1
|
Wu L, Wang S, Li H, Lu H, Zheng Y, Feng T, Sun Y. Human trophoblast invasion and migration are mediated by the YAP1-CCN1 pathway: defective signaling in trophoblasts during early-onset severe preeclampsia†. Biol Reprod 2024; 111:866-878. [PMID: 38874283 DOI: 10.1093/biolre/ioae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/07/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
The transcription coactivator YAP1 mediates the major effects of the Hippo signaling pathway. The CCN family is a small group of glycoproteins known to be downstream effectors of YAP1 in diverse tissues. However, whether CCN family members mediate the effects of YAP1 in human trophoblasts is unknown. In this study, placental expression of both YAP1 and CCN1 was found to be impaired in pregnancies complicated by early-onset severe preeclampsia. CCN1 was expressed not only in cytotrophoblasts, trophoblast columns, and mesenchymal cells, similar to active YAP1, but also in syncytiotrophoblasts of normal first-trimester placental villi; moreover, decidual staining of active YAP1 and CCN1 was found in both interstitial and endovascular extravillous trophoblasts. In cultured immortalized human trophoblastic HTR-8/SVneo cells, knockdown of YAP1 decreased CCN1 mRNA and protein expression and led to impaired cell invasion and migration. Also, CCN1 knockdown negatively affected HTR-8/SVneo cell invasion and migration but not viability. YAP1 knockdown was further found to impair HTR-8/SVneo cell viability via G0/G1 cell cycle arrest and apoptosis, while CCN1 knockdown had minimal effect on cell cycle arrest and no effect on apoptosis. Accordingly, treatment with recombinant CCN1 partially reversed the YAP1 knockdown-induced impairment in trophoblast invasion and migration but not in viability. Thus, CCN1 mediates the effects of YAP1 on human trophoblast invasion and migration but not apoptosis, and decreased placental expression of YAP1 and CCN1 in pregnancies complicated by early-onset severe preeclampsia might contribute to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Liang Wu
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shengfu Wang
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyue Li
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haotian Lu
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanke Zheng
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tianfei Feng
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingpu Sun
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Lao TT. The roles of blood picture, haemoglobinopathy traits, and blood groups determined in routine antenatal tests in the screening for complications in pregnancy. Best Pract Res Clin Obstet Gynaecol 2024:102537. [PMID: 39433460 DOI: 10.1016/j.bpobgyn.2024.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
Routine antenatal tests include haemoglobin measurement, usually with red blood cell indices, white cell and platelet counts, and ABO and Rhesus blood groups, are aimed to screen for iron deficiency anaemia, carriage of haemoglobinopathy traits, and other forms of anaemia or other underlying but undiagnosed conditions. Iron deficiency anaemia has been associated with most of the common pregnancy complications including pre-eclampsia, preterm birth, antepartum and postpartum haemorrhage, low birthweight and small-for-gestational age infants, and impacts long-term neurocognitive and developmental outcomes in the offspring. Increased adverse pregnancy and perinatal outcomes are also found with high haemoglobin, thalassaemia and sickle cell traits, and the non-O blood groups especially group AB. Total white cell, neutrophil, and platelet counts and platelet indices can help to predict gestational diabetes mellitus. Results from these tests can be useful by themselves or used in combination with demographics and biomarkers to enhance the screening for high-risk pregnancies.
Collapse
Affiliation(s)
- Terence T Lao
- Department of Obstetrics & Gynaecology, The University of Hong Kong, Queen Mary Hospital, SAR, Hong Kong.
| |
Collapse
|
3
|
Rusidzé M, Gargaros A, Fébrissy C, Dubucs C, Weyl A, Ousselin J, Aziza J, Arnal JF, Lenfant F. Estrogen Actions in Placental Vascular Morphogenesis and Spiral Artery Remodeling: A Comparative View between Humans and Mice. Cells 2023; 12:cells12040620. [PMID: 36831287 PMCID: PMC9954071 DOI: 10.3390/cells12040620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Estrogens, mainly 17β-estradiol (E2), play a critical role in reproductive organogenesis, ovulation, and fertility via estrogen receptors. E2 is also a well-known regulator of utero-placental vascular development and blood-flow dynamics throughout gestation. Mouse and human placentas possess strikingly different morphological configurations that confer important reproductive advantages. However, the functional interplay between fetal and maternal vasculature remains similar in both species. In this review, we briefly describe the structural and functional characteristics, as well as the development, of mouse and human placentas. In addition, we summarize the current knowledge regarding estrogen actions during utero-placental vascular morphogenesis, which includes uterine angiogenesis, the control of trophoblast behavior, spiral artery remodeling, and hemodynamic adaptation throughout pregnancy, in both mice and humans. Finally, the estrogens that are present in abnormal placentation are also mentioned. Overall, this review highlights the importance of the actions of estrogens in the physiology and pathophysiology of placental vascular development.
