1
|
Dong J, Song C, Huang M, Peng Z, Shi L, Sun Y, Chen J, Zhang X. Real-time visualizing cartilage-targeted catalytic nanomedicine designed from black phosphorus nanosheets for enhanced BMSC chondrogenic differentiation and in vivo antioxidative therapy. APPLIED MATERIALS TODAY 2024; 41:102436. [DOI: 10.1016/j.apmt.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
|
2
|
Li CJ, Park JH, Jin GS, Mandakhbayar N, Yeo D, Lee JH, Lee JH, Kim HS, Kim HW. Strontium/Silicon/Calcium-Releasing Hierarchically Structured 3D-Printed Scaffolds Accelerate Osteochondral Defect Repair. Adv Healthc Mater 2024; 13:e2400154. [PMID: 38647029 DOI: 10.1002/adhm.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Articular cartilage defects are a global challenge, causing substantial disability. Repairing large defects is problematic, often exceeding cartilage's self-healing capacity and damaging bone structures. To tackle this problem, a scaffold-mediated therapeutic ion delivery system is developed. These scaffolds are constructed from poly(ε-caprolactone) and strontium (Sr)-doped bioactive nanoglasses (SrBGn), creating a unique hierarchical structure featuring macropores from 3D printing, micropores, and nanotopologies due to SrBGn integration. The SrBGn-embedded scaffolds (SrBGn-µCh) release Sr, silicon (Si), and calcium (Ca) ions, which improve chondrocyte activation, adhesion, proliferation, and maturation-related gene expression. This multiple ion delivery significantly affects metabolic activity and maturation of chondrocytes. Importantly, Sr ions may play a role in chondrocyte regulation through the Notch signaling pathway. Notably, the scaffold's structure and topological cues expedite the recruitment, adhesion, spreading, and proliferation of chondrocytes and bone marrow-derived mesenchymal stem cells. Si and Ca ions accelerate osteogenic differentiation and blood vessel formation, while Sr ions enhance the polarization of M2 macrophages. The findings show that SrBGn-µCh scaffolds accelerate osteochondral defect repair by delivering multiple ions and providing structural/topological cues, ultimately supporting host cell functions and defect healing. This scaffold holds great promise for osteochondral repair applications.
Collapse
Affiliation(s)
- Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Gang Shi Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Donghyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
3
|
Su C, Chen Y, Tian S, Lu C, Lv Q. Research Progress on Emerging Polysaccharide Materials Applied in Tissue Engineering. Polymers (Basel) 2022; 14:polym14163268. [PMID: 36015525 PMCID: PMC9413976 DOI: 10.3390/polym14163268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The development and application of polysaccharide materials are popular areas of research. Emerging polysaccharide materials have been widely used in tissue engineering fields such as in skin trauma, bone defects, cartilage repair and arthritis due to their stability, good biocompatibility and reproducibility. This paper reviewed the recent progress of the application of polysaccharide materials in tissue engineering. Firstly, we introduced polysaccharide materials and their derivatives and summarized the physicochemical properties of polysaccharide materials and their application in tissue engineering after modification. Secondly, we introduced the processing methods of polysaccharide materials, including the processing of polysaccharides into amorphous hydrogels, microspheres and membranes. Then, we summarized the application of polysaccharide materials in tissue engineering. Finally, some views on the research and application of polysaccharide materials are presented. The purpose of this review was to summarize the current research progress on polysaccharide materials with special attention paid to the application of polysaccharide materials in tissue engineering.
Collapse
Affiliation(s)
- Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
- Correspondence:
| |
Collapse
|
4
|
Shen K, Liu X, Qin H, Chai Y, Wang L, Yu B. HA-g-CS Implant and Moderate-intensity Exercise Stimulate Subchondral Bone Remodeling and Promote Repair of Osteochondral Defects in Mice. Int J Med Sci 2021; 18:3808-3820. [PMID: 34790057 PMCID: PMC8579292 DOI: 10.7150/ijms.63401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/15/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Substantial evidence shows that crosstalk between cartilage and subchondral bone may play an important role in cartilage repair. Animal models have shown that hydroxyapatite-grafted-chitosan implant (HA-g-CS) and moderate-intensity exercise promote regeneration of osteochondral defects. However, no in vivo studies have demonstrated that these two factors may have a synergistic activity to facilitate subchondral bone remodeling in mice, thus supporting bone-cartilage repair. Questions: This study was to clarify whether HA-g-CS and moderate-intensity exercise might have a synergistic effect on facilitating (1) regeneration of osteochondral defects and (2) subchondral bone remodeling in a mouse model of osteochondral defects. Methods: Mouse models of osteochondral defects were created and divided into four groups. BC Group was subjected to no treatment, HC Group to HA-g-CS implantation into osteochondral defects, ME group to moderate-intensity treadmill running exercise, and HC+ME group to both HA-g-CS implantation and moderate-intensity exercise until sacrifice. Extent of subchondral bone remodeling at the injury site and subsequent cartilage repair were assessed at 4 weeks after surgery. Results: Compared with BC group, HC, ME and HC+ME groups showed more cartilage repair and thicker articular cartilage layers and HC+ME group acquired the best results. The extent of cartilage repair was correlated positively to bone formation activity at the injured site as verified by microCT and correlation analysis. Histology and immunofluorescence staining confirmed that bone remodeling activity was increased in HC and ME groups, and especially in HC+ME group. This bone formation process was accompanied by an increase in osteogenesis and chondrogenesis factors at the injury site which promoted cartilage repair. Conclusions: In a mouse model of osteochondral repair, HA-g-CS implant and moderate-intensity exercise may have a synergistic effect on improving osteochondral repair potentially through promotion of subchondral bone remodeling and generation of osteogenesis and chondrogenesis factors. Clinical Relevance: Combination of HA-g-CS implantation and moderate-intensity exercise may be considered potentially in clinic to promote osteochondral defect repair. Also, cartilage and subchondral bone forms a functional unit in an articular joint and subchondral bone may regulate cartilage repair by secreting growth factors in its remodeling process. However, a deeper insight into the exact role of HA-g-CS implantation and moderate-intensity exercise in promoting osteochondral repair in other animal models should be explored before they can be applied in clinic in the future.
Collapse
Affiliation(s)
- Ke Shen
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaonan Liu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hanjun Qin
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu Chai
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lei Wang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
5
|
Small-Diameter Subchondral Drilling Improves DNA and Proteoglycan Content of the Cartilaginous Repair Tissue in a Large Animal Model of a Full-Thickness Chondral Defect. J Clin Med 2020; 9:jcm9061903. [PMID: 32570841 PMCID: PMC7356183 DOI: 10.3390/jcm9061903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 01/02/2023] Open
Abstract
This study quantified changes in the DNA content and extracellular matrix composition of both the cartilaginous repair tissue and the adjacent cartilage in a large animal model of a chondral defect treated by subchondral drilling. Content of DNA, proteoglycans, and Type II and Type I collagen, as well as their different ratios were assessed at 6 months in vivo after treatment of full-thickness cartilage defects in the femoral trochlea of adult sheep with six subchondral drill holes, each of either 1.0 mm or 1.8 mm in diameter by biochemical analyses of the repair tissue and the adjacent cartilage and compared with the original cartilage. Only subchondral drilling which were 1.0 mm in diameter significantly increased both DNA and proteoglycan content of the repair tissue compared to the original cartilage. DNA content correlated with the proteoglycan and Type II collagen content within the repair tissue. Significantly higher amounts of Type I collagen within the repair tissue and significantly increased DNA, proteoglycan, and Type I collagen content in the adjacent cartilage were identified. These translational data support the use of small-diameter bone-cutting devices for marrow stimulation. Signs of early degeneration were present within the cartilaginous repair tissue and the adjacent cartilage.
