through EMT, KRAS, SRC and PKCA pathways. METHODS Tumor GGT and serum GGT levels were evaluated with immuno-histochemistry staining and enzymatic assay, respectively. Kaplan-Meier curve and Cox regression model were used to test the association between GGT and gastric cancer prognosis. Independent datasets from Gene Expression Omnibus and Gene Sets Enrichment Analysis were applied to validate the findings and explore the potential mechanisms. CONCLUSION Both tumor GGT and serum GGT are poor prognostic factors in gastric cancer. Patients with high tumor and serum GGT levels require more intense treatment and follow-up.
Collapse
Affiliation(s)
- Qinchuan Wang
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yong Dong
- Department of Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongyue Teng
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguo Shen
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingjun Dong
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Zhang
- Zhejiang Academy of Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Yasheng Huang
- Department of Unrology, Hangzhou Chinese Medicine Hospital, Hangzhou, China
| | - Shuduo Xie
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qun Wei
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhe Zhao
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Chen
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoming Yuan
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Qi
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Zhang C, Wang H, Ning Z, Xu L, Zhuang L, Wang P, Meng Z. Serum liver enzymes serve as prognostic factors in patients with intrahepatic cholangiocarcinoma. Onco Targets Ther 2017; 10:1441-1449. [PMID: 28331337 PMCID: PMC5348058 DOI: 10.2147/ott.s124161] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective Liver functions, reflective of the overall status of the host, have been reported to be important factors affecting the prognosis in many types of cancers. In this study, we explored the influences of liver enzymes albumin (ALB), globulin (GELO), total protein (TP), alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), gamma glutamyltranspeptidase (GGT), and lactate dehydrogenase (LDH) on the overall survival (OS) in a number of 173 patients with intrahepatic cholangiocarcinoma (ICC). Patients and methods Between 2011 and 2015, we enrolled patients with pathologically proven locally advanced or metastatic ICC. The impact of ALB, GELO, TP, ALP, ALT, AST, TBIL, DBIL, GGT, and LDH on OS were analyzed using Kaplan–Meier analysis. Next, the associations between these liver enzymes and OS were evaluated by univariate and multivariate analyses. Finally, the role of these enzymes in OS was evaluated in the subgroups. Results Elevated liver enzymes were linked with OS. We revealed that independent prognostic factors of poor outcome were ALP, TBIL, DBIL, and GGT, whereas ALB is a protective factor in ICC patients. Conclusion Our results demonstrate that these liver enzymes may serve as valuable predictive markers in ICC patients.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Haiyong Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Radiation Oncology, Shandong Cancer Hospita & Institute, Jinan, People's Republic of China
| | - Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Litao Xu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Liping Zhuang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Menga A, Palmieri EM, Cianciulli A, Infantino V, Mazzone M, Scilimati A, Palmieri F, Castegna A, Iacobazzi V. SLC25A26 overexpression impairs cell function via mtDNA hypermethylation and rewiring of methyl metabolism. FEBS J 2017; 284:967-984. [PMID: 28118529 DOI: 10.1111/febs.14028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/01/2016] [Accepted: 01/20/2017] [Indexed: 12/22/2022]
Abstract
Cancer cells down-regulate different genes to give them a selective advantage in invasiveness and/or metastasis. The SLC25A26 gene encodes the mitochondrial carrier that catalyzes the import of S-adenosylmethionine (SAM) into the mitochondrial matrix, required for mitochondrial methylation processes, and is down-regulated in cervical cancer cells. In this study we show that SLC25A26 is down-regulated due to gene promoter hypermethylation, as a mechanism to promote cell survival and proliferation. Furthermore, overexpression of SLC25A26 in CaSki cells increases mitochondrial SAM availability and promotes hypermethylation of mitochondrial DNA, leading to decreased expression of key respiratory complex subunits, reduction of mitochondrial ATP and release of cytochrome c. In addition, increased SAM transport into mitochondria leads to impairment of the methionine cycle with accumulation of homocysteine at the expense of glutathione, which is strongly reduced. All these events concur to arrest the cell cycle in the S phase, induce apoptosis and enhance chemosensitivity of SAM carrier-overexpressing CaSki cells to cisplatin.
Collapse
Affiliation(s)
- Alessio Menga
- National Cancer Research Center, Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Erika M Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Italy
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Italy
| | | | - Massimiliano Mazzone
- Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, Vesalius Research Center, KU Leuven, Belgium
| | | | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Italy
| | - Alessandra Castegna
- National Cancer Research Center, Istituto Tumori 'Giovanni Paolo II', Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Italy
| | - Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Italy
| |
Collapse
|
29
|
Long Y, Jia D, Wei L, Yang Y, Tian H, Chen T. Liver-Specific Overexpression of Gamma-Glutamyltransferase Ameliorates Insulin Sensitivity of Male C57BL/6 Mice. J Diabetes Res 2017; 2017:2654520. [PMID: 28660214 PMCID: PMC5474247 DOI: 10.1155/2017/2654520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/18/2017] [Accepted: 05/04/2017] [Indexed: 02/05/2023] Open
Abstract
In the current study, we developed a liver-specific GGT-overexpressing mice model by rapid injection pLIVE-GGT vector through tail vein and investigated the effects of GGT elevation on glucose metabolism and insulin sensitivity. The serum GGT activity was significantly increased after 7 days of pLIVE-GGT1 vector delivery and lasted for about 3 weeks. GGT overexpression reduced the levels of GSSG and GSH in the liver and serum and had no effects on total antioxidative capacity in the liver, kidney, and skeletal muscle except for the pancreas. Increased GGT activity had no effect on the glucose tolerance but could facilitate blood glucose lowering after intraperitoneal insulin administration. The results of Western blotting showed that increased GGT activity enhanced insulin-induced AKT phosphorylation at Ser473. Furthermore, GGT inhibitor could attenuate the changes of insulin-induced blood glucose uptake and AKT phosphorylation in the liver. In summary, the present study developed a liver-specific GGT-overexpressing mice model and found that GGT elevation in short term had no effects on glucose metabolism but could increase insulin sensitivity through enhancing the activity of insulin signaling pathway.