Collapse
Affiliation(s)
- Mariam Rusidzé
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Adrien Gargaros
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Chanaëlle Fébrissy
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Charlotte Dubucs
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Ariane Weyl
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jessie Ousselin
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jacqueline Aziza
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jean-François Arnal
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Françoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Correspondence:
| |
Collapse
|
4
|
Dall'Asta A, Melito C, Morganelli G, Lees C, Ghi T. Determinants of placental insufficiency in fetal growth restriction. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 61:152-157. [PMID: 36349884 DOI: 10.1002/uog.26111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Affiliation(s)
- A Dall'Asta
- Department of Medicine and Surgery, Obstetrics and Gynaecology Unit, University of Parma, Parma, Italy
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - C Melito
- Department of Medicine and Surgery, Obstetrics and Gynaecology Unit, University of Parma, Parma, Italy
- Department of Obstetrics and Gynaecology, IRCCS Fondazione Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - G Morganelli
- Department of Medicine and Surgery, Obstetrics and Gynaecology Unit, University of Parma, Parma, Italy
| | - C Lees
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
- Centre for Fetal Care, Department of Obstetrics and Gynaecology, Queen Charlotte's and Chelsea Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - T Ghi
- Department of Medicine and Surgery, Obstetrics and Gynaecology Unit, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Iron deficiency anaemia associated with increased placenta praevia and placental abruption: a retrospective case-control study. Eur J Clin Nutr 2022; 76:1172-1177. [PMID: 35301462 DOI: 10.1038/s41430-022-01086-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES A few studies reported association between placenta praevia (PP) and placental abruption (PA) with maternal iron deficiency anaemia (IDA), which is not an established risk factor for these conditions. This retrospective case-control study was performed to determine the relationship between IDA with PP and PA. METHODS Maternal characteristics, risk factors for and incidence of antepartum haemorrhage overall, and PP and PA, were compared between women with IDA only and controls without IDA or haemoglobinopathies matched for exact age and parity (four controls to each index case), who carried singleton pregnancy to ≥22 weeks and managed under our care from 1997 to 2019. RESULTS There were 1,176 women (0.8% of eligible women in the database) with IDA only, who exhibited slightly but significantly different maternal characteristics, and increased antepartum haemorrhage overall (3.4% versus 2.2%, p = 0.031, OR 1.522, 95% CI 1.037-2.234) and PP (1.8% versus 0.9%, p = 0.010, OR 1.953, 95% CI 1.164-3.279), but not PA (1.2% versus 1.1%, p = 0.804, OR 1.077, 95% CI 0.599-1.936). When stratified by parity status, increased PP was found in nulliparous women only. On multivariate analysis adjusting for parity, previous abortion history, overweight and obesity, short stature, other antenatal complications as a composite factor, preterm (<37) delivery, previous caesarean delivery, and infant gender, IDA was associated with PP (aOR 3.485, 95% CI 1.959-6.200) and PA (aOR 2.181, 95% CI 1.145-4.155). CONCLUSIONS Both PP and PA are increased in women with IDA, the prevention of which could be a means to reduce the occurrence of both PP and PA.
Collapse
|
6
|
Lao TT, Wong LL, Hui SYA, Sahota DS. Iron Deficiency Anaemia and Atonic Postpartum Haemorrhage Following Labour. Reprod Sci 2022; 29:1102-1110. [PMID: 34993930 DOI: 10.1007/s43032-021-00534-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/03/2021] [Indexed: 11/24/2022]
Abstract
The purpose of this retrospective cohort study is to determine if iron deficiency anaemia (IDA) is associated with increased atonic postpartum haemorrhage (PPH) following labour. Women with singleton pregnancy carried to 24 or more weeks gestation, who were delivered under our care from 1997 to 2019, constituted the study population. A diagnosis of IDA was based on the finding of haemoglobin <10 g/dL and serum ferritin <15 μg/L in the absence of haemoglobinopathies. Women with elective caesarean section were excluded. Maternal characteristics, use of oxytocin, labour outcome and occurrence of PPH were compared between women with and without a diagnosis of IDA. The 1032 women (0.86%) with IDA exhibited slightly but significantly different maternal characteristics and had significantly higher incidence of total (4.5% versus 3.2%, p = 0.024) and atonic PPH (3.1% versus 2.0%, p = 0.011) despite similar incidences of labour induction, augmentation, and instrumental and intrapartum caesarean delivery. Multivariate analysis with adjustment for the effects of age, body mass index, height, parity, abortion history, labour induction and augmentation, instrumental delivery and infant macrosomia demonstrated that IDA was independently associated with total PPH (adjusted relative risk, aRR: 1.455, 95% confidence ratio, CI: 1.040-2.034) and atonic PPH (aRR: 1.588, 95% CI: 1.067-2.364). Our results indicate that despite the low prevalence in our population, IDA was independently associated with atonic PPH, probably consequent to placental adaptive changes in the presence of IDA. The correction and prevention of IDA could be the most important measure in countering the rising global prevalence of atonic PPH.
Collapse
Affiliation(s)
- Terence T Lao
- Department of Obstetrics & Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, 1/F, Block E, Shatin, Hong Kong, People's Republic of China.