Collapse
|
6
|
Tawonsawatruk T, Sriwatananukulkit O, Himakhun W, Hemstapat W. Comparison of pain behaviour and osteoarthritis progression between anterior cruciate ligament transection and osteochondral injury in rat models. Bone Joint Res 2018; 7:244-251. [PMID: 29922442 PMCID: PMC5987699 DOI: 10.1302/2046-3758.73.bjr-2017-0121.r2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Objectives In this study, we compared the pain behaviour and osteoarthritis (OA) progression between anterior cruciate ligament transection (ACLT) and osteochondral injury in surgically-induced OA rat models. Methods OA was induced in the knee joints of male Wistar rats using transection of the ACL or induction of osteochondral injury. Changes in the percentage of high limb weight distribution (%HLWD) on the operated hind limb were used to determine the pain behaviour in these models. The development of OA was assessed and compared using a histological evaluation based on the Osteoarthritis Research Society International (OARSI) cartilage OA histopathology score. Results Both models showed an increase in joint pain as indicated by a significant (p < 0.05) decrease in the values of %HLWD at one week post-surgery. In the osteochondral injury model, the %HLWD returned to normal within three weeks, while in the ACLT model, a significant decrease in the %HLWD was persistent over an eight-week period. In addition, OA progression was more advanced in the ACLT model than in the osteochondral injury model. Furthermore, the ACLT model exhibited a higher mean OA score than that of the osteochondral injury model at 12 weeks. Conclusion The development of pain patterns in the ACLT and osteochondral injury models is different in that the OA progression was significant in the ACLT model. Although both can be used as models for a post-traumatic injury of the knee, the selection of appropriate models for OA in preclinical studies should be specified and relevant to the clinical scenario. Cite this article: T. Tawonsawatruk, O. Sriwatananukulkit, W. Himakhun, W. Hemstapat. Comparison of pain behaviour and osteoarthritis progression between anterior cruciate ligament transection and osteochondral injury in rat models. Bone Joint Res 2018;7:244–251. DOI: 10.1302/2046-3758.73.BJR-2017-0121.R2.
Collapse
Affiliation(s)
- T Tawonsawatruk
- Department of Orthopedics, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - O Sriwatananukulkit
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - W Himakhun
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - W Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Pulkkinen H, Tiitu V, Valonen P, Hämäläinen ER, Lammi M, Kiviranta I. Recombinant human type II collagen as a material for cartilage tissue engineering. Int J Artif Organs 2018; 31:960-9. [DOI: 10.1177/039139880803101106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose Collagen type II is the major component of cartilage and would be an optimal scaffold material for reconstruction of injured cartilage tissue. In this study, the feasibility of recombinant human type II collagen gel as a 3-dimensional culture system for bovine chondrocytes was evaluated in vitro. Methods Bovine chondrocytes (4x106 cells) were seeded within collagen gels and cultivated for up to 4 weeks. The gels were investigated with confocal microscopy, histology, and biochemical assays. Results Confocal microscopy revealed that the cells maintained their viability during the entire cultivation period. The chondrocytes were evenly distributed inside the gels, and the number of cells and the amount of the extracellular matrix increased during cultivation. The chondrocytes maintained their round phenotype during the 4-week cultivation period. The glycosaminoglycan levels of the tissue increased during the experiment. The relative levels of aggrecan and type II collagen mRNA measured with realtime polymerase chain reaction (PCR) showed an increase at 1 week. Conclusion Our results imply that recombinant human type II collagen is a promising biomaterial for cartilage tissue engineering, allowing homogeneous distribution in the gel and biosynthesis of extracellular matrix components.
Collapse
Affiliation(s)
- H.J. Pulkkinen
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - V. Tiitu
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - P. Valonen
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - E.-R. Hämäläinen
- Bioprocess Engineering Laboratory, University of Oulu, Oulu - Finland
| | - M.J. Lammi
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Biosciences, Applied Biotechnology, University of Kuopio, Kuopio - Finland
| | - I. Kiviranta
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
- Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki - Finland
| |
Collapse
|
8
|
Köwitsch A, Zhou G, Groth T. Medical application of glycosaminoglycans: a review. J Tissue Eng Regen Med 2017; 12:e23-e41. [DOI: 10.1002/term.2398] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/08/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Alexander Köwitsch
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| | - Guoying Zhou
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| |
Collapse
|
9
|
Hybrid gels by conjugation of hyaluronic acid with poly(itaconic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5)undecane) copolymers. Int J Biol Macromol 2017; 98:407-418. [DOI: 10.1016/j.ijbiomac.2017.01.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 01/08/2023]
|
10
|
de Lima LAS, Lima KMG, de Oliveira LSS, Araújo AA, Fernandes de Araújo Junior R. Evaluation of the bony repair in rat cranial defect using near infrared reflectance spectroscopy and discriminant analysis. Biotechnol Prog 2017; 33:1160-1168. [DOI: 10.1002/btpr.2476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 12/30/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Leomir A. S. de Lima
- Div. of Analytical Chemistry, Inst. of Chemistry, Biological Chemistry and Chemometrics; Federal University of Rio Grande do Norte; Natal RN 59072-970 Brazil
| | - Kássio M. G. Lima
- Div. of Analytical Chemistry, Inst. of Chemistry, Biological Chemistry and Chemometrics; Federal University of Rio Grande do Norte; Natal RN 59072-970 Brazil
| | - Lana S. S. de Oliveira
- Dept. of Biophysics and Pharmacology; Post-graduation programme in Public Health/Post graduation programme in Pharmaceutical Science, Federal University of Rio Grande do Norte; Natal RN 59072-970 Brazil
| | - Aurigena A. Araújo
- Dept. of Biophysics and Pharmacology; Post-graduation programme in Public Health/Post graduation programme in Pharmaceutical Science, Federal University of Rio Grande do Norte; Natal RN 59072-970 Brazil
| | - Raimundo Fernandes de Araújo Junior
- Dept. of Morphology, Post-graduation programme in Health Science/Post graduation programme in Structural and Functional Biology; Federal University of Rio Grande do Norte; Natal RN 59072-970 Brazil
| |
Collapse
|
11
|
Travan A, Scognamiglio F, Borgogna M, Marsich E, Donati I, Tarusha L, Grassi M, Paoletti S. Hyaluronan delivery by polymer demixing in polysaccharide-based hydrogels and membranes for biomedical applications. Carbohydr Polym 2016; 150:408-18. [DOI: 10.1016/j.carbpol.2016.03.088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/14/2016] [Accepted: 03/29/2016] [Indexed: 02/08/2023]
|
12
|
Orth P, Peifer C, Goebel L, Cucchiarini M, Madry H. Comprehensive analysis of translational osteochondral repair: Focus on the histological assessment. ACTA ACUST UNITED AC 2015; 50:19-36. [PMID: 26515165 DOI: 10.1016/j.proghi.2015.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 12/15/2022]
Abstract
Articular cartilage guarantees for an optimal functioning of diarthrodial joints by providing a gliding surface for smooth articulation, weight distribution, and shock absorbing while the subchondral bone plays a crucial role in its biomechanical and nutritive support. Both tissues together form the osteochondral unit. The structural assessment of the osteochondral unit is now considered the key standard procedure for evaluating articular cartilage repair in translational animal models. The aim of this review is to give a detailed overview of the different methods for a comprehensive evaluation of osteochondral repair. The main focus is on the histological assessment as the gold standard, together with immunohistochemistry, and polarized light microscopy. Additionally, standards of macroscopic, non-destructive imaging such as high resolution MRI and micro-CT, biochemical, and molecular biological evaluations are addressed. Potential pitfalls of analysis are outlined. A second focus is to suggest recommendations for osteochondral evaluation.
