1
|
Perna A, Venditti N, Merolla F, Fusco S, Guerra G, Zoroddu S, De Luca A, Bagella L. Nutraceuticals in Pregnancy: A Special Focus on Probiotics. Int J Mol Sci 2024; 25:9688. [PMID: 39273635 PMCID: PMC11395456 DOI: 10.3390/ijms25179688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The placenta is crucial to fetal development and performs vital functions such as nutrient exchange, waste removal and hormone regulation. Abnormal placental development can lead to conditions such as fetal growth restriction, pre-eclampsia and stillbirth, affecting both immediate and long-term fetal health. Placental development is a highly complex process involving interactions between maternal and fetal components, imprinted genes, signaling pathways, mitochondria, fetal sexomes and environmental factors such as diet, supplementation and exercise. Probiotics have been shown to make a significant contribution to prenatal health, placental health and fetal development, with associations with reduced risk of preterm birth and pre-eclampsia, as well as improvements in maternal health through effects on gut microbiota, lipid metabolism, vaginal infections, gestational diabetes, allergic diseases and inflammation. This review summarizes key studies on the influence of dietary supplementation on placental development, with a focus on the role of probiotics in prenatal health and fetal development.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
- UO Laboratory Analysis, Responsible Research Hospital, Largo Agostino Gemelli, 1, 86100 Campobasso, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
2
|
De Clercq K, Vriens J. Establishing life is a calcium-dependent TRiP: Transient receptor potential channels in reproduction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1815-1829. [PMID: 30798946 DOI: 10.1016/j.bbamcr.2018.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/21/2022]
Abstract
Calcium plays a key role in many different steps of the reproduction process, from germ cell maturation to placental development. However, the exact function and regulation of calcium throughout subsequent reproductive events remains rather enigmatic. Successful pregnancy requires the establishment of a complex dialogue between the implanting embryo and the endometrium. On the one hand, endometrial cell will undergo massive changes to support an implanting embryo, including stromal cell decidualization. On the other hand, trophoblast cells from the trophectoderm surrounding the inner cell mass will differentiate and acquire new functions such as hormone secretion, invasion and migration. The need for calcium in the different gestational processes implicates the presence of specialized ion channels to regulate calcium homeostasis. The superfamily of transient receptor potential (TRP) channels is a class of calcium permeable ion channels that is involved in the transformation of extracellular stimuli into the influx of calcium, inducing and coordinating underlying signaling pathways. Although the necessity of calcium throughout reproduction cannot be negated, the expression and functionality of TRP channels throughout gestation remains elusive. This review provides an overview of the current evidence regarding the expression and function of TRP channels in reproduction.
Collapse
Affiliation(s)
- Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, KU Leuven, G-PURE, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Centre for Brain & Disease Research, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, KU Leuven, G-PURE, Leuven, Belgium.
| |
Collapse
|
3
|
Bentley DC, Pulbutr P, Chan S, Smith PA. Etiology of the membrane potential of rat white fat adipocytes. Am J Physiol Endocrinol Metab 2014; 307:E161-75. [PMID: 24865982 DOI: 10.1152/ajpendo.00446.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasma membrane potential (Vm) is key to many physiological processes; however, its ionic etiology in white fat adipocytes is poorly characterized. To address this question, we employed the perforated patch current clamp and cell-attached patch clamp methods in isolated primary white fat adipocytes and their cellular model 3T3-L1. The resting Vm of primary and 3T3-L1 adipocytes were -32.1 ± 1.2 mV (n = 95) and -28.8 ± 1.2 mV (n = 87), respectively. Vm was independent of cell size and fat content. Elevation of extracellular K(+) to 50 mM by equimolar substitution of bath Na(+) did not affect Vm, whereas substitution of bath Na(+) with the membrane-impermeant cation N-methyl-D-glucamine(+)-hyperpolarized Vm by 16 mV, data indicative of a nonselective cation permeability. Substitution of 133 mM extracellular Cl(-) with gluconate-depolarized Vm by 25 mV, whereas Cl(-) substitution with I(-) caused a -9 mV hyperpolarization. Isoprenaline (10 μM), but not insulin (100 nM), significantly depolarized Vm. Single-channel ion activity was voltage independent; currents were indicative for Cl(-) with an inward slope conductance of 16 ± 1.3 pS (n = 11) and a reversal potential close to the Cl(-) equilibrium potential, -29 ± 1.6 mV. Although the reduction of extracellular Cl(-) elevated the intracellular Ca(2+) of adipocytes, this was not as large as that produced by elevation of extracellular K(+). In conclusion, the Vm of white fat adipocytes is well described by the Goldman-Hodgkin-Katz equation with a predominant permeability to Cl(-), where its biophysical and single-channel properties suggest a volume-sensitive anion channel identity. Consequently, changes in serum Cl(-) homeostasis or the adipocyte's permeability to this anion via drugs will affect its Vm, intracellular Ca(2+), and ultimately its function and its role in metabolic control.