| | - Lulu L Wong
- Department of Obstetrics & Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, 1/F, Block E, Shatin, Hong Kong, People's Republic of China
| | - Shuk Yi Annie Hui
- Department of Obstetrics & Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, 1/F, Block E, Shatin, Hong Kong, People's Republic of China
| | - Daljit S Sahota
- Department of Obstetrics & Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, 1/F, Block E, Shatin, Hong Kong, People's Republic of China
| |
Collapse
|
7
|
Kreicberga I, Junga A, Pilmane M. Assessment of apoptosis and appearance of hepatocyte growth factor in placenta at different gestational ages: A cross-sectional study. Int J Reprod Biomed 2021; 19:505-514. [PMID: 34401645 PMCID: PMC8350851 DOI: 10.18502/ijrm.v19i6.9372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/10/2020] [Accepted: 10/31/2020] [Indexed: 11/24/2022] Open
Abstract
Background Fetal growth is determined by the interaction between mother and fetus using the placental interface throughout the pregnancy. Objective To research apoptosis and appearance of hepatocyte growth factor (HGF) in placentas of different gestational ages and to describe the anthropometrical and clinical indices of mothers and newborns. Materials and Methods The study material was obtained from 53 human immunodeficiency virus negative pregnant women of legal age without systemic diseases. The staining of placental apoptotic cells was processed by a standard in situ cell death detection kit. The detection of HGF was provided by the ImmunoCruz goat ABC Staining System protocol sc-2023. Relative distribution of positive structures was evaluated using the semiquantitative counting method. Results The mean rank value of the amount of HGF-containing cells (cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, Höfbauer cells, and cells of extraembryonic mesoderm) was 1.61 ± 0.94. Apoptotic cells (cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, and cells of extraembryonic mesoderm) were found in all placental samples of various gestational ages (term 13.00 ± 13.05 and preterm 27.00 ± 18.25); in general, their amount decreased with advancing gestational age of the placenta (p < 0.01). Conclusion Weight of a placenta directly depends on the gestational age and correlates with the main fetal anthropometrical parameters (weight, length, and head and chest circumferences). The decrease in HGF-containing and apoptotic cells with advancing gestation depends on the adaptation potential of the placenta, proving the other ways of cellular disposition.
Collapse
Affiliation(s)
- Ilze Kreicberga
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Riga, Latvia
| | - Anna Junga
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Riga, Latvia
| |
Collapse
|
8
|
Varberg KM, Soares MJ. Paradigms for investigating invasive trophoblast cell development and contributions to uterine spiral artery remodeling. Placenta 2021; 113:48-56. [PMID: 33985793 DOI: 10.1016/j.placenta.2021.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Uterine spiral arteries are extensively remodeled during placentation to ensure sufficient delivery of maternal blood to the developing fetus. Uterine spiral arterial remodeling is complex, as cells originating from both mother and developing conceptus interact at the maternal interface to regulate the extracellular matrix remodeling and vasculature restructuring necessary for successful placentation. Despite this complexity, one mechanism critical to spiral artery remodeling is trophoblast cell invasion into the maternal compartment. Invasive trophoblast cells include both interstitial and endovascular populations that exhibit spatiotemporal differences in uterine invasion, including proximity to uterine spiral arteries. Interstitial trophoblast cells invade the uterine parenchyma where they are interspersed among stromal cells. Endovascular trophoblast cells infiltrate uterine spiral arteries, replace endothelial cells, adopt a pseudo-endothelial cell phenotype, and engineer vessel remodeling. Impaired trophoblast cell invasion and, consequently, insufficient uterine spiral arterial remodeling can lead to the development of pregnancy disorders, such as preeclampsia, intrauterine growth restriction, and premature birth. This review provides insights into invasive trophoblast cells and their function during normal placentation as well as in settings of disease.
Collapse
Affiliation(s)
- Kaela M Varberg
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA; Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy Kansas City, Missouri 64108, USA.
| |
Collapse
|
9
|
Feng X, Liu Y, Zhang Y, Zhang Y, Li H, Zheng Q, Li N, Tang J, Xu Z. New views on endothelial dysfunction in gestational hypertension and potential therapy targets. Drug Discov Today 2021; 26:1420-1436. [PMID: 33677145 DOI: 10.1016/j.drudis.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
The placenta has vital roles in metabolite exchange, fetal growth, and pre-eclampsia (PE). In this review, we discuss the pathogenesis of hypertension in pregnancy, focusing on four major theories to explain PE, discussing endothelial roles in those theories. We focus in particular on the roles of nitric oxide (NO) and prostacyclin (PGI2) in placental endothelium, and propose new hypotheses for the influence and mechanisms of endothelial NO and PGI2 signaling pathways in PE.
Collapse
Affiliation(s)
- Xueqin Feng
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China; Department of Obstetrics, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Yanping Liu
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Yingying Zhang
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Yumeng Zhang
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Huan Li
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Qiutong Zheng
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Na Li
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Jiaqi Tang
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China.
| | - Zhice Xu
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China.
| |
Collapse
|
10
|
Wang R, Huang X, Ma C, Zhang H. Toxicological Effects of BPDE on Dysfunctions of Female Trophoblast Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:151-160. [PMID: 33523433 DOI: 10.1007/978-981-33-4187-6_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely spread persistent environmental toxicants. Its typical representative benzo[a]pyrene (BaP) is a human carcinogen. BaP can pass through the placental barrier and is finally metabolized into benzo[a]pyren-7, 8-dihydrodiol-9, 10-epoxide (BPDE). BPDE can form DNA adducts, which directly affect the female reproductive health. Based on the special physiological functions of trophoblast cells and its important effect on normal pregnancy, this chapter describes the toxicity and molecular mechanism of BPDE-induced dysfunctions of trophoblast cells. By affecting the invasion, migration, apoptosis, proliferation, inflammation, and hormone secretion of trophoblast cells, BPDE causes diseases such as choriocarcinoma, intrauterine growth restriction, eclampsia, and abortion. In the end, it is expected to provide a scientific basis and prevention approach for women's reproductive health and decision-making basis for the formulation of environmental health standards.