Collapse
Affiliation(s)
- Patrick Orth
- Center of Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Kirrberger Strasse 100, Building 37, D-66421 Homburg/Saar, Germany; Department of Orthopaedic Surgery, Saarland University Medical Center, Kirrberger Strasse 100, Building 37, D-66421 Homburg/Saar, Germany.
| | - Carolin Peifer
- Center of Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Kirrberger Strasse 100, Building 37, D-66421 Homburg/Saar, Germany.
| | - Lars Goebel
- Center of Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Kirrberger Strasse 100, Building 37, D-66421 Homburg/Saar, Germany; Department of Orthopaedic Surgery, Saarland University Medical Center, Kirrberger Strasse 100, Building 37, D-66421 Homburg/Saar, Germany.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Kirrberger Strasse 100, Building 37, D-66421 Homburg/Saar, Germany.
| | - Henning Madry
- Center of Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Kirrberger Strasse 100, Building 37, D-66421 Homburg/Saar, Germany; Department of Orthopaedic Surgery, Saarland University Medical Center, Kirrberger Strasse 100, Building 37, D-66421 Homburg/Saar, Germany.
| |
Collapse
|
13
|
Vilela CA, Correia C, Oliveira JM, Sousa RA, Espregueira-Mendes J, Reis RL. Cartilage Repair Using Hydrogels: A Critical Review of in Vivo Experimental Designs. ACS Biomater Sci Eng 2015; 1:726-739. [DOI: 10.1021/acsbiomaterials.5b00245] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- C. A. Vilela
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life
and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- Orthopaedic
Department, Centro Hospitalar do Alto Ave, Guimarães, Portugal
| | - C. Correia
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | - J. M. Oliveira
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R. A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | - J. Espregueira-Mendes
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life
and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- Clínica
do Dragão, Espregueira-Mendes Sports Centre, Porto, Portugal
| | - R. L. Reis
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| |
Collapse
|
14
|
Pasold J, Zander K, Heskamp B, Grüttner C, Lüthen F, Tischer T, Jonitz-Heincke A, Bader R. Positive impact of IGF-1-coupled nanoparticles on the differentiation potential of human chondrocytes cultured on collagen scaffolds. Int J Nanomedicine 2015; 10:1131-43. [PMID: 25709437 PMCID: PMC4327566 DOI: 10.2147/ijn.s72872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE In the present study, silica nanoparticles (sNP) coupled with insulin-like growth factor 1 (IGF-1) were loaded on a collagen-based scaffold intended for cartilage repair, and the influence on the viability, proliferation, and differentiation potential of human primary articular chondrocytes was examined. METHODS Human chondrocytes were isolated from the hyaline cartilage of patients (n=4, female, mean age: 73±5.1 years) undergoing primary total knee joint replacement. Cells were dedifferentiated and then cultivated on a bioresorbable collagen matrix supplemented with fluorescent sNP coupled with IGF-1 (sNP-IGF-1). After 3, 7, and 14 days of cultivation, cell viability and integrity into the collagen scaffold as well as metabolic cell activity and synthesis rate of matrix proteins (collagen type I and II) were analyzed. RESULTS The number of vital cells increased over 14 days of cultivation, and the cells were able to infiltrate the collagen matrix (up to 120 μm by day 7). Chondrocytes cultured on the collagen scaffold supplemented with sNP-IGF-1 showed an increase in metabolic activity (5.98-fold), and reduced collagen type I (1.58-fold), but significantly increased collagen type II expression levels (1.53-fold; P=0.02) after 7 days of cultivation compared to 3 days. In contrast, chondrocytes grown in a monolayer on plastic supplemented with sNP-IGF-1 had significantly lower metabolic activity (1.32-fold; P=0.007), a consistent amount of collagen type I, and significantly reduced collagen type II protein expression (1.86-fold; P=0.001) after 7 days compared to 3 days. CONCLUSION Collagen-based scaffolds enriched with growth factors, such as IGF-1 coupled to nanoparticles, represent an improved therapeutic intervention for the targeted and controlled treatment of articular cartilage lesions.
Collapse
Affiliation(s)
- Juliane Pasold
- Department of Orthopaedics, Biomechanics and Implant Technology Laboratory, University Medicine Rostock, Rostock, Germany
| | - Kathleen Zander
- Department of Orthopaedics, Biomechanics and Implant Technology Laboratory, University Medicine Rostock, Rostock, Germany
| | - Benjamin Heskamp
- Department of Orthopaedics, Biomechanics and Implant Technology Laboratory, University Medicine Rostock, Rostock, Germany
| | | | - Frank Lüthen
- Institute of Cell Biology, University Medicine Rostock, Rostock, Germany
| | - Thomas Tischer
- Department of Orthopaedics, Biomechanics and Implant Technology Laboratory, University Medicine Rostock, Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Laboratory, University Medicine Rostock, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Biomechanics and Implant Technology Laboratory, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
15
|
Thankam FG, Muthu J. Infiltration and sustenance of viability of cells by amphiphilic biosynthetic biodegradable hydrogels. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1953-1965. [PMID: 24845306 DOI: 10.1007/s10856-014-5234-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
Amphiphilic biosynthetic hydrogels comprising natural polysaccharide alginate (I) and synthetic polyester polypropylene fumarate (II) units were prepared by crosslinking the copolymer of I and II with calcium ion and vinyl monomers viz, 2-hydroxyethyl methacrylate (HEMA), methyl methacrylate (MMA), butyl methacrylate (BMA) and N,N'-methylene bisacrylamide (NMBA). Three fast degradable hydrogels, ALPF-MMA, ALPF-HEMA and ALPF-BMA and one slow degradable hydrogel ALPF-NMBA were prepared. These hydrogels are amphiphilic and able to hold sufficient amount of proteins on their surfaces. All these hydrogels are found to be hemocompatible, cytocompatible and genocompatible. ALPF-NMBA promotes infiltration of L929 fibroblasts and 3D growth of H9c2 cardiomyoblasts and long-term viability.