Collapse
Affiliation(s)
- Donna C Bentley
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Pawitra Pulbutr
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Sue Chan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paul A Smith
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Jimenez V, Docampo R. Molecular and electrophysiological characterization of a novel cation channel of Trypanosoma cruzi. PLoS Pathog 2012; 8:e1002750. [PMID: 22685407 PMCID: PMC3369953 DOI: 10.1371/journal.ppat.1002750] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/27/2012] [Indexed: 01/27/2023] Open
Abstract
We report the identification, functional expression, purification, reconstitution and electrophysiological characterization of a novel cation channel (TcCat) from Trypanosoma cruzi, the etiologic agent of Chagas disease. This channel is potassium permeable and shows inward rectification in the presence of magnesium. Western blot analyses with specific antibodies indicated that the protein is expressed in the three main life cycle stages of the parasite. Surprisingly, the parasites have the unprecedented ability to rapidly change the localization of the channel when they are exposed to different environmental stresses. TcCat rapidly translocates to the tip of the flagellum when trypomastigotes are submitted to acidic pH, to the plasma membrane when epimastigotes are submitted to hyperosmotic stress, and to the cell surface when amastigotes are released to the extracellular medium. Pharmacological block of TcCat activity also resulted in alterations in the trypomastigotes ability to respond to hyperosmotic stress. We also demonstrate the feasibility of purifying and reconstituting a functional ion channel from T. cruzi after recombinant expression in bacteria. The peculiar characteristics of TcCat could be important for the development of specific inhibitors with therapeutic potential against trypanosomes. The use of high-resolution electrophysiological techniques to study ion channels has provided a large amount of information on functional aspects of these important membrane proteins. However, the study of ion channels in unicellular eukaryotes has been limited to detection of ion conductances in large cells, gene identification studies, and pharmacological treatments to investigate the potential presence of different ion channels. In this paper we report the first identification, functional expression, purification, reconstitution, and electrophysiological characterization with single-molecule resolution of a novel cation channel (TcCat) from Trypanosoma cruzi. This is a novel channel that shares little sequence and functional similarities to other potassium channels and its peculiar characteristics could be important for the development of specific inhibitors with therapeutic potential against trypanosomiasis. Surprisingly, the parasites have the unprecedented ability to rapidly change the localization of the channel when they are exposed to different environmental stresses. We demonstrated the feasibility of purifying and reconstituting a functional ion channel from T. cruzi after recombinant expression in bacteria. In addition, we obtained yeast mutants that will provide a useful genetic system for studies of the assembly and composition of the channel.