Collapse
Affiliation(s)
- Rong Wang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China
| | - Xinying Huang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China
| | - Chenglong Ma
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Colson A, Sonveaux P, Debiève F, Sferruzzi-Perri AN. Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Hum Reprod Update 2020; 27:531-569. [PMID: 33377492 DOI: 10.1093/humupd/dmaa053] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The placenta is the functional interface between the mother and the fetus during pregnancy, and a critical determinant of fetal growth and life-long health. In the first trimester, it develops under a low-oxygen environment, which is essential for the conceptus who has little defense against reactive oxygen species produced during oxidative metabolism. However, failure of invasive trophoblasts to sufficiently remodel uterine arteries toward dilated vessels by the end of the first trimester can lead to reduced/intermittent blood flow, persistent hypoxia and oxidative stress in the placenta with consequences for fetal growth. Fetal growth restriction (FGR) is observed in ∼10% of pregnancies and is frequently seen in association with other pregnancy complications, such as preeclampsia (PE). FGR is one of the main challenges for obstetricians and pediatricians, as smaller fetuses have greater perinatal risks of morbidity and mortality and postnatal risks of neurodevelopmental and cardio-metabolic disorders. OBJECTIVE AND RATIONALE The aim of this review was to examine the importance of placental responses to changing oxygen environments during abnormal pregnancy in terms of cellular, molecular and functional changes in order to highlight new therapeutic pathways, and to pinpoint approaches aimed at enhancing oxygen supply and/or mitigating oxidative stress in the placenta as a mean of optimizing fetal growth. SEARCH METHODS An extensive online search of peer-reviewed articles using PubMed was performed with combinations of search terms including pregnancy, placenta, trophoblast, oxygen, hypoxia, high altitude, FGR and PE (last updated in May 2020). OUTCOMES Trophoblast differentiation and placental establishment are governed by oxygen availability/hypoxia in early pregnancy. The placental response to late gestational hypoxia includes changes in syncytialization, mitochondrial functions, endoplasmic reticulum stress, hormone production, nutrient handling and angiogenic factor secretion. The nature of these changes depends on the extent of hypoxia, with some responses appearing adaptive and others appearing detrimental to the placental support of fetal growth. Emerging approaches that aim to increase placental oxygen supply and/or reduce the impacts of excessive oxidative stress are promising for their potential to prevent/treat FGR. WIDER IMPLICATIONS There are many risks and challenges of intervening during pregnancy that must be considered. The establishment of human trophoblast stem cell lines and organoids will allow further mechanistic studies of the effects of hypoxia and may lead to advanced screening of drugs for use in pregnancies complicated by placental insufficiency/hypoxia. Since no treatments are currently available, a better understanding of placental adaptations to hypoxia would help to develop therapies or repurpose drugs to optimize placental function and fetal growth, with life-long benefits to human health.
Collapse
Affiliation(s)
- Arthur Colson
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Wu L, Zhao KQ, Wang W, Cui LN, Hu LL, Jiang XX, Shuai J, Sun YP. Nuclear receptor coactivator 6 promotes HTR-8/SVneo cell invasion and migration by activating NF-κB-mediated MMP9 transcription. Cell Prolif 2020; 53:e12876. [PMID: 32790097 PMCID: PMC7507070 DOI: 10.1111/cpr.12876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives NCOA6 is a transcription coactivator; its deletion in mice results in growth retardation and lethality between 8.5 and 12.5 dpc with defects in the placenta. However, the transcription factor(s) and the mechanism(s) involved in the function of NCOA6 in placentation have not been elucidated. Here, the roles of NCOA6 in human cytotrophoblast invasion and migration were studied. Materials and Methods Human placenta tissues were collected from normal pregnancies and pregnancies complicated by early‐onset severe preeclampsia (sPE). Immunofluorescence, RT‐qPCR and Western blotting were used to determine NCOA6 expression. Transwell invasion/migration assays were performed to explore whether NCOA6 knockdown affected human placenta‐derived HTR‐8/SVneo cell invasion/migration. Gelatin zymography was performed to examine the change in the gelatinolytic activities of secreted MMP2 and MMP9. Luciferase reporter assays were used to explore whether NCOA6 coactivated NF‐κB‐mediated MMP9 transcription. Results NCOA6 is mainly expressed in the human placental trophoblast column, as well as in the EVTs. HTR‐8/SVneo cell invasion and migration were significantly attenuated after NCOA6 knockdown, and the secretion of MMP9 was decreased due to transcriptional suppression. NCOA6 was further found to coactivate NF‐κB‐mediated MMP9 transcription. Moreover, expression of NCOA6 was impaired in placentas of patients complicated by early‐onset sPE. Conclusions Thus, we demonstrated that NCOA6 is important for cytotrophoblast invasion/migration, at least partially, by activating NF‐κB‐mediated MMP9 transcription; the downregulation of NCOA6 may contribute to the pathogenesis of early‐onset sPE.