Collapse
Affiliation(s)
- Finosh Gnanaprakasam Thankam
- Polymer Science Division, BMT Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695 012, Kerala, India
| | | |
Collapse
|
16
|
|
17
|
Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta Gen Subj 2014; 1840:2414-40. [PMID: 24608030 DOI: 10.1016/j.bbagen.2014.02.030] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/06/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Articular cartilage defects are a veritable therapeutic problem because therapeutic options are very scarce. Due to the poor self-regeneration capacity of cartilage, minor cartilage defects often lead to osteoarthritis. Several surgical strategies have been developed to repair damaged cartilage. Autologous chondrocyte implantation (ACI) gives encouraging results, but this cell-based therapy involves a step of chondrocyte expansion in a monolayer, which results in the loss in the differentiated phenotype. Thus, despite improvement in the quality of life for patients, reconstructed cartilage is in fact fibrocartilage. Successful ACI, according to the particular physiology of chondrocytes in vitro, requires active and phenotypically stabilized chondrocytes. SCOPE OF REVIEW This review describes the unique physiology of cartilage, with the factors involved in its formation, stabilization and degradation. Then, we focus on some of the most recent advances in cell therapy and tissue engineering that open up interesting perspectives for maintaining or obtaining the chondrogenic character of cells in order to treat cartilage lesions. MAJOR CONCLUSIONS Current research involves the use of chondrocytes or progenitor stem cells, associated with "smart" biomaterials and growth factors. Other influential factors, such as cell sources, oxygen pressure and mechanical strain are considered, as are recent developments in gene therapy to control the chondrocyte differentiation/dedifferentiation process. GENERAL SIGNIFICANCE This review provides new information on the mechanisms regulating the state of differentiation of chondrocytes and the chondrogenesis of mesenchymal stem cells that will lead to the development of new restorative cell therapy approaches in humans. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|
18
|
Song JQ, Dong F, Li X, Xu CP, Cui Z, Jiang N, Jia JJ, Yu B. Effect of treadmill exercise timing on repair of full-thickness defects of articular cartilage by bone-derived mesenchymal stem cells: an experimental investigation in rats. PLoS One 2014; 9:e90858. [PMID: 24595327 PMCID: PMC3940955 DOI: 10.1371/journal.pone.0090858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/06/2014] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Current medical practice for the treatment of articular cartilage lesions remains a clinical challenge due to the limited self-repair ability of articular cartilage. Both experimental and clinical researches show that moderate exercise can improve articular cartilage repair process. However, optimal timing of moderate exercise is unclear. We aimed to evaluate the effect of timing of moderate treadmill exercise on repair of full-thickness defects of articular cartilage. DESIGN Full-thickness cartilage defects were drilled in the patellar groove of bilateral femoral condyles in a total of 40 male SD rats before they were randomly assigned into four even groups. In sedentary control (SED) group, no exercise was given; in 2-week (2W), 4-week (4W) and 8-week groups, moderate treadmill exercise was initiated respectively two, four and eight weeks after operation. Half of the animals were sacrificed at week 10 after operation and half at week 14 after operation. Femoral condyles were harvested for gross observation and histochemical measurement by O'Driscoll scoring system. Collagen type II was detected by immunohistochemistry and mRNA expressions of aggrecan and collagen type II cartilage by RT-PCR. RESULTS Both 10 and 14 weeks post-operation, the best results were observed in 4W group and the worst results appeared in 2W group. The histochemistry scores and the expressions of collagen type II and aggrecan were significantly higher in 4W group than that in other three groups (P<0.05). CONCLUSIONS Moderate exercise at a selected timing (approximately 4 weeks) after injury can significantly promote the healing of cartilage defects but may hamper the repair process if performed too early while delayed intervention by moderate exercise may reduce its benefits in repair of the defects.
Collapse
Affiliation(s)
- Jin-qi Song
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Fu Dong
- Department of Orthopaedics, Beihai People's Hospital of Guangxi Province, Bei Hai, Guangxi Province, China
| | - Xue Li
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chang-peng Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhuang Cui
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Nan Jiang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jun-jie Jia
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Key Laboratory of Bone and Cartilage Regenerative Medicine of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Palumbo FS, Fiorica C, Pitarresi G, Giorgi M, Abramo F, Gulino A, Di Stefano M, Giammona G. Construction and evaluation of sponge scaffolds from hyaluronic acid derivatives for potential cartilage regeneration. J Mater Chem B 2014; 2:3243-3253. [DOI: 10.1039/c4tb00311j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Yao Y, He Y, Guan Q, Wu Q. A tetracycline expression system in combination with Sox9 for cartilage tissue engineering. Biomaterials 2013; 35:1898-906. [PMID: 24321708 DOI: 10.1016/j.biomaterials.2013.11.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/18/2013] [Indexed: 01/28/2023]
Abstract
Cartilage tissue engineering using controllable transcriptional therapy together with synthetic biopolymer scaffolds shows higher potential for overcoming chondrocyte degradation and constructing artificial cartilages both in vivo and in vitro. Here, the potential regulating tetracycline expression (Tet-on) system was used to express Sox9 both in vivo and in vitro. Chondrocyte degradation was measured in vitro and overcome by Soxf9 expression. Experiments confirmed the feasibility of the combined use of Sox9 and Tet-on system in cartilage tissue engineering. Engineered poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) scaffolds were seeded with recombinant chondrocytes which were transfected with Tet-induced Sox9 expression; the scaffolds were implanted under the skin of 8-week-old rats. The experimental group was injected with Dox in the abdomen, while the control group was injected with normal saline. After 4 or 8 days of implantation in vivo, the newly formed pieces of articular chondrocytes were taken out and measured. Dox injection in vivo showed positive effect on recombinant chondrocytes, in which Sox9 expression was up-regulated by an inducible system with specific matrix proteins. The results demonstrate this controllable transcriptional therapy is a potential approach for tissue engineering.
Collapse
Affiliation(s)
- Yi Yao
- MOE Key Lab. Bioinformatics, Center for Epigentics and Chromatin, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu He
- MOE Key Lab. Bioinformatics, Center for Epigentics and Chromatin, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qian Guan
- MOE Key Lab. Bioinformatics, Center for Epigentics and Chromatin, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- MOE Key Lab. Bioinformatics, Center for Epigentics and Chromatin, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
21
|
Serra CI, Soler C, Carrillo JM, Sopena JJ, Redondo JI, Cugat R. Effect of autologous platelet-rich plasma on the repair of full-thickness articular defects in rabbits. Knee Surg Sports Traumatol Arthrosc 2013; 21:1730-6. [PMID: 22918398 DOI: 10.1007/s00167-012-2141-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/09/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess the effect of autologous platelet-rich plasma on the repair of full-thickness articular cartilage lesions in immature rabbits. To that end, the samples were studied using macroscopic, microscopic and biomechanical techniques. METHODS Twenty-four 11-week-old New Zealand rabbits were divided into two groups based on the treatment (physiological saline serum PCB, autologous platelet-rich plasma PRP). Cartilage lesions were drilled in medial femoral condyle of these rabbits. Other 12 rabbits were under the same conditions, but they did not suffer any lesion and treatment (control group CTR). The three groups were divided into two subgroups, depending on the age at the time of killing (16 and 19 weeks old). RESULTS The CTR group showed the best possible value in the macroscopic and microscopic evaluation. Meanwhile, the PCB and PRP group values were lower than the CTR group values, at two times of the study, but similar to each other at 19 weeks. In the biomechanical study, at 16 weeks, the CTR and PCB groups behaved similarly, with values above PRP group values, while at 19 weeks, CTR group showed higher values than PCB and PRP groups, and there were no differences between these values. CONCLUSIONS The evolution of the tissue treated with autologous PRP showed a positive tendency over time, while the PCB group was negative. Nevertheless, at 19 weeks of age, the PRP treatment did not show better results than the PCB, both showing the characteristics of fibrocartilaginous tissue. Likewise, none of the two treatments produced a repair tissue as the healthy cartilage.