Collapse
Affiliation(s)
- Veronica Jimenez
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (VJ); (RD)
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (VJ); (RD)
| |
Collapse
|
5
|
Riquelme G, Vallejos C, de Gregorio N, Morales B, Godoy V, Berrios M, Bastías N, Rodríguez C. Lipid rafts and cytoskeletal proteins in placental microvilli membranes from preeclamptic and IUGR pregnancies. J Membr Biol 2011; 241:127-40. [PMID: 21573936 DOI: 10.1007/s00232-011-9369-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/27/2011] [Indexed: 12/17/2022]
Abstract
Intrauterine growth restriction (IUGR) and preeclampsia (PE) are leading causes of perinatal and maternal morbidity and mortality. Previously we reported the expression of lipid rafts in classical microvillous membrane (MVM) and light microvillous membrane (LMVM), two subdomains in apical membrane from the human placental syncytiotrophoblast (hSTB), which constitute the epithelium responsible for maternal-fetal transport. Here the aim was to study the raft and cytoskeletal proteins from PE and IUGR. Microdomains from MVM and LMVM were tested with raft markers (placental alkaline phosphatase, lipid ganglioside, and annexin 2) and a nonraft marker (hTf-R). No changes were detected with those markers in whole purified apical membranes in normal, PE, and IUGR pregnancies; however, their patterns of distribution in lipid rafts were different in PE and IUGR. Cholesterol depletion modified their segregation, confirming their presence in lipid rafts, although unlike normal placenta, in these pathologies there is only one type of microdomain. Additionally, the cytoskeleton proteins actin, ezrin, and cytokeratin-7 showed clear differences between normal and pathological membranes. Cytokeratin-7 expression decreased to 50% in PE, and the distribution between LMVM and MVM (~43 and 57%, respectively) changed in both PE and IUGR, in contrast with the asymmetrical enrichment obtained in normal LMVM (~62%). In conclusion, lipid rafts from IUGR and PE have different features compared to rafts from normal placentae, and this is associated with alterations in the expression and distribution of cytoskeletal proteins.
Collapse
Affiliation(s)
- Gloria Riquelme
- Depto. de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Casilla 70005, Santiago 7, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Jimenez V, Henriquez M, Galanti N, Riquelme G. Electrophysiological characterization of potassium conductive pathways in Trypanosoma cruzi. J Cell Biochem 2011; 112:1093-102. [DOI: 10.1002/jcb.23023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Riquelme G. Review: Placental syncytiotrophoblast membranes--domains, subdomains and microdomains. Placenta 2011; 32 Suppl 2:S196-202. [PMID: 21272934 DOI: 10.1016/j.placenta.2011.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 11/27/2022]
Abstract
Human placental syncytiotrophoblast (STB) is an epithelium responsible for materno-fetal exchange. Ions play multiple roles in STB, as in other transport epithelia. We have been interested in the character and functional expression of ion channels in STB membrane fractions. Characterization of ion channels and their relationship with different domains, subdomains and microdomains of STB membranes is important to explain the intracellular mechanisms operating in the placental barrier. The aim of this paper is to summarize our work on this subject. We isolated and purified basal membrane (BM) and two fractions from the apical membrane, a classical fraction (MVM) and a light fraction (LMVM). They were used either for reconstitution into giant liposomes or for transplantation into Xenopus oocyte membranes followed by electrophysiological recordings to characterize chloride and cationic channels in STB from term human placenta. In addition, Western blot analysis, using ion channel antibodies, was performed on purified apical and basal membrane fractions. We also reported the presence of two functional microdomains (lipid rafts) in LMVM and MVM, using detergent resistant membranes (DRMs) and cholesterol-sensitive depletion. Moreover we found evidence of cytoskeletal participation in lipid rafts of different composition. Our results contribute to knowledge of the ion channels present in STB membranes and their participation in the physiology of this epithelium in normal and pathological pregnancies.
Collapse
Affiliation(s)
- G Riquelme
- Physiology and Biophysics, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
8
|
Abstract
The human placental syncytiotrophoblast (hSTB) is a polarized epithelial structure, that forms the main barrier to materno-fetal exchange. The chloride (Cl(-)) channels in other epithelial tissues contribute to several functions, such as maintenance of the membrane potential, volume regulation, absorption and secretion. Additionally, the contributions of Cl(-) channels to these functions are demonstrated by certain diseases and knock-out animal models. There are multiple lines of evidence for the presence of Cl(-) channels in the hSTB, which could contribute to different placental functions. However, both the mechanism by which these channels are involved in the physiology of the placenta, and their molecular identities are still unclear. Furthermore, a correlation between altered Cl(-) channels functions and pathological pregnancies is beginning to emerge. This review summarizes recent developments on conductive placental chloride transport, and discusses its potential implications for placental physiology.