Collapse
Affiliation(s)
- Yang Long
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China
- Laboratory of Endocrinology, Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Dan Jia
- Division of General Practice, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Libin Wei
- Department of Stomatology, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Renqiu 062552, China
| | - Yumei Yang
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China
- Health Examination Management Center, Sichuan Province People's Hospital, Chengdu 610072, China
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China
- *Haoming Tian: and
| | - Tao Chen
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China
- *Tao Chen:
| |
Collapse
|
30
|
Phosphonate-based irreversible inhibitors of human γ-glutamyl transpeptidase (GGT). GGsTop is a non-toxic and highly selective inhibitor with critical electrostatic interaction with an active-site residue Lys562 for enhanced inhibitory activity. Bioorg Med Chem 2016; 24:5340-5352. [PMID: 27622749 DOI: 10.1016/j.bmc.2016.08.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 11/22/2022]
Abstract
γ-Glutamyl transpeptidase (GGT, EC 2.3.2.2) that catalyzes the hydrolysis and transpeptidation of glutathione and its S-conjugates is involved in a number of physiological and pathological processes through glutathione metabolism and is an attractive pharmaceutical target. We report here the evaluation of a phosphonate-based irreversible inhibitor, 2-amino-4-{[3-(carboxymethyl)phenoxy](methoyl)phosphoryl}butanoic acid (GGsTop) and its analogues as a mechanism-based inhibitor of human GGT. GGsTop is a stable compound, but inactivated the human enzyme significantly faster than the other phosphonates, and importantly did not inhibit a glutamine amidotransferase. The structure-activity relationships, X-ray crystallography with Escherichia coli GGT, sequence alignment and site-directed mutagenesis of human GGT revealed a critical electrostatic interaction between the terminal carboxylate of GGsTop and the active-site residue Lys562 of human GGT for potent inhibition. GGsTop showed no cytotoxicity toward human fibroblasts and hepatic stellate cells up to 1mM. GGsTop serves as a non-toxic, selective and highly potent irreversible GGT inhibitor that could be used for various in vivo as well as in vitro biochemical studies.
Collapse
|
31
|
Benlloch M, Obrador E, Valles SL, Rodriguez ML, Sirerol JA, Alcácer J, Pellicer JA, Salvador R, Cerdá C, Sáez GT, Estrela JM. Pterostilbene Decreases the Antioxidant Defenses of Aggressive Cancer Cells In Vivo: A Physiological Glucocorticoids- and Nrf2-Dependent Mechanism. Antioxid Redox Signal 2016; 24:974-90. [PMID: 26651028 PMCID: PMC4921902 DOI: 10.1089/ars.2015.6437] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Polyphenolic phytochemicals have anticancer properties. However, in mechanistic studies, lack of correlation with the bioavailable concentrations is a critical issue. Some reports had suggested that these molecules downregulate the stress response, which may affect growth and the antioxidant protection of malignant cells. Initially, we studied this potential underlying mechanism using different human melanomas (with genetic backgrounds correlating with most melanomas), growing in nude mice as xenografts, and pterostilbene (Pter, a natural dimethoxylated analog of resveratrol). RESULTS Intravenous administration of Pter decreased human melanoma growth in vivo. However, Pter, at levels measured within the tumors, did not affect melanoma growth in vitro. Pter inhibited pituitary production of the adrenocorticotropin hormone (ACTH), decreased plasma levels of corticosterone, and thereby downregulated the glucocorticoid receptor- and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent antioxidant defense system in growing melanomas. Exogenous corticosterone or genetically induced Nrf2 overexpression in melanoma cells prevented the inhibition of tumor growth and decreased antioxidant defenses in these malignant cells. These effects and mechanisms were also found in mice bearing different human pancreatic cancers. Glutathione depletion (selected as an antimelanoma strategy) facilitated the complete elimination by chemotherapy of melanoma cells isolated from mice treated with Pter. INNOVATION Although bioavailability-related limitations may preclude direct anticancer effects in vivo, natural polyphenols may also interfere with the growth and defense of cancer cells by downregulating the pituitary gland-dependent ACTH synthesis. CONCLUSIONS Pter downregulates glucocorticoid production, thus decreasing the glucocorticoid receptor and Nrf2-dependent signaling/transcription and the antioxidant protection of melanoma and pancreatic cancer cells. Antioxid. Redox Signal. 24, 974-990.