Collapse
Affiliation(s)
- Claudio Iván Serra
- Animal Medicine and Surgery Department, CEU Cardenal Herrera University, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Pitarresi G, Palumbo FS, Fiorica C, Calascibetta F, Di Stefano M, Giammona G. Injectable in situ forming microgels of hyaluronic acid-g-polylactic acid for methylprednisolone release. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2012.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Zhao W, Jin X, Cong Y, Liu Y, Fu J. Degradable natural polymer hydrogels for articular cartilage tissue engineering. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2013; 88:327-339. [DOI: 10.1002/jctb.3970] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/27/2012] [Indexed: 01/04/2025]
Abstract
AbstractArticular cartilage has poor ability to heal once damaged. Tissue engineering with scaffolds of polymer hydrogels is promising for cartilage regeneration and repair. Polymer hydrogels composed of highly hydrated crosslinked networks mimic the collagen networks of the cartilage extracellular matrix and thus are employed as inserts at cartilage defects not only to temporarily relieve the pain but also to support chondrocyte proliferation and neocartilage regeneration. The biocompatibility, biofunctionality, mechanical properties, and degradation of the polymer hydrogels are the most important parameters for hydrogel‐based cartilage tissue engineering. Degradable biopolymers with natural origin have been widely used as biomaterials for tissue engineering because of their outstanding biocompatibility, low immunological response, low cytotoxicity, and excellent capability to promote cell adhesion, proliferation, and regeneration of new tissues. This review covers several important natural proteins (collagen, gelatin, fibroin, and fibrin) and polysaccharides (chitosan, hyaluronan, alginate and agarose) widely used as hydrogels for articular cartilage tissue engineering. The mechanical properties, structures, modification, and structure–performance relationship of these hydrogels are discussed since the chemical structures and physical properties dictate the in vivo performance and applications of polymer hydrogels for articular cartilage regeneration and repair. © 2012 Society of Chemical Industry
Collapse
Affiliation(s)
- Wen Zhao
- Department of Orthopedic Surgery Beijing Aero‐space General Hospital Beijing China
| | - Xing Jin
- Clemson‐MUSC Bioengineering Joint Program Charleston SC 29425 USA
| | - Yang Cong
- School of Chemical Engineering Ningbo University of Technology Ningbo 315016 China
| | - Yuying Liu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics Medical University of South Carolina Charleston SC 29425 USA
| | - Jun Fu
- Ningbo Key Laboratory of Polymer Materials, Polymers and Composites Division, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo Zhejiang 315201 China
| |
Collapse
|
24
|
Lee JC, Lee SY, Min HJ, Han SA, Jang J, Lee S, Seong SC, Lee MC. Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng Part A 2012; 18:2173-86. [PMID: 22765885 DOI: 10.1089/ten.tea.2011.0643] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We developed a novel injectable type I collagen/hyaluronic acid/fibrinogen (COL/HA/FG) composite gel that encapsulated synovium-derived mesenchymal stem cells (SDSCs) for the repair of damaged articular cartilage. We first analyzed the suitability of the composite gel as a three-dimensional injectable cell carrier in vitro. In an in vivo rabbit model, the COL/HA/FG composite gel displayed the potential to regenerate and repair osteochondral defects in the knee. Culture of the SDSCs encapsulated COL/HA/FG composite gel in a chondrogenic medium resulted in high viability of the SDSCs and high expressions of type II collagen, aggrecan, and sox 9 mRNA. Moreover, glycosaminoglycans and type II collagen were accumulated within the extracellular matrix. In the animal model, the SDSCs encapsulated COL/HA/FG composite gel produced a hyaline-like cartilage construct. Twenty-four weeks after transplantation, the defects had been repaired with hyaline cartilage-like tissue that was densely stained by safranin-O and immunostained by a type II collagen antibody. This data suggest that the SDSC-encapsulated COL/HA/FG composite gel can be a good therapeutic candidate/strategy for repairing of damaged articular cartilage.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hong HJ, Lee JS, Choi JW, Min BH, Lee HB, Kim CH. Transplantation of Autologous Chondrocytes Seeded on a Fibrin/Hyaluronan Composite Gel Into Tracheal Cartilage Defects in Rabbits: Preliminary Results. Artif Organs 2012; 36:998-1006. [DOI: 10.1111/j.1525-1594.2012.01486.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proc Natl Acad Sci U S A 2012; 109:10012-7. [PMID: 22665791 DOI: 10.1073/pnas.1121605109] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Articular cartilage repair remains a significant and growing clinical challenge with the aging population. The native extracellular matrix (ECM) of articular cartilage is a 3D structure composed of proteinaceous fibers and a hydrogel ground substance that together provide the physical and biological cues to instruct cell behavior. Here we present fibrous scaffolds composed of poly(vinyl alcohol) and the biological cue chondroitin sulfate with fiber dimensions on the nanoscale for application to articular cartilage repair. The unique, low-density nature of the described nanofiber scaffolds allows for immediate cell infiltration for optimal tissue repair. The capacity for the scaffolds to facilitate cartilage-like tissue formation was evaluated in vitro. Compared with pellet cultures, the nanofiber scaffolds enhance chondrogenic differentiation of mesenchymal stems cells as indicated by increased ECM production and cartilage specific gene expression while also permitting cell proliferation. When implanted into rat osteochondral defects, acellular nanofiber scaffolds supported enhanced chondrogenesis marked by proteoglycan production minimally apparent in defects left empty. Furthermore, inclusion of chondroitin sulfate into the fibers enhanced cartilage-specific type II collagen synthesis in vitro and in vivo. By mimicking physical and biological cues of native ECM, the nanofiber scaffolds enhanced cartilaginous tissue formation, suggesting their potential utility for articular cartilage repair.
Collapse
|
27
|
Shi J, Zhang X, Zeng X, Zhu J, Pi Y, Zhou C, Ao Y. One-step articular cartilage repair: combination of in situ bone marrow stem cells with cell-free poly(L-lactic-co-glycolic acid) scaffold in a rabbit model. Orthopedics 2012; 35:e665-71. [PMID: 22588408 DOI: 10.3928/01477447-20120426-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Focal full-thickness articular cartilage defects are challenging to repair. The purpose of this study was to find a simple, effective 1-step articular cartilage repair method. Because stem cell niches produce a microenvironment for stem cell self-renewal, proliferation, and differentiation, we integrated in situ bone marrow stem cells with an implanted poly(L-lactic-co-glycolic acid) (PLLGA) scaffold. Marrow stem cells grew and proliferated on cell-free PLLGA scaffolds, which were evaluated by scanning electronic microscopy (SEM) and Cell Counting Kit-8 (Dojindo, Kumamoto, Japan). Twenty-seven rabbits (54 knees) with large cylinder femoral trochlear cartilage defects were created and repaired with microfracture and cell-free PLLGA scaffold implantation (group 1), microfracture (group 2), or cell-free PLLGA scaffold implantation (group 3).Outcomes were evaluated by magnetic resonance imaging, International Cartilage Repair Society scores, histology, and immunohistochemistry. The repair effects were better in group 1 than in groups 2 and 3. In group 1, hyaline-like cartilage formed at week 24. Magnetic resonance imaging showed homogeneous signals as the adjacent normal cartilage. Collagen type II and toluidine blue were stained positively as normal cartilage tissue, and the color and thickness of regenerated tissue were similar to surrounding normal tissue. The combination of microfracture and cell-free PLLGA scaffold implantation used endogenous marrow stem cells in situ and promoted hyaline-like cartilage regeneration rapidly and effectively.