Collapse
Affiliation(s)
- Liang Wu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kun-Qing Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Na Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin-Li Hu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang-Xiang Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Shuai
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying-Pu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Shahabadi N, Razlansari M, Khorshidi A, Zhaleh H. Investigation of controlled release properties and anticancer effect of folic acid conjugated magnetic core–shell nanoparticles as a dual responsive drug delivery system on A-549 and A-431 cancer cell lines. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04205-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Muhammad T, Li M, Wang J, Huang T, Zhao S, Zhao H, Liu H, Chen ZJ. Roles of insulin-like growth factor II in regulating female reproductive physiology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:849-865. [PMID: 32291558 DOI: 10.1007/s11427-019-1646-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
The number of growth factors involved in female fertility has been extensively studied, but reluctance to add essential growth factors in culture media has limited progress in optimizing embryonic growth and implantation outcomes, a situation that has ultimately led to reduced pregnancy outcomes. Insulin-like growth factor II (IGF-II) is the most intricately regulated of all known reproduction-related growth factors characterized to date, and is perhaps the predominant growth factor in human ovarian follicles. This review aims to concisely summarize what is known about the role of IGF-II in follicular development, oocyte maturation, embryonic development, implantation success, placentation, fetal growth, and in reducing placental cell apoptosis, as well as present strategies that use growth factors in culture systems to improve the developmental potential of oocytes and embryos in different species. Synthesizing the present knowledge about the physiological roles of IGF-II in follicular development, oocyte maturation, and early embryonic development should, on the one hand, deepen our overall understanding of the potential beneficial effects of growth factors in female reproduction and on the other hand support development (optimization) of improved outcomes for assisted reproductive technologies.
Collapse
Affiliation(s)
- Tahir Muhammad
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Jianfeng Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China. .,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China. .,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200000, China. .,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, China.
| |
Collapse
|
15
|
Tao YT, Ding XB, Jin J, Zhang HB, Guo WP, Ruan L, Yang QL, Chen PC, Yao H, Chen X. Predicted rat interactome database and gene set linkage analysis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5996022. [PMID: 33216897 PMCID: PMC7678787 DOI: 10.1093/database/baaa086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022]
Abstract
Rattus norvegicus, or the rat, has been widely used as animal models for a diversity of human diseases in the last 150 years. The rat, as a disease model, has the advantage of relatively large body size and highly similar physiology to humans. In drug discovery, rat models are routinely used in drug efficacy and toxicity assessments. To facilitate molecular pharmacology studies in rats, we present the predicted rat interactome database (PRID), which is a database of high-quality predicted functional gene interactions with balanced sensitivity and specificity. PRID integrates functional gene association data from 10 public databases and infers 305 939 putative functional associations, which are expected to include 13.02% of all rat protein interactions, and 52.59% of these function associations may represent protein interactions. This set of functional interactions may not only facilitate hypothesis formulation in molecular mechanism studies, but also serve as a reference interactome for users to perform gene set linkage analysis (GSLA), which is a web-based tool to infer the potential functional impacts of a set of changed genes observed in transcriptomics analyses. In a case study, we show that GSLA based on PRID may provide more precise and informative annotations for investigators to understand the physiological mechanisms underlying a phenotype and lead investigators to testable hypotheses for further studies. Widely used functional annotation tools such as Gene Ontology (GO) analysis, and Database for Annotation, Visualization and Integrated Discovery (DAVID) did not provide similar insights. Database URL: http://rat.biomedtzc.cn.
Collapse
Affiliation(s)
- Yu-Tian Tao
- Institute of Big data and Artificial Intelligence in Medicine, School of Electronics & Information Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Xiao-Bao Ding
- Institute of Big data and Artificial Intelligence in Medicine, School of Electronics & Information Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Jie Jin
- Institute of Big data and Artificial Intelligence in Medicine, School of Electronics & Information Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Hai-Bo Zhang
- Institute of Big data and Artificial Intelligence in Medicine, School of Electronics & Information Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Wen-Ping Guo
- Institute of Big data and Artificial Intelligence in Medicine, School of Electronics & Information Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Li Ruan
- Institute of Big data and Artificial Intelligence in Medicine, School of Electronics & Information Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Qiao-Lei Yang
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Peng-Cheng Chen
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Heng Yao
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xin Chen
- Institute of Big data and Artificial Intelligence in Medicine, School of Electronics & Information Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China.,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
16
|
Traditional and New Routes of Trophoblast Invasion and Their Implications for Pregnancy Diseases. Int J Mol Sci 2019; 21:ijms21010289. [PMID: 31906245 PMCID: PMC6981830 DOI: 10.3390/ijms21010289] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Historically, invasion of placental trophoblasts was thought to be extremely specific, only invading into the connective tissues of the maternal uterus and finally reaching and transforming the uterine spiral arteries. Only recently, identification of new routes of trophoblast invasion into different structures of the maternal uterus has been achieved. Thorough morphological analysis has resulted in the identification of trophoblasts invading into glands, veins, and lymph vessels of the uterine wall. These new routes pave the way for a re-evaluation of trophoblast invasion during normal placental development. Of course, such new routes of trophoblast invasion may well be altered, especially in pregnancy pathologies such as intra-uterine growth restriction, preeclampsia, early and recurrent pregnancy loss, stillbirth, and spontaneous abortion. Maybe one or more of these pregnancy pathologies show alterations in different pathways of trophoblast invasion, and, thus, etiologies may need to be redefined, and new therapies may be developed.