Collapse
Affiliation(s)
- María Benlloch
- 1 Department of Health and Functional Valorization, San Vicente Martir Catholic University , Valencia, Spain
| | - Elena Obrador
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - Soraya L Valles
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - María L Rodriguez
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - J Antoni Sirerol
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - Javier Alcácer
- 3 Pathology Laboratory, Quirón Hospital , Valencia, Spain
| | - José A Pellicer
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - Rosario Salvador
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - Concha Cerdá
- 4 Service of Clinical Analysis-CDB, General University Hospital, University of Valencia , Valencia, Spain
| | - Guillermo T Sáez
- 4 Service of Clinical Analysis-CDB, General University Hospital, University of Valencia , Valencia, Spain .,5 Department of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology-INCLIVA, Service of Clinical Analysis, Dr. Peset University Hospital, University of Valencia , Valencia, Spain
| | - José M Estrela
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| |
Collapse
|
32
|
Estrela JM, Ortega A, Mena S, Sirerol JA, Obrador E. Glutathione in metastases: From mechanisms to clinical applications. Crit Rev Clin Lab Sci 2016; 53:253-67. [DOI: 10.3109/10408363.2015.1136259] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology and
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Angel Ortega
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Mena
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - J. Antoni Sirerol
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology and
| |
Collapse
|
33
|
Integrative metabonomics as potential method for diagnosis of thyroid malignancy. Sci Rep 2015; 5:14869. [PMID: 26486570 PMCID: PMC4613561 DOI: 10.1038/srep14869] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/10/2015] [Indexed: 12/22/2022] Open
Abstract
Thyroid nodules can be classified into benign and malignant tumors. However, distinguishing between these two types of tumors can be challenging in clinics. Since malignant nodules require surgical intervention whereas asymptomatic benign tumors do not, there is an urgent need for new techniques that enable accurate diagnosis of malignant thyroid nodules. Here, we used 1H NMR spectroscopy coupled with pattern recognition techniques to analyze the metabonomes of thyroid tissues and their extracts from thyroid lesion patients (n = 53) and their adjacent healthy thyroid tissues (n = 46). We also measured fatty acid compositions using GC−FID/MS techniques as complementary information. We demonstrate that thyroid lesion tissues can be clearly distinguishable from healthy tissues, and malignant tumors can also be distinguished from the benign tumors based on the metabolic profiles, both with high sensitivity and specificity. In addition, we show that thyroid lesions are accompanied with disturbances of multiple metabolic pathways, including alterations in energy metabolism (glycolysis, lipid and TCA cycle), promotions in protein turnover, nucleotide biosynthesis as well as phosphatidylcholine biosynthesis. These findings provide essential information on the metabolic features of thyroid lesions and demonstrate that metabonomics technology can be potentially useful in the rapid and accurate preoperative diagnosis of malignant thyroid nodules.
Collapse
|
34
|
Khurana H, Meena VK, Prakash S, Chuttani K, Chadha N, Jaswal A, Dhawan DK, Mishra AK, Hazari PP. Preclinical Evaluation of a Potential GSH Ester Based PET/SPECT Imaging Probe DT(GSHMe)₂ to Detect Gamma Glutamyl Transferase Over Expressing Tumors. PLoS One 2015. [PMID: 26221728 PMCID: PMC4519333 DOI: 10.1371/journal.pone.0134281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gamma Glutamyl Transferase (GGT) is an important biomarker in malignant cancers. The redox processes ensuing from GGT-mediated metabolism of extracellular GSH are implicated in critical aspects of tumor cell biology. Reportedly, Glutathione monoethyl ester (GSHMe) is a substrate of GGT, which has been used for its rapid transport over glutathione. Exploring GGT to be an important target, a homobivalent peptide system, DT(GSHMe)2 was designed to target GGT-over expressing tumors for diagnostic purposes. DT(GSHMe)2 was synthesized, characterized and preclinically evaluated in vitro using toxicity, cell binding assays and time dependent experiments. Stable and defined radiochemistry with 99mTc and 68Ga was optimized for high radiochemical yield. In vivo biodistribution studies were conducted for different time points along with scintigraphic studies of radiolabeled DT(GSHMe)2 on xenografted tumor models. For further validation, in silico docking studies were performed on GGT (hGGT1, P19440). Preclinical in vitro evaluations on cell lines suggested minimal toxicity of DT(GSHMe)2 at 100 μM concentration. Kinetic analysis revealed transport of 99mTc-DT(GSHMe)2 occurs via a saturable high-affinity carrier with Michaelis constant (Km) of 2.25 μM and maximal transport rate velocity (Vmax) of 0.478 μM/min. Quantitative estimation of GGT expression from western blot experiments showed substantial expression with 41.6 ± 7.07 % IDV for tumor. Small animal micro PET (Positron Emission Tomography)/CT(Computed Tomography) coregistered images depicted significantly high uptake of DT(GSHMe)2 at the BMG-1 tumor site. ROI analysis showed high tumor to contra lateral muscle ratio of 9.33 in PET imaging studies. Avid accumulation of radiotracer was observed at tumor versus inflammation site at 2 h post i.v. injection in an Ehrlich Ascites tumor (EAT) mice model, showing evident specificity for tumor. We propose DT(GSHMe)2 to be an excellent candidate for prognostication and tumor imaging using PET/SPECT.