Collapse
Affiliation(s)
- Junjun Shi
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Jung Y, Kim SH, Kim YH, Kim SH. The Effect of Hybridization of Hydrogels and Poly(L-lactide-co-ε-caprolactone) Scaffolds on Cartilage Tissue Engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:581-92. [DOI: 10.1163/156856209x430579] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Youngmee Jung
- a Biomaterials Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 136-650, South Korea, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sang-Heon Kim
- b Biomaterials Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 136-650, South Korea
| | - Young Ha Kim
- c Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Soo Hyun Kim
- d Biomaterials Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 136-650, South Korea;,
| |
Collapse
|
29
|
Magnenet V, Schiavi-Tritz J, Huselstein C, Rahouadj R. Constitutive equations for Ca2+ -alginate gels. J Mech Behav Biomed Mater 2012; 5:90-8. [DOI: 10.1016/j.jmbbm.2011.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/13/2011] [Indexed: 10/17/2022]
|
30
|
Electrospun sodium alginate/poly(ethylene oxide) core–shell nanofibers scaffolds potential for tissue engineering applications. Carbohydr Polym 2012; 87:737-743. [DOI: 10.1016/j.carbpol.2011.08.055] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/05/2011] [Accepted: 08/18/2011] [Indexed: 11/22/2022]
|
31
|
Li Y, Thouas GA, Chen QZ. Biodegradable soft elastomers: synthesis/properties of materials and fabrication of scaffolds. RSC Adv 2012. [DOI: 10.1039/c2ra20736b] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Tsuruoka H, Sasho T, Yamaguchi S, Ikegawa N, Saito M, Akagi R, Ochiai N, Nakagawa K, Nakajima A, Fallouh L, Takahashi K. Maturation-dependent spontaneous healing of partial thickness cartilage defects in infantile rats. Cell Tissue Res 2011; 346:263-71. [PMID: 22006252 DOI: 10.1007/s00441-011-1259-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/21/2011] [Indexed: 11/29/2022]
Abstract
Partial-thickness articular cartilage defects (PTCDs) do not heal spontaneously and are thought to be a predisposing factor for the development of osteoarthritis. Younger and smaller animals have a better healing capacity for many types of injuries including those to articular cartilage. Our aim was to examine the longitudinal histological changes of immature murine articular cartilage after the creation of small PTCDs and to compare them to PTCDs in mature cartilage. Single linear PTCDs were created in 3-week-old and 16-week-old rats in the direction of joint motion. At 6 and 12 weeks after PTCD creation, histological changes were examined in the defect sites and surrounding cartilage. Immature cartilage showed a higher repair capability than mature cartilage. Although repaired immature cartilage had fibrocartilage, it exhibited better quality than any PTCD model, except for a fetus model and comparable quality to full-thickness cartilage defects (FTCD) after bone marrow stimulation. Elucidation of the underlining mechanisms that immature cartilage possesses for repairing PTCDs is necessary in order to aid the prevention or develop treatment for osteoarthritis.
Collapse
Affiliation(s)
- Hiroaki Tsuruoka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cheng NC, Estes BT, Young TH, Guilak F. Engineered cartilage using primary chondrocytes cultured in a porous cartilage-derived matrix. Regen Med 2011; 6:81-93. [PMID: 21175289 DOI: 10.2217/rme.10.87] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To investigate the cell growth, matrix accumulation and mechanical properties of neocartilage formed by human or porcine articular chondrocytes on a porous, porcine cartilage-derived matrix (CDM) for use in cartilage tissue engineering. MATERIALS & METHODS We examined the physical properties, cell infiltration and matrix accumulation in different formulations of CDM and selected a CDM made of homogenized cartilage slurry as an appropriate scaffold for long-term culture of human and porcine articular chondrocytes. RESULTS The CDM scaffold supported growth and proliferation of both human and porcine chondrocytes. Histology and immunohistochemistry showed abundant cartilage-specific macromolecule deposition at day 28. Human chondrocytes migrated throughout the CDM, showing a relatively homogeneous distribution of new tissue accumulation, whereas porcine chondrocytes tended to form a proteoglycan-rich layer primarily on the surfaces of the scaffold. Human chondrocyte-seeded scaffolds had a significantly lower aggregate modulus and hydraulic permeability at day 28. CONCLUSIONS These data show that a scaffold derived from native porcine articular cartilage can support neocartilage formation in the absence of exogenous growth factors. The overall characteristics and properties of the constructs depend on factors such as the concentration of CDM used, the porosity of the scaffold, and the species of chondrocytes.
Collapse
Affiliation(s)
- Nai-Chen Cheng
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
34
|
Balakrishnan B, Banerjee R. Biopolymer-Based Hydrogels for Cartilage Tissue Engineering. Chem Rev 2011; 111:4453-74. [DOI: 10.1021/cr100123h] [Citation(s) in RCA: 401] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Biji Balakrishnan
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Bombay, Mumbai-400076, Maharashtra, India
| | - R. Banerjee
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Bombay, Mumbai-400076, Maharashtra, India
| |
Collapse
|
35
|
Lim HJ, Ghim HD, Choi JH, Chung HY, Lim JO. Controlled release of BMP-2 from alginate nanohydrogels enhanced osteogenic differentiation of human bone marrow stromal cells. Macromol Res 2010. [DOI: 10.1007/s13233-010-0804-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Schagemann JC, Chung HW, Mrosek EH, Stone JJ, Fitzsimmons JS, O'Driscoll SW, Reinholz GG. Poly-epsilon-caprolactone/gel hybrid scaffolds for cartilage tissue engineering. J Biomed Mater Res A 2010; 93:454-63. [PMID: 19582837 DOI: 10.1002/jbm.a.32521] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of this study was to determine the suitability of hybrid scaffolds composed of naturally derived biopolymer gels and macroporous poly-epsilon-caprolactone (PCL) scaffolds for neocartilage formation in vitro. Rabbit articular chondrocytes were seeded into PCL/HA (1 wt % hyaluronan), PCL/CS (0.5 wt % chitosan), PCL/F (1:3 fibrin sealant plus aprotinin), and PCL/COL1 (0.24% type I collagen) hybrids and cultured statically for up to 50 days. Growth characteristics were evaluated by histological analysis, scanning electron microscopy, and confocal laser scanning microscopy. Neocartilage was quantified using a dimethyl-methylene blue assay for sulfated glycosaminoglycans (sGAG) and an enzyme-linked immunosorbent assay for type II collagen (COL2), normalized to dsDNA content by fluorescent PicoGreen assay. Chondrocytes were homogenously distributed throughout the entire scaffold and exhibited a predominantly spheroidal shape 1 h after being seeded into scaffolds. Immunofluorescence depicted expanding proteoglycan deposition with time. The sGAG per dsDNA increased in all hybrids between days 25 and 50. PCL/HA scaffolds consistently promoted highest yields. In contrast, total sGAG and total COL2 decreased in all hybrids except PCL/CS, which favored increasing values and a significantly higher total COL2 at day 50. Overall, dsDNA content decreased significantly with time, and particularly between days 3 and 6. The PCL/HA hybrid displayed two proliferation peaks at days 3 and 25, and PCL/COL1 displayed one proliferation peak at day 12. The developed hybrids provided distinct short-term environments for implanted chondrocytes, with not all of them being explicitly beneficial (PCL/F, PCL/COL1). The PCL/HA and PCL/CS hybrids, however, promoted specific neocartilage formation and initial cell retention and are thus promising for cartilage tissue engineering.