Collapse
|
17
|
Mateus J, Newman RB, Zhang C, Pugh SJ, Grewal J, Kim S, Grobman WA, Owen J, Sciscione AC, Wapner RJ, Skupski D, Chien E, Wing DA, Ranzini AC, Nageotte MP, Gerlanc N, Albert PS, Grantz KL. Fetal growth patterns in pregnancy-associated hypertensive disorders: NICHD Fetal Growth Studies. Am J Obstet Gynecol 2019; 221:635.e1-635.e16. [PMID: 31226296 PMCID: PMC6888945 DOI: 10.1016/j.ajog.2019.06.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/30/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fetal growth patterns in pregnancy-associated hypertensive disorders is poorly understood because prospective longitudinal data are lacking. OBJECTIVE The objective of the study was to compare longitudinal fetal growth trajectories between normotensive women and those with pregnancy-associated hypertensive disorders. STUDY DESIGN This is a study based on data from a prospective longitudinal cohort study of fetal growth performed at 12 US sites (2009-2013). Project gestational age was confirmed by ultrasound between 8 weeks 0 days and 13 weels 6 days, and up to 6 ultrasounds were performed across gestation. Hypertensive disorders were diagnosed based on 2002 American College of Obstetricians and Gynecologists guidelines and grouped hierarchically as severe preeclampsia (including eclampsia or HELLP [hemolysis, elevated liver enzymes, and low platelet count] syndrome), mild preeclampsia, severe gestational hypertension, mild gestational hypertension, or unspecified hypertension. Women without any hypertensive disorder constituted the normotensive group. Growth curves for estimated fetal weight and individual biometric parameters including biparietal diameter, head circumference, abdominal circumference, and femur and humerus length were calculated for each group using linear mixed models with cubic splines. Global and weekly pairwise comparisons were performed between women with a hypertensive disorder compared with normotensive women to analyze differences while adjusting for confounding variables. Delivery gestational age and birthweights were compared among groups. RESULTS Of 2462 women analyzed, 2296 (93.3%) were normotensive, 63 (2.6%) had mild gestational hypertension, 54 (2.2%) mild preeclampsia, 32 (1.3%) severe preeclampsia, and 17 (0.7%) unspecified hypertension. Compared with normotensive women, those with severe preeclampsia had estimated fetal weights that were reduced between 22 and 38 weeks (all weekly pairwise values of P < .008). Women with severe preeclampsia compared with those without hypertension also had significantly smaller fetal abdominal circumference between 23-31 and 33-37 weeks' gestation (weekly pairwise values of P < .04). Scattered weekly growth differences were noted on other biometric parameters between these 2 groups. The consistent differences in estimated fetal weight and abdominal circumference were not observed between women with other hypertensive disorders and those who were normotensive. Women with severe preeclampsia delivered significantly earlier (mean gestational age 35.9 ± 3.2 weeks) than the other groups (global P < .0001). Birthweights in the severe preeclampsia group were also significantly lower (mean -949.5 g [95% confidence interval, -1117.7 to -781.2 g]; P < .0001) than in the normotensive group. CONCLUSION Among women with pregnancy-associated hypertensive disorders, only those destined to develop severe preeclampsia demonstrated a significant and consistent difference in fetal growth (ie, smaller estimated fetal weight and abdominal circumference) when compared with normotensive women.
Collapse
Affiliation(s)
- Julio Mateus
- Division of Maternal-Fetal Medicine, Medical University of South Carolina, Charleston, SC.
| | - Roger B Newman
- Division of Maternal-Fetal Medicine, Medical University of South Carolina, Charleston, SC
| | - Cuilin Zhang
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Sarah J Pugh
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Jagteshwar Grewal
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Sungduk Kim
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | | - John Owen
- Center for Women's Reproductive Health, University of Alabama at Birmingham, Birmingham, AL
| | - Anthony C Sciscione
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Christiana Hospital, Newark, DE
| | | | - Daniel Skupski
- New York Presbyterian Queens, Flushing; Weill Cornell School of Medicine, New York, NY
| | - Edward Chien
- Women and Infants Hospital of Rhode Island, Providence, Rhode Island
| | - Deborah A Wing
- University of California, Irvine, and Long Beach Memorial Medical Center/Miller Children's Hospital Irvine, CA
| | - Angela C Ranzini
- Saint Peter's University Hospital, New Brunswick, NJ; MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH
| | | | - Nicole Gerlanc
- Prospective Group, Inc, contractor for the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Paul S Albert
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Katherine L Grantz
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
18
|
Brosens I, Puttemans P, Benagiano G. Placental bed research: I. The placental bed: from spiral arteries remodeling to the great obstetrical syndromes. Am J Obstet Gynecol 2019; 221:437-456. [PMID: 31163132 DOI: 10.1016/j.ajog.2019.05.044] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
Abstract
The term placental bed was coined to describe the maternal-fetal interface (ie, the area in which the placenta attaches itself to the uterus). Appropriate vascularization of this area is of vital importance for the development of the fetus; this is why systematic investigations of this area have now been carried out. Initially, the challenge was the identification and classification of the various successive branching of uterine arteries in this area. These vessels have a unique importance because failure of their physiological transformation is considered to be the anatomical basis for reduced perfusion to the intervillous space in women with preeclampsia, fetal growth restriction, preterm labor, preterm premature rupture of membranes, abruptio placentae, and fetal death. To investigate in depth the pathophysiology of the placental bed, some 60 years ago, a large number of placental bed biopsies, as well as of cesarean hysterectomy specimens with placenta in situ, from both early and late normotensive and hypertensive pregnancies, were carefully dissected and analyzed. Thanks to the presence of a series of specific physiological changes, characterized by the invasion and substitution of the arterial intima by trophoblast, this material allowed the identification in the placental bed of normal pregnancies of the main vessels, the uteroplacental arteries. It was then discovered that preeclampsia is associated with defective or absent transformation of the myometrial segment of the uteroplacental arteries. In addition, in severe hypertensive disease, atherosclerotic lesions were also found in the defective myometrial segment. Finally, in the basal decidua, a unique vascular lesion, coined acute atherosis, was also identified This disorder of deep placentation, coined defective deep placentation, has been associated with the great obstetrical syndromes, grouping together preeclampsia, intrauterine growth restriction, preterm labor, preterm premature rupture of membranes, late spontaneous abortion, and abruptio placentae. More recently, simplified techniques of tissue sampling have been also introduced: decidual suction allows to obtain a large number of decidual arteries, although their origin in the placental bed cannot be determined. Biopsies parallel to the surface of the basal plate have been more interesting, making possible to identify the vessels' region (central, paracentral, or peripheral) of origin in the placental bed and providing decidual material for immunohistochemical studies. Finally, histochemical and electron microscopy investigations have now clarified the pathology and pathogenetic mechanisms underlying the impairment of the physiological vascular changes.