Collapse
Affiliation(s)
- Harleen Khurana
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
- Department of Biophysics, Biomedical Sciences Block, Panjab University, Chandigarh, India
| | - Virendra Kumar Meena
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Surbhi Prakash
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Krishna Chuttani
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Nidhi Chadha
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ambika Jaswal
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Devinder Kumar Dhawan
- Department of Biophysics, Biomedical Sciences Block, Panjab University, Chandigarh, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
- * E-mail: (PPH); (AKM)
| | - Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
- * E-mail: (PPH); (AKM)
| |
Collapse
|
35
|
Grintzalis K, Papapostolou I, Zisimopoulos D, Stamatiou I, Georgiou CD. Multiparametric protocol for the determination of thiol redox state in living matter. Free Radic Biol Med 2014; 74:85-98. [PMID: 24996203 DOI: 10.1016/j.freeradbiomed.2014.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/13/2014] [Accepted: 06/20/2014] [Indexed: 12/22/2022]
Abstract
Thiol redox state (TRS) evaluation is mostly restricted to the estimation of GSH and GSSG. However, these TRS parameters can estimate the GSSG/GSH potential, which might be useful for indicating abnormalities in redox metabolism. Nonetheless, evaluation of the multiparameric nature of TRS is required for a more accurate assessment of its physiological role. The present protocol extends the partial assessment of TRS by current methodologies. It measures 15 key parameters of TRS by two modular subprotocols: one for the glutathione (GSH)- and cysteine (CSH)-based nonprotein (NP) thiols/mixed disulfides (i.e., GSH, GSSG, GSSNP, CSH, CSSNP, NPSH, NPSSNP, NP(x)SH(NPSSNP), NP(x)SH(NPSH)), and the other for their protein (P) thiols/mixed disulfides (i.e., PSH, PSSG, PSSC, PSSNP, PSSP, NP(x)SH(PSSNP)). The protocol eliminates autoxidation of GSH and CSH (and thus overestimation of GSSG and CSSNP). Its modularity allows the determination GSH and GSSG also by other published specific assays. The protocol uses three assays; two are based on the photometric reagents 4,4'-dithiopyridine (DTP) and ninhydrin (NHD), and the third on the fluorometric reagent o-phthaldialdehyde (OPT). The initial assays employing these reagents have been extensively modified and redesigned for increased specificity, sensitivity, and simplicity. TRS parameter values and their standard errors are estimated automatically by sets of Excel-adapted algebraic equations. Protocol sensitivity for NPSH, PSH, NPSSNP, PSSP, PSSNP, CSH, CSSNP, PSSC, NP(x)SH(NPSSNP), and NP(x)SH(NPSH) is 1 nmol -SH/CSH, for GSSNP 0.2 nmol, for GSH and GSSG 0.4 nmol, and for PSSG 0.6 nmol. The protocol was applied on human plasma, a sample of high clinical value, and can be also applied in any organism.
Collapse
Affiliation(s)
- Konstantinos Grintzalis
- Genetics, Cell and Developmental Biology Section, Department of Biology, University of Patras, Patras, Greece.
| | - Ioannis Papapostolou
- Genetics, Cell and Developmental Biology Section, Department of Biology, University of Patras, Patras, Greece.
| | - Dimitris Zisimopoulos
- Genetics, Cell and Developmental Biology Section, Department of Biology, University of Patras, Patras, Greece.
| | - Irene Stamatiou
- Genetics, Cell and Developmental Biology Section, Department of Biology, University of Patras, Patras, Greece.
| | - Christos D Georgiou
- Genetics, Cell and Developmental Biology Section, Department of Biology, University of Patras, Patras, Greece.
| |
Collapse
|
36
|
Dong H, Tang J, Li LH, Ge J, Chen X, Ding J, Men HT, Luo WX, Du Y, Li C, Zhao F, Chen Y, Cheng K, Liu JY. Serum carbohydrate antigen 19-9 as an indicator of liver metastasis in colorectal carcinoma cases. Asian Pac J Cancer Prev 2014; 14:909-13. [PMID: 23621260 DOI: 10.7314/apjcp.2013.14.2.909] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The liver is the organ to which colorectal carcinomas (CRCs) most commonly metastasize, and surgical resection has been established as the most effective and potentially curative treatment for CRC with liver metastasis (LM). Therefore, surveillance of LM is vital for improvement of prognosis of CRC patients. In this study, we aimed to explore the potential value of carbohydrate antigen 19-9 (CA 19-9), carcinoembryonic antigen (CEA), and marker enzymes in indicating LM with CRC. METHODS Three groups of eligible patients with metastatic cancers were retrospectively included: CRC patients with LM (CRC-LM) or without LM (CRC- NLM), and non-CRC patients with LM (NCRC-LM). All metastatic lesions were identified by CT or MRI. Data on characteristics of the patients, the primary site, the locations of metastasis, CA 19-9, CEA, and biochemical parameters were collected for analysis. RESULTS A total of 493 patients were retrospectively included. More alcohol consumption was found in CRC-LM than CRC-NLM. Some biochemical enzymes were found to be significantly higher in groups with LM than without (CRC-LM or NCRC-LM v.s CRC-NLM). Both CEA and CA 19-9 were much higher in CRC-LM than CRC-NLM or NCRC-LM. For CRC patients, CA 19-9, γ-glutamyl transpeptidase, CEA and alcohol consumption were identified as independent factors associated with LM. CONCLUSION Our analysis suggested the CA 19-9 might be a potential valuable indicator for LM of CRC in the clinic.