Collapse
|
9
|
Díaz P, Vallejos C, Guerrero I, Riquelme G. Barium, Tea and Sodium Sensitive Potassium Channels are Present in the Human Placental Syncytiotrophoblast Apical Membrane. Placenta 2008; 29:883-91. [DOI: 10.1016/j.placenta.2008.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/01/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
|
10
|
Distinct Lipid Rafts in Subdomains from Human Placental Apical Syncytiotrophoblast Membranes. J Membr Biol 2008; 224:21-31. [DOI: 10.1007/s00232-008-9125-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 08/19/2008] [Indexed: 12/13/2022]
|
11
|
Montalbetti N, Li Q, Timpanaro GA, González-Perrett S, Dai XQ, Chen XZ, Cantiello HF. Cytoskeletal regulation of calcium-permeable cation channels in the human syncytiotrophoblast: role of gelsolin. J Physiol 2005; 566:309-25. [PMID: 15845576 PMCID: PMC1464752 DOI: 10.1113/jphysiol.2005.087072] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human syncytiotrophoblast (hST) is the most apical epithelial barrier that covers the villous tree of the human placenta. An intricate and highly organized network of cytoskeletal structures supports the hST. Recently, polycystin-2 (PC2), a TRP-type nonselective cation channel, was functionally observed in hST, where it may be an important player to Ca2+ transport. Little is known, however, about channel regulation in hST. In this report, the regulatory role of actin dynamics on PC2 channels reconstituted from hST apical membranes was explored. Acute addition of cytochalasin D (CD, 5 microg ml-1) to reconstituted hST apical membranes transiently increased K+ -permeable channel activity. The actin-binding proteins alpha-actinin and gelsolin, as well as PC2, were observed by Western blot and immunofluorescence analyses in hST vesicles. CD treatment of hST vesicles resulted in a re-distribution of actin filaments, in agreement with the effect of CD on K+ channel activity. In contrast, addition of exogenous monomeric actin, but not prepolymerized actin, induced a rapid inhibition of channel function in hST. This inhibition was obliterated by the presence of CD in the medium. The acute (<15 min) CD stimulation of K+ channel activity was mimicked by addition of the actin-severing protein gelsolin in the presence, but not in the absence, of micromolar Ca2+. Ca2+ transport through PC2 triggers a regulatory feedback mechanism, which is based on the severing and re-formation of filamentous actin near the channels. Cytoskeletal structures may thus be relevant to ion transport regulation in the human placenta.
Collapse
Affiliation(s)
- Nicolás Montalbetti
- Laboratorio de Canales Iónicos, Departmento de Fisicoquímica y Química Analítica, Facultad de Farmica y Bioquímica, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
12
|
Kuriwaki JI, Nishijo M, Honda R, Tawara K, Nakagawa H, Hori E, Nishijo H. Effects of cadmium exposure during pregnancy on trace elements in fetal rat liver and kidney. Toxicol Lett 2005; 156:369-76. [PMID: 15763636 DOI: 10.1016/j.toxlet.2004.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 12/25/2004] [Accepted: 12/27/2004] [Indexed: 11/20/2022]
Abstract
Female rats were exposed by intragastric administration with a cannula 1mg/kg/day or 10mg/kg/day CdCl2 for the 11 days from the 9th to 19th day of pregnancy, and the effects of Cd exposure on eight elements, Na, K, Ca, Mg, P, Fe, Zn, and Cu in fetal liver, kidney, brain, fetal membrane and placenta then examined. We found that: (1) although Cd was not detected in fetal kidney and brain, significant Cd accumulation was found in fetal liver, fetal membrane and placenta in the 10 mg/kg Cd group, (2) the Zn and Fe concentrations in fetal liver in the 10 mg/kg Cd group were significantly lower than those in the control group, but no difference was found in the placenta, (3) the Cu concentrations in the placenta, fetal membrane and liver in the 10 mg Cd groups were significantly lower than those in the control group, (4) Na/K ratio in the placenta and fetal kidney and the Ca concentration in the placenta in the 10 mg/kg Cd group were lower than those in the controls. These results suggest that Cd exposure inhibits Zn and Fe transportation from the placenta to fetus, as well as Cu, Ca, Na and K uptake and transportation across the placenta, possibly influencing fetal growth and metabolism.