Collapse
|
19
|
Abstract
Pre-eclampsia is a common disorder that particularly affects first pregnancies. The clinical presentation is highly variable but hypertension and proteinuria are usually seen. These systemic signs arise from soluble factors released from the placenta as a result of a response to stress of syncytiotrophoblast. There are two sub-types: early and late onset pre-eclampsia, with others almost certainly yet to be identified. Early onset pre-eclampsia arises owing to defective placentation, whilst late onset pre-eclampsia may center around interactions between normal senescence of the placenta and a maternal genetic predisposition to cardiovascular and metabolic disease. The causes, placental and maternal, vary among individuals. Recent research has focused on placental-uterine interactions in early pregnancy. The aim now is to translate these findings into new ways to predict, prevent, and treat pre-eclampsia.
Collapse
Affiliation(s)
- Graham J Burton
- Department of Physiology, Development & Neuroscience, University of Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, UK
| | | | - James M Roberts
- Magee-Womens Research Institute, Depts. Obstetric Gynecology and Reproductive Sciences, Epidemiology, and Clinical and Translational Research, University of Pittsburgh, USA
| | - Ashley Moffett
- Centre for Trophoblast Research, University of Cambridge, UK
- Dept of Pathology, University of Cambridge, UK
| |
Collapse
|
20
|
Can Serum Iron Concentrations in Early Healthy Pregnancy Be Risk Marker of Pregnancy-Induced Hypertension? Nutrients 2019; 11:nu11051086. [PMID: 31100832 PMCID: PMC6566422 DOI: 10.3390/nu11051086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to assess the relationship between serum iron concentrations in early healthy pregnancy and the risk of pregnancy-induced hypertension. The data comes from our prospective cohort study in which we recruited healthy women in week 10–14 of single pregnancy. We examined a study group (n = 121) consisting of women subsequently developing pregnancy-induced hypertension and a control group (n = 363) of matched women remaining normotensive. We measured iron concentrations in the serum collected in 10–14 gestational week, using the ICP-MS technique (mass spectrometry with inductively coupled plasma). The odds ratios of the disease (95% confidence intervals) for iron concentrations were assessed in multivariate logistic regression. We found that the mean microelement concentration was lower in the case group compared to normotensive controls (p = 0.011). Women in the lowest quartile of iron (≤801.20 µg/L) had a 2.19-fold increase in pregnancy-induced hypertension risk compared with women in the highest quartile (>1211.75 µg/L) (odds ratio (OR) = 2.19; 95% CI: 1.24–3.88; p = 0.007). This result was sustained after adjusted for all the accepted confounders. Women in the higher Q2 quartile (801.20–982.33 µg/L) had a 17% lower risk, compared with those in the highest quartile (OR = 0.83; 95% CI: 0.65–2.32; p = 0.519).