Collapse
Affiliation(s)
- Hang Dong
- Department of Medical Oncology, Cancer Center, the State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Glucocorticoid receptor knockdown decreases the antioxidant protection of B16 melanoma cells: an endocrine system-related mechanism that compromises metastatic cell resistance to vascular endothelium-induced tumor cytotoxicity. PLoS One 2014; 9:e96466. [PMID: 24802641 PMCID: PMC4011753 DOI: 10.1371/journal.pone.0096466] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/09/2014] [Indexed: 12/21/2022] Open
Abstract
We previously reported an interorgan system in which stress-related hormones (corticosterone and noradrenaline), interleukin-6, and glutathione (GSH) coordinately regulate metastatic growth of highly aggressive B16-F10 melanoma cells. Corticosterone, at levels measured in tumor-bearing mice, also induces apoptotic cell death in metastatic cells with low GSH content. In the present study we explored the potential role of glucocorticoids in the regulation of metastatic cell death/survival during the early stages of organ invasion. Glucocorticoid receptor (GCR) knockdown decreased the expression and activity of γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step in GSH synthesis, in metastatic cells in vivo independent of the tumor location (liver, lung, or subcutaneous). The decrease in γ-GCS activity was associated with lower intracellular GSH levels. Nrf2- and p53-dependent down-regulation of γ-GCS was associated with a decrease in the activities of superoxide dismutase 1 and 2, catalase, glutathione peroxidase, and glutathione reductase, but not of the O2−-generating NADPH oxidase. The GCR knockdown-induced decrease in antioxidant protection caused a drastic decrease in the survival of metastatic cells during their interaction with endothelial cells, both in vitro and in vivo; only 10% of cancer cells attached to the endothelium survived compared to 90% survival observed in the controls. This very low rate of metastatic cell survival was partially increased (up to 52%) in vivo by inoculating B16-F10 cells preloaded with GSH ester, which enters the cell and delivers free GSH. Taken together, our results indicate that glucocorticoid signaling influences the survival of metastatic cells during their interaction with the vascular endothelium.
Collapse
|
38
|
Ren WX, Han J, Pradhan T, Lim JY, Lee JH, Lee J, Kim JH, Kim JS. A fluorescent probe to detect thiol-containing amino acids in solid tumors. Biomaterials 2014; 35:4157-67. [DOI: 10.1016/j.biomaterials.2014.01.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/22/2014] [Indexed: 01/22/2023]
|
39
|
Balakrishna S, Prabhune AA. Gamma-glutamyl transferases: A structural, mechanistic and physiological perspective. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1288-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Nakajima M, Watanabe B, Han L, Shimizu BI, Wada K, Fukuyama K, Suzuki H, Hiratake J. Glutathione-analogous peptidyl phosphorus esters as mechanism-based inhibitors of γ-glutamyl transpeptidase for probing cysteinyl-glycine binding site. Bioorg Med Chem 2013; 22:1176-94. [PMID: 24411479 DOI: 10.1016/j.bmc.2013.12.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/06/2013] [Accepted: 12/07/2013] [Indexed: 12/29/2022]
Abstract
γ-Glutamyl transpeptidase (GGT) catalyzing the cleavage of γ-glutamyl bond of glutathione and its S-conjugates is involved in a number of physiological and pathological processes through glutathione homeostasis. Defining its Cys-Gly binding site is extremely important not only in defining the physiological function of GGT, but also in designing specific and effective inhibitors for pharmaceutical purposes. Here we report the synthesis and evaluation of a series of glutathione-analogous peptidyl phosphorus esters as mechanism-based inhibitors of human and Escherichia coli GGTs to probe the structural and stereochemical preferences in the Cys-Gly binding site. Both enzymes were inhibited strongly and irreversibly by the peptidyl phosphorus esters with a good leaving group (phenoxide). Human GGT was highly selective for l-aliphatic amino acid such as l-2-aminobutyrate (l-Cys mimic) at the Cys binding site, whereas E. coli GGT significantly preferred l-Phe mimic at this site. The C-terminal Gly and a l-amino acid analogue at the Cys binding site were necessary for inhibition, suggesting that human GGT was highly selective for glutathione (γ-Glu-l-Cys-Gly), whereas E. coli GGT are not selective for glutathione, but still retained the dipeptide (l-AA-Gly) binding site. The diastereoisomers with respect to the chiral phosphorus were separated. Both GGTs were inactivated by only one of the stereoisomers with the same stereochemistry at phosphorus. The strict recognition of phosphorus stereochemistry gave insights into the stereochemical course of the catalyzed reaction. Ion-spray mass analysis of the inhibited E. coli GGT confirmed the formation of a 1:1 covalent adduct with the catalytic subunit (small subunit) with concomitant loss of phenoxide, leaving the peptidyl moiety that presumably occupies the Cys-Gly binding site. The peptidyl phosphonate inhibitors are highly useful as a ligand for X-ray structural analysis of GGT for defining hitherto unidentified Cys-Gly binding site to design specific inhibitors.