Collapse
Affiliation(s)
- J C Schagemann
- Cartilage and Connective Tissue Research Laboratory, Department of Orthopedic Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | | | | | | | | | |
Collapse
|
37
|
Rutgers M, van Pelt MJP, Dhert WJA, Creemers LB, Saris DBF. Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage. Osteoarthritis Cartilage 2010; 18:12-23. [PMID: 19747584 DOI: 10.1016/j.joca.2009.08.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 07/21/2009] [Accepted: 08/02/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Regeneration of hyaline cartilage has been the focus of an increasing number of research groups around the world. One of the most important outcome measures in evaluation of its success is the histological quality of cartilaginous tissue. Currently, a variety of histological scoring systems is used to describe the quality of osteoarthritic, in vivo repaired or in vitro engineered tissue. This review aims to provide an overview of past and currently used histological scoring systems, in an effort to aid cartilage researchers in choosing adequate and validated cartilage histological scoring systems. METHODS Histological scoring systems for analysis of osteoarthritic, tissue engineered and in vivo repaired cartilage were reviewed. The chronological development as well as the validity and practical applicability of the scoring systems is evaluated. RESULTS The Histological-Histochemical Grading System (HHGS) or a HHGS-related score is most often used for evaluation of osteoarthritic cartilage, however the Osteoarthritis Research Society International (OARSI) Osteoarthritis Cartilage Histopathology Assessment System seems a valid alternative. The O'Driscoll score and the International Cartilage Repair Society (ICRS) II score may be used for in vivo repaired cartilage. The 'Bern score' seems most adequate for evaluation of in vitro engineered cartilage. CONCLUSION A great variety of histological scoring systems exists for analysis of osteoarthritic or normal, in vivo repaired or tissue-engineered cartilage, but only few have been validated. Use of these validated scores may considerably improve exchange of information necessary for advances in the field of cartilage regeneration.
Collapse
Affiliation(s)
- M Rutgers
- Department of Orthopaedics, University Medical Center Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Cheng NC, Estes BT, Awad HA, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A 2009; 15:231-41. [PMID: 18950290 DOI: 10.1089/ten.tea.2008.0253] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adipose-derived adult stem cells (ASCs) have the ability to differentiate into a chondrogenic phenotype in response to specific environmental signals such as growth factors or artificial biomaterial scaffolds. In this study, we examined the hypothesis that a porous scaffold derived exclusively from articular cartilage can induce chondrogenesis of ASCs. Human ASCs were seeded on porous scaffolds derived from adult porcine articular cartilage and cultured in standard medium without exogenous growth factors. Chondrogenesis of ASCs seeded within the scaffold was evident by quantitative RT-PCR analysis for cartilage-specific extracellular matrix (ECM) genes. Histological and immunohistochemical examination showed abundant production of cartilage-specific ECM components-particularly, type II collagen-after 4 or 6 weeks of culture. After 6 weeks of culture, the cellular morphology in the ASC-seeded constructs resembled those in native articular cartilage tissue, with rounded cells residing in the glycosaminoglycan-rich regions of the scaffolds. Biphasic mechanical testing showed that the aggregate modulus of the ASC-seeded constructs increased over time, reaching 150 kPa by day 42, more than threefold higher than that of the unseeded controls. These results suggest that a porous scaffold derived from articular cartilage has the ability to induce chondrogenic differentiation of ASCs without exogenous growth factors, with significant synthesis and accumulation of ECM macromolecules, and the development of mechanical properties approaching those of native cartilage. These findings support the potential for a processed cartilage ECM as a biomaterial scaffold for cartilage tissue engineering. Additional in vivo evaluation is necessary to fully recognize the clinical implication of these observations.
Collapse
Affiliation(s)
- Nai-Chen Cheng
- Departments of Surgery and Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
39
|
Kim DY, Pyun J, Choi JW, Kim JH, Lee JS, Shin HA, Kim HJ, Lee HN, Min BH, Cha HE, Kim CH. Tissue-engineered allograft tracheal cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Laryngoscope 2009; 120:30-8. [DOI: 10.1002/lary.20652] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Jung Y, Kim SH, Kim YH, Kim SH. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells. Biomed Mater 2009; 4:055009. [DOI: 10.1088/1748-6041/4/5/055009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 2009; 17:705-13. [PMID: 19101179 DOI: 10.1016/j.joca.2008.11.008] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 11/11/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Review the literature for single site cartilage defect research and evaluate the respective strengths and weaknesses of different preclinical animal models. METHOD A literature search for animal models evaluating single site cartilage defects was performed. Variables tabulated and analyzed included animal species, age and number, defect depth and diameter and study duration. Cluster analyses were then used to separate animals with only distal femoral defects into similar groups based on defect dimensions. Representative human studies were included allowing comparison of common clinical lesions to animal models. The suitability of each species for single site cartilage defect research and its relevance to clinical human practice is then discussed. RESULTS One hundred thirteen studies relating to single site cartilage defects were reviewed. Cluster analysis included 101 studies and placed the murine, laprine, ovine, canine, porcine and caprine models in group 1. Group 2 contained ovine, canine, porcine, caprine and equine models. Group 3 contained only equine models and humans. Species in each group are similar with regard to defect dimensions. Some species occur in multiple groups reflecting utilization of a variety defect sizes. We report and discuss factors to be considered when selecting a preclinical animal model for single site cartilage defect research. DISCUSSION Standardization of study design and outcome parameters would help to compare different studies evaluating various novel therapeutic concepts. Comparison to the human clinical counterpart during study design may help increase the predictive value of preclinical research using animal models and improve the process of developing efficacious therapies.