Collapse
Affiliation(s)
- Jun-ichi Kuriwaki
- Department of Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Niger C, Malassiné A, Cronier L. Calcium channels activated by endothelin-1 in human trophoblast. J Physiol 2004; 561:449-58. [PMID: 15358810 PMCID: PMC1665371 DOI: 10.1113/jphysiol.2004.073023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/30/2004] [Accepted: 09/01/2004] [Indexed: 12/17/2022] Open
Abstract
Ca2+ transfer across the syncytiotrophoblast (ST) of the human placenta is essential for normal fetal development. However, the nature of Ca2+ conductance in the ST and the mechanisms by which it is regulated are poorly understood. With the major signal transduction pathway of endothelin-1 (ET1) acting via phospholipase C (PLC) and Ca2+, we used ET1 to analyse the nature of Ca2+ channels on cultured trophoblastic cells by means of cytofluorimetric analysis using the ratiometric Ca2+ indicator Indo-1. Results indicate that ET1 (10(-7) M) stimulates a biphasic (transient and sustained) increase in [Ca2+]i in trophoblastic cells. This response is mediated by the endothelin receptor B (ETB) coupled to PLC, since treatment with BQ788 (10(-6) M) or U73122 (2 microM) totally abolished the response. Persistence of the rapid transient rise in [Ca2+]i in Ca2+-free extracellular medium confirms the release of Ca2+ from intracellular stores in response to ET1 stimulation. Furthermore, abolition of the sustained increase in [Ca2+]i in Ca2+-free extracellular medium argues in favour of the entry of Ca2+ during the plateau phase. Abolition of this plateau phase by Ni2+ (1 mM) in the presence of extracellular Ca2+ confirmed the existence of an ET1-induced Ca2+ entry. No evidence for the presence of voltage-operated channels was demonstrated during ET1 action since nifedipine (10(-6) M) did not reduce the Ca2+ response and depolarization with a hyper-potassium solution had no effect. Pharmacological studies using the imidazole derivatives SK&F96365 (30 microM) and LOE 908 (10 microM) partially inhibited the ET1-evoked Ca2+ response, thus providing evidence for the presence of both store-operated Ca2+ channels and non-selective cationic channels in the human ST.
Collapse
Affiliation(s)
- C Niger
- CNRS UMR 6187, Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, 86022 Poitiers Cedex, France
| | | | | |
Collapse
|
14
|
Jimenez V, Henriquez M, Llanos P, Riquelme G. Isolation and Purification of Human Placental Plasma Membranes from Normal and Pre-eclamptic Pregnancies. A Comparative Study. Placenta 2004; 25:422-37. [PMID: 15081637 DOI: 10.1016/j.placenta.2003.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Revised: 10/15/2003] [Accepted: 10/28/2003] [Indexed: 11/20/2022]
Abstract
Human placental syncytiotrophoblast is the main barrier for materno-fetal exchange. Analysis of transplacental transport involves the study of ion channels in both the maternal-facing microvillous membrane (MVM) and the fetal-facing basal membrane (BM). Difficulties in having access to intact placenta with conventional electrophysiological methods favour alternative methodologies, such as isolation and reconstitution of membranes in artificial lipid systems. Pre-eclampsia is a major health problem of human pregnancy. The search for altered physiological processes in pre-eclamptic placentae requires the investigation of events at both the microvillous and basal surfaces. The aim of this study was to obtain reliable syncytiotrophoblast plasma membranes from human normal (N) and pre-eclamptic (PE) pregnancies. We describe a protocol which allows for the simultaneous isolation of MVM and BM. The purity of the membranes isolated was evaluated using enzymatic assays, binding studies, Western blotting and immunohistochemistry. Enrichment of alkaline phosphatase activity for MVM was 17 to 21-fold, with 13-16 per cent protein recovery, for both N and PE. Enrichment of adenylate cyclase activity for BM was 9-fold for N, and enrichment of dihydroalprenolol binding to beta-adrenergic receptors was 12-fold for N and 6-fold for PE, with 14 per cent protein recovery for both N and PE. Cross contamination was low and mitochondrial membrane contamination was negligible. We conclude that MVM and BM isolated from placentae of pre-eclamptic women are similar in enrichment and purity to those of healthy women, thus allowing their use in comparative electrophysiological studies.
Collapse
Affiliation(s)
- V Jimenez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Casilla 70005, Santiago 7, Chile
| | | | | | | |
Collapse
|