Collapse
Affiliation(s)
- Mado Nakajima
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Liyou Han
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Bun-Ichi Shimizu
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kei Wada
- Organization for Promotion of Tenure Track, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Keiichi Fukuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hideyuki Suzuki
- Division of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Jun Hiratake
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
41
|
Bains W. Transglutaminse 2 and EGGL, the protein cross-link formed by transglutaminse 2, as therapeutic targets for disabilities of old age. Rejuvenation Res 2013; 16:495-517. [PMID: 23968147 PMCID: PMC3869435 DOI: 10.1089/rej.2013.1452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/22/2013] [Indexed: 12/17/2022] Open
Abstract
Aging of the extracellular matrix (ECM), the protein matrix that surrounds and penetrates the tissues and binds the body together, contributes significantly to functional aging of tissues. ECM proteins become increasingly cross-linked with age, and this cross-linking is probably important in the decline of the ECM's function. This article reviews the role of ε-(γ-glutamyl)-lysine (EGGL), a cross-link formed by transglutaminase enzymes, and particularly the widely expressed isozyme transglutaminase 2 (TG2), in the aging ECM. There is little direct data on EGGL accumulation with age, and no direct evidence of a role of EGGL in the aging of the ECM with pathology. However, several lines of circumstantial evidence suggest that EGGL accumulates with age, and its association with pathology suggests that this might reflect degradation of ECM function. TG activity increases with age in many circumstances. ECM protein turnover is such that some EGGL made by TG is likely to remain in place for years, if not decades, in healthy tissue, and both EGGL and TG levels are enhanced by age-related diseases. If further research shows EGGL does accumulate with age, removing it could be of therapeutic benefit. Also reviewed is the blockade of TG and active removal of EGGL as therapeutic strategies, with the conclusion that both have promise. EGGL removal may have benefit for acute fibrotic diseases, such as tendinopathy, and for treating generalized decline in ECM function with old age. Extracellular TG2 and EGGL are therefore therapeutic targets both for specific and more generalized diseases of aging.
Collapse
Affiliation(s)
- William Bains
- SRF Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge , Cambridge, United Kingdom
| |
Collapse
|
42
|
Combined incubation of colon carcinoma cells with phorbol ester and mitochondrial uncoupling agents results in synergic elevated reactive oxygen species levels and increased γ-glutamyltransferase expression. Mol Cell Biochem 2013; 388:149-56. [DOI: 10.1007/s11010-013-1906-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 11/15/2013] [Indexed: 02/08/2023]
|
43
|
He WZ, Guo GF, Yin CX, Jiang C, Wang F, Qiu HJ, Chen XX, Rong RM, Zhang B, Xia LP. Gamma-glutamyl transpeptidase level is a novel adverse prognostic indicator in human metastatic colorectal cancer. Colorectal Dis 2013; 15:e443-52. [PMID: 23621885 DOI: 10.1111/codi.12258] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022]
Abstract
AIM Biomarkers have been utilized for prognosis in colorectal cancer; however, relatively few have been identified. We compared the prognostic value of serum alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and gamma-glutamyl transpeptidase (GGT) with carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) in patients with metastatic colorectal cancer (mCRC). METHOD Blood samples were collected from 239 patients with mCRC presenting between 2005 and 2010 in the Sun Yat-sen University Cancer Center. RESULTS CEA (P < 0.001), CA19-9 (P < 0.001), GGT (P < 0.001), ALP (P < 0.001) and LDH (P = 0.001) were statistically significant prognostic factors of overall survival (OS). CEA (P = 0.002) and GGT (P = 0.021) were validated as independent predictors. On univariate analysis, CEA (P = 0.003), CA19-9 (P = 0.006), GGT (P < 0.001) and ALP (P = 0.001) were statistically significant predictive factors of progression-free survival (PFS) in patients having first-line chemotherapy. CEA (P = 0.011) and GGT (P = 0.027) were independent predictors. GGT (P = 0.001), ALP (P = 0.016) and LDH (P = 0.039) levels were correlated with the tumour response rate assessed by CT, whilst CEA (P = 0.724) and CA19-9 (P = 0.822) were not. There was a statistically significant difference in OS (P < 0.001) and PFS (P < 0.001) among patients who had elevations of both CEA and GGT compared with those in whom only one or neither was elevated. CONCLUSION Among GGT, LDH and ALP, only GGT plays an independent role with CEA in predicting OS and PFS in mCRC. When coupled with CEA, GGT may lead to improved prognostic predictors.
Collapse
Affiliation(s)
- W-z He
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Role of glutathione in cancer progression and chemoresistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:972913. [PMID: 23766865 PMCID: PMC3673338 DOI: 10.1155/2013/972913] [Citation(s) in RCA: 762] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 01/19/2023]
Abstract
Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and disturbances in GSH homeostasis are involved in the etiology and progression of many human diseases including cancer. While GSH deficiency, or a decrease in the GSH/glutathione disulphide (GSSG) ratio, leads to an increased susceptibility to oxidative stress implicated in the progression of cancer, elevated GSH levels increase the antioxidant capacity and the resistance to oxidative stress as observed in many cancer cells. The present review highlights the role of GSH and related cytoprotective effects in the susceptibility to carcinogenesis and in the sensitivity of tumors to the cytotoxic effects of anticancer agents.