Collapse
|
42
|
Vinatier C, Gauthier O, Fatimi A, Merceron C, Masson M, Moreau A, Moreau F, Fellah B, Weiss P, Guicheux J. An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol Bioeng 2009; 102:1259-67. [DOI: 10.1002/bit.22137] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Type II collagen-chondroitin sulfate-hyaluronan scaffold cross-linked by genipin for cartilage tissue engineering. J Biosci Bioeng 2009; 107:177-82. [DOI: 10.1016/j.jbiosc.2008.09.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/16/2008] [Indexed: 11/18/2022]
|
44
|
Filová E, Jelínek F, Handl M, Lytvynets A, Rampichová M, Varga F, Cinátl J, Soukup T, Trc T, Amler E. Novel composite hyaluronan/type I collagen/fibrin scaffold enhances repair of osteochondral defect in rabbit knee. J Biomed Mater Res B Appl Biomater 2009; 87:415-24. [PMID: 18435405 DOI: 10.1002/jbm.b.31119] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new composite scaffold containing type I collagen, hyaluronan, and fibrin was prepared with and without autologous chondrocytes and implanted into a rabbit femoral trochlea. The biophysical properties of the composite scaffold were similar to native cartilage. The macroscopic, histological, and immunohistochemical analysis of the regenerated tissue from cell-seeded scaffolds was performed 6 weeks after the implantation and predominantly showed formation of hyaline cartilage accompanied by production of glycosaminoglycans and type II collagen with minor fibro-cartilage production. Implanted scaffolds without cells healed predominantly as fibro-cartilage, although glycosaminoglycans and type II collagen, which form hyaline cartilage, were also observed. On the other hand, fibro-cartilage or fibrous tissue or both were only formed in the defects without scaffold. The new composite scaffold containing collagen type I, hyaluronan, and fibrin, seeded with autologous chondrocytes and implanted into rabbit femoral trochlea, was found to be highly effective in cartilage repair after only 6 weeks. The new composite scaffold can therefore enhance cartilage regeneration of osteochondral defects, by the supporting of the hyaline cartilage formation.
Collapse
Affiliation(s)
- Eva Filová
- Department of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Corvol MT, Tahiri K, Montembault A, Daumard A, Savouret JF, Rannou F. [Cell therapy in cartilage repair: cellular and molecular bases]. ACTA ACUST UNITED AC 2008; 202:313-21. [PMID: 19094929 DOI: 10.1051/jbio:2008030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The destruction of articular cartilage represents the outcome of most inflammatory and degenerative rheumatic diseases and leads to severe disability. Articular cartilage being unable to repair spontaneously, alterations of the joint surface often results in end-stage osteoarthritis, requiring surgical intervention and total joint replacement. This makes damaged tissues repair a major challenge in our aging society. Cartilage harbors only one cell type, the chondrocyte, which synthesizes and secretes specific matrix proteins such as type II collagen and high molecular weight proteoglycans. Matrix proteins are responsible for the conservation of the chondrocyte phenotype and the maintenance of the mechanical functions of cartilage. Development of therapeutic strategies for cartilage repair should thus comprise not only the replacement of lost cartilage cells but also that of extracellular matrix with cartilage-like properties. Different protocols are under investigation. The most commonly employed materials include transplantation of autologous osteochondral tissue. More recently, cell-based therapies using autologous mature chondrocytes or pre-chondrogenic stem cells have drawn particular attention. Tissue-engineering procedures represent the actual trend in cartilage repair. This approach combines biodegradable polymeric three-dimensional matrixes and isolated prechondrogenic stem cells. The cells are seeded within the biocompatible matrix and then implanted into the joint. Numerous non-degradable and degradable polymers, which efficiently "mimic" the natural surroundings of cartilage cells, are currently under investigation.
Collapse
Affiliation(s)
- Marie-Thérèse Corvol
- UMR-S-Inserm-Université Paris Descartes, Signalisation et Pharmacologie du cartilage, UFR Biomédicale, France.
| | | | | | | | | | | |
Collapse
|
46
|
Ramaswamy S, Gurkan I, Sharma B, Cascio B, Fishbein KW, Spencer RG. Assessment of tissue repair in full thickness chondral defects in the rabbit using magnetic resonance imaging transverse relaxation measurements. J Biomed Mater Res B Appl Biomater 2008; 86:375-80. [DOI: 10.1002/jbm.b.31030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Na K, Kim S, Woo DG, Sun BK, Yang HN, Chung HM, Park KH. Combination material delivery of dexamethasone and growth factor in hydrogel blended with hyaluronic acid constructs for neocartilage formation. J Biomed Mater Res A 2008; 83:779-86. [PMID: 17559114 DOI: 10.1002/jbm.a.31374] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to assess the efficacy of poly(NiPAAm-co-AAc) blended with hyaluronic acid (HA) as an injectable cell vehicle and a cell therapeutic agent in the form of a supporting matrix for the chondrogenic differentiation of rabbit chondrocytes. Specially, rabbit chondrocytes were embedded in blended hydrogels co-encapsulation with dexamethasone (Dex) and growth factors for enhancing the chondrogenic differentiation. Blended hydrogel constructs consisting of embedded cells co-encapsulating Dex and TGF beta-3 or unloaded Dex and sTGF beta-3 served as controls to assess the effects of Dex on chondrogenic differentiation. Hydrogel constructs consisting of embedded cells co-encapsulating Dex and TGF beta-3 on chondrogenic differentiation. The hydrogel constructs were injected subcutaneously into the nude mice and monitored for 1, 4, and 8 weeks after the injection. The level of the cartilage-associated ECM proteins was determined by immunohistochemical (collagen type II; specific marker for chondrogenic differentiation), Safranin-O, and Alcian blue (GAG) staining. Over the same time period, the glycosamingoglycan content per cell remained constant for all formulations, indicating that the dramatic increase in cell number for samples with Dex and TGF beta-3 loaded in hydrogel constructs was accompanied by maintenance of the cell phenotypes.
Collapse
Affiliation(s)
- Kun Na
- Division of Biotechnology, The Catholic University of Korea, 43-1 Yokkok2-dong, Wonmi-gu, Bucheon 420-743, Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 2007; 59:207-33. [PMID: 17482309 DOI: 10.1016/j.addr.2007.03.012] [Citation(s) in RCA: 828] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 03/28/2007] [Indexed: 12/11/2022]
Abstract
The present paper intends to overview a wide range of natural-origin polymers with special focus on proteins and polysaccharides (the systems more inspired on the extracellular matrix) that are being used in research, or might be potentially useful as carriers systems for active biomolecules or as cell carriers with application in the tissue engineering field targeting several biological tissues. The combination of both applications into a single material has proven to be very challenging though. The paper presents also some examples of commercially available natural-origin polymers with applications in research or in clinical use in several applications. As it is recognized, this class of polymers is being widely used due to their similarities with the extracellular matrix, high chemical versatility, typically good biological performance and inherent cellular interaction and, also very significant, the cell or enzyme-controlled degradability. These biocharacteristics classify the natural-origin polymers as one of the most attractive options to be used in the tissue engineering field and drug delivery applications.
Collapse
Affiliation(s)
- Patrícia B Malafaya
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
| | | | | |
Collapse
|
49
|
Abstract
In this study, we investigated the effect of the use of alginate sponge as a chondrocyte-3D
scaffold for the construction of a cartilage graft. Alginate sponge was made by 5% alginic acid
which was crosslinked by CaCl2. Chondrocytes were obtained from a nasal septum after the
operation and cultured in 3D alginate sponge. For analysis of cell differentiation, we have checked
aggrecan, collagen type I and II using RT-PCR and performed the histological and scanning
electron microscopy analysis. Our experiments showed that alginate sponge of 5% promoted
sufficient chondrocyte proliferation and differentiation, resulting in the formation of a specific
cartilage matrix. The sponge presents new perspectives with respect to in vitro production of
"artificial" cartilage. We conclude that the alginate sponges have potential as a scaffold for cartilage
tissue engineering.
Collapse
|
50
|
|