Collapse
|
45
|
Valles SL, Benlloch M, Rodriguez ML, Mena S, Pellicer JA, Asensi M, Obrador E, Estrela JM. Stress hormones promote growth of B16-F10 melanoma metastases: an interleukin 6- and glutathione-dependent mechanism. J Transl Med 2013; 11:72. [PMID: 23517603 PMCID: PMC3608962 DOI: 10.1186/1479-5876-11-72] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/12/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Interleukin (IL)-6 (mainly of tumor origin) activates glutathione (GSH) release from hepatocytes and its interorgan transport to B16-F10 melanoma metastatic foci. We studied if this capacity to overproduce IL-6 is regulated by cancer cell-independent mechanisms. METHODS Murine B16-F10 melanoma cells were cultured, transfected with red fluorescent protein, injected i.v. into syngenic C57BL/6J mice to generate lung and liver metastases, and isolated from metastatic foci using high-performance cell sorting. Stress hormones and IL-6 levels were measured by ELISA, and CRH expression in the brain by in situ hybridization. DNA binding activity of NF-κB, CREB, AP-1, and NF-IL-6 was measured using specific transcription factor assay kits. IL-6 expression was measured by RT-PCR, and silencing was achieved by transfection of anti-IL-6 small interfering RNA. GSH was determined by HPLC. Cell death analysis was distinguished using fluorescence microscopy, TUNEL labeling, and flow cytometry techniques. Statistical analyses were performed using Student's t test. RESULTS Plasma levels of stress-related hormones (adrenocorticotropin hormone, corticosterone, and noradrenaline) increased, following a circadian pattern and as compared to non-tumor controls, in mice bearing B16-F10 lung or liver metastases. Corticosterone and noradrenaline, at pathophysiological levels, increased expression and secretion of IL-6 in B16-F10 cells in vitro. Corticosterone- and noradrenaline-induced transcriptional up-regulation of IL-6 gene involves changes in the DNA binding activity of nuclear factor-κB, cAMP response element-binding protein, activator protein-1, and nuclear factor for IL-6. In vivo inoculation of B16-F10 cells transfected with anti-IL-6-siRNA, treatment with a glucocorticoid receptor blocker (RU-486) or with a β-adrenoceptor blocker (propranolol), increased hepatic GSH whereas decreased plasma IL-6 levels and metastatic growth. Corticosterone, but not NORA, also induced apoptotic cell death in metastatic cells with low GSH content. CONCLUSIONS Our results describe an interorgan system where stress-related hormones, IL-6, and GSH coordinately regulate metastases growth.
Collapse
Affiliation(s)
- Soraya L Valles
- Department of Physiology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - María Benlloch
- Faculty of Medicine, San Vicente Martir Catholic University, 2 Calle Quevedo, 46001, Valencia, Spain
| | - María L Rodriguez
- Department of Physiology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Salvador Mena
- Department of Physiology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - José A Pellicer
- Department of Physiology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Miguel Asensi
- Department of Physiology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Elena Obrador
- Department of Physiology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - José M Estrela
- Department of Physiology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| |
Collapse
|
46
|
Nagano O, Okazaki S, Saya H. Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene 2013; 32:5191-8. [PMID: 23334333 DOI: 10.1038/onc.2012.638] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/02/2012] [Accepted: 12/03/2012] [Indexed: 12/18/2022]
Abstract
Increasing evidence indicates that several types of solid tumor are hierarchically organized and sustained by a distinct population of cancer stem cells (CSCs). CSCs possess enhanced mechanisms of protection from stress induced by reactive oxygen species (ROS) that render them resistant to chemo- and radiotherapy. Expression of CD44, especially variant isoforms (CD44v) of this major CSC marker, contributes to ROS defense through upregulation of the synthesis of reduced glutathione (GSH), the primary intracellular antioxidant. CD44v interacts with and stabilizes xCT, a subunit of the cystine-glutamate transporter xc(-), and thereby promotes cystine uptake for GSH synthesis. Given that cancer cells are often exposed to high levels of ROS during tumor progression, the ability to avoid the consequences of such exposure is required for cancer cell survival and propagation in vivo. CSCs, in which defense against ROS is enhanced by CD44v are thus thought to drive tumor growth, chemoresistance and metastasis. Therapy targeted to the CD44v-xCT system may therefore impair the ROS defense ability of CSCs and thereby sensitize them to currently available treatments.
Collapse
Affiliation(s)
- O Nagano
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | | | | |
Collapse
|
47
|
An amperometric glutathione biosensor based on chitosan–iron coated gold nanoparticles modified Pt electrode. Int J Biol Macromol 2012; 51:879-86. [DOI: 10.1016/j.ijbiomac.2012.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 08/08/2012] [Indexed: 11/22/2022]
|
48
|
Hamsa TP, Kuttan G. Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic B16F-10 melanoma cells. Phytother Res 2011; 26:568-78. [PMID: 21953764 DOI: 10.1002/ptr.3586] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 05/07/2011] [Accepted: 05/11/2011] [Indexed: 12/28/2022]
Abstract
The present study demonstrated the potential antimetastatic and antiinvasive effect of berberine using both in vivo mouse lung metastasis and in vitro models. Administration of berberine resulted in significant suppression of B16F-10 melanoma induced tumor nodule formation and enhanced the survival of tumor-bearing mice. Berberine treatment also decreased various biochemical parameters associated with lung metastasis. These inhibitory actions may be due to the significant suppression of several signaling molecules such as ERK1/2, NF-κB, ATF-2 and CREB involved in the transcription signaling pathways for MMP gene expression. It could also inhibit the migration and invasion of highly metastatic murine melanoma cells in a dose-dependent manner in vitro. The results clearly show that berberine could significantly inhibit experimental lung metastasis produced by intravenous injection of B16F-10 melanoma cells and this effect could be linked to the down-regulation of metastasis-related signaling molecules.
Collapse
Affiliation(s)
- T P Hamsa
- Amala Cancer Research Centre, Amala Nagar, Thrissur, Kerala, India
| | | |
Collapse
|
49
|
Boutté AM, McDonald WH, Shyr Y, Yang L, Lin PC. Characterization of the MDSC proteome associated with metastatic murine mammary tumors using label-free mass spectrometry and shotgun proteomics. PLoS One 2011; 6:e22446. [PMID: 21853032 PMCID: PMC3154190 DOI: 10.1371/journal.pone.0022446] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/22/2011] [Indexed: 01/04/2023] Open
Abstract
Expansion of Gr-1+/CD11b+ myeloid derived suppressor cells (MDSCs) is governed by the presence of increasingly metastatic, malignant primary tumors. Metastasis, not the primary tumor, is often the cause of mortality. This study sought to fully characterize the MDSC proteome in response to metastatic and non-metastatic mammary tumors using label-free mass spectrometry shotgun proteomics in a mouse model with tumor cell lines, 67NR and 4T1, derived from the same tumor. 67NR cells form only primary mammary tumors, whereas 4T1 cells readily metastasize to the lungs, lymph nodes, and blood. Overall analysis identified a total of 2825 protein groups with a 0.78% false discovery rate. Of the 2814 true identifications, 43 proteins were exclusive to the 67NR group, 153 were exclusive to the 4T1 group, and 2618 were shared. Among the shared cohort, 26 proteins were increased and 31 were decreased in the metastatic 4T1 cohort compared to non-metastatic 67NR controls after filtering. MDSCs selectively express proteins involved in the γ-glutamyl transferase, glutathione synthase pathways, CREB transcription factor signaling, and other pathways involved in platelet aggregation, as well as lipid and amino acid metabolism, in response to highly metastatic 4T1 tumors. Cell cycle regulation dominated protein pathways and ontological groups of the 67NR non-metastatic group. Not only does this study provide a starting point to identify potential biomarkers of metastasis expressed by MDSCs; it identifies critical pathways that are unique to non-metastatic and metastatic conditions. Therapeutic interventions aimed at these pathways in MDSC may offer a new route to control malignancy and metastasis.
Collapse
Affiliation(s)
- Angela M Boutté
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
| | | | | | | | | |
Collapse
|
50
|
Pratheeshkumar P, Raphael TJ, Kuttan G. Nomilin Inhibits Metastasis via Induction of Apoptosis and Regulates the Activation of Transcription Factors and the Cytokine Profile in B16F-10 Cells. Integr Cancer Ther 2011; 11:48-60. [DOI: 10.1177/1534735411403307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nomilin is a triterpenoid present in common edible citrus fruits with putative anticancer properties. In this study, the authors investigated the antimetastatic potential of nomilin and its possible mechanism of action. Metastasis was induced in C57BL/6 mice through the lateral tail vein using highly metastatic B16F-10 melanoma cells. Administration of nomilin inhibited tumor nodule formation in the lungs (68%) and markedly increased the survival rate of the metastatic tumor–bearing animals. These results correlated with the biochemical parameters and histopathological analysis. Nomilin showed an inhibition of tumor cell invasion and activation of matrix metalloproteinases. Treatment with nomilin induced apoptotic response, characterized by an increase in the sub-G1 fraction of cells with chromatin condensation and membrane blebbing, a typical ladder of DNA fragmentation, and detection of apoptotic cells by TUNEL assay. Nomilin treatment also exhibited a downregulated Bcl-2 and cyclin-D1 expression and upregulated p53, Bax, caspase-9, caspase-3, p21, and p27 gene expression in B16F-10 cells. Proinflammatory cytokine production and gene expression were found to be downregulated in nomilin-treated cells. The study also reveals that nomilin could inhibit the activation and nuclear translocation of antiapoptotic transcription factors such as nuclear factor (NF)-κB, CREB, and ATF-2 in B16F-10 cells.
Collapse
Affiliation(s)
| | - Tharakan J. Raphael
- Amala Cancer Research Centre, Amala Nagar, Thrissur-680555, Kerala State, India
| | - Girija Kuttan
- Amala Cancer Research Centre, Amala Nagar, Thrissur-680555, Kerala State, India
| |
Collapse
|