Collapse
|
21
|
He GQ, Liu GY, Xu WM, Liao HJ, Liu XH, He GL. p57KIP2‑mediated inhibition of human trophoblast apoptosis and promotion of invasion in vitro. Int J Mol Med 2019; 44:281-290. [PMID: 31059007 DOI: 10.3892/ijmm.2019.4175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/19/2019] [Indexed: 11/06/2022] Open
Abstract
Placental hypoxia serves a role in the early stages of normal pregnancy and is involved in the pathophysiology of preeclampsia. Previously, it was suggested that p57kinase inhibitory protein (KIP)2 regulates the cell cycle during embryogenesis and apoptosis. Recent evidence has indicated that p57KIP2 is increased in preeclamptic placentas and absence of p57KIP2 induces preeclampsia‑type symptoms in rats. However, effects of p57KIP2 on apoptosis under hypoxic conditions remain to be elucidated. In the present study, HTR‑8/SVneo trophoblasts were cultured under hypoxic conditions (2% O2). Knockdown using small interfering (si)RNA and overexpression of p57KIP2 were utilized to explore the biological function of p57KIP2 in apoptosis and cell function in vitro. Furthermore, expression of p57KIP2 and apoptosis were evaluated by western blotting, flow cytometry and TUNEL assays, and the response of trophoblasts to hypoxia and the role of p57KIP2 in trophoblast migration and invasion was assessed. The role of p57KIP2 in the JNK signaling pathway in HTR‑8/SVneo trophoblasts was further studies. In vitro, protein expression of p57KIP2 was increased in HTR‑8/SVneo cells exposed to 2% O2. Exogenous p57KIP2 overexpression significantly decreased the expression of pro‑apoptosis proteins, including p53, Bax and cleaved caspase3, under hypoxic conditions for 24 h. In addition, knockdown of p57KIP2 increased the response to apoptosis following hypoxia for 24 h. The present study revealed that overexpression of p57KIP2 decreased the levels of phosphorylated‑JNK. JNK inhibitor treatment combined with the overexpression of p57KIP2 significantly decreased the levels of apoptosis and increased cell invasion and migration. Taken together, p57KIP2 knockdown significantly increased apoptosis in HTR‑8/SVneo cells exposed to 2% O2, whereas overexpression of p57KIP2 had opposite effects, mediated by the JNK/stress activated protein kinase (SAPK) signaling pathway. The results indicated that hypoxia‑induced expression of p57KIP2 promoted trophoblast migration and invasion by mediating the JNK/SAPK signaling pathway, which is crucial during placentation. These results may provide a novel molecular mechanism to understand the involvement of p57KIP2 in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Guo-Qian He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guang-Yu Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wen-Ming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hui-Juan Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xing-Hui Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guo-Lin He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
22
|
Soares MJ, Iqbal K, Kozai K. Hypoxia and Placental Development. Birth Defects Res 2018; 109:1309-1329. [PMID: 29105383 DOI: 10.1002/bdr2.1135] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022]
Abstract
Hemochorial placentation is orchestrated through highly regulated temporal and spatial decisions governing the fate of trophoblast stem/progenitor cells. Trophoblast cell acquisition of specializations facilitating invasion and uterine spiral artery remodeling is a labile process, sensitive to the environment, and represents a process that is vulnerable to dysmorphogenesis in pathologic states. Hypoxia is a signal guiding placental development, and molecular mechanisms directing cellular adaptations to low oxygen tension are integral to trophoblast cell differentiation and placentation. Hypoxia can also be used as an experimental tool to investigate regulatory processes controlling hemochorial placentation. These developmental processes are conserved in mouse, rat, and human placentation. Consequently, elements of these developmental events can be modeled and hypotheses tested in trophoblast stem cells and in genetically manipulated rodents. Hypoxia is also a consequence of a failed placenta, yielding pathologies that can adversely affect maternal adjustments to pregnancy, fetal health, and susceptibility to adult disease. The capacity of the placenta for adaptation to environmental challenges highlights the importance of its plasticity in safeguarding a healthy pregnancy. Birth Defects Research 109:1309-1329, 2017.© 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas.,Fetal Health Research, Children's Research Institute, Children's Mercy, Kansas City, Missouri
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Keisuke Kozai
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
23
|
Kisanga EP, Tang Z, Guller S, Whirledge S. Glucocorticoid signaling regulates cell invasion and migration in the human first-trimester trophoblast cell line Sw.71. Am J Reprod Immunol 2018; 80:e12974. [DOI: 10.1111/aji.12974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Edwina P. Kisanga
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale School of Medicine; New Haven CT USA
| | - Zhonghua Tang
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale School of Medicine; New Haven CT USA
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale School of Medicine; New Haven CT USA
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale School of Medicine; New Haven CT USA
| |
Collapse
|
24
|
Maruotti GM, Giudicepietro A, Saccone G, Castaldo G, Sarno L, Zullo F, Berghella V, Martinelli P. Risk of preeclampsia in of women who underwent chorionic villus sampling. J Matern Fetal Neonatal Med 2018; 32:3012-3015. [DOI: 10.1080/14767058.2018.1454899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Giuseppe Maria Maruotti
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Antonia Giudicepietro
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Gabriele Saccone
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Laura Sarno
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Fulvio Zullo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo Berghella
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Pasquale Martinelli
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
25
|
Docheva N, Romero R, Chaemsaithong P, Tarca AL, Bhatti G, Pacora P, Panaitescu B, Chaiyasit N, Chaiworapongsa T, Maymon E, Hassan SS, Erez O. The profiles of soluble adhesion molecules in the "great obstetrical syndromes" . J Matern Fetal Neonatal Med 2018; 32:2113-2136. [PMID: 29320948 DOI: 10.1080/14767058.2018.1427058] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The objective of this study was to determine the profiles of maternal plasma soluble adhesion molecules in patients with preeclampsia, small-for-gestational-age (SGA) fetuses, acute pyelonephritis, preterm labor with intact membranes (PTL), preterm prelabor rupture of the membranes (preterm PROM), and fetal death. MATERIALS AND METHODS A cross-sectional study was conducted to determine maternal plasma concentrations of sE-selectin, sL-selectin, and sP-selectin as well as sICAM-1, sVCAM-1, and sPECAM-1 in patients with (1) an uncomplicated pregnancy (control, n = 100); (2) preeclampsia (n = 94); (3) SGA fetuses (in women without preeclampsia/hypertension, n = 45); (4) acute pyelonephritis (n = 25); (5) PTL (n = 53); (6) preterm PROM (n = 24); and (7) fetal death (n = 34). Concentrations of soluble adhesion molecules and inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-8) were determined with sensitive and specific enzyme-linked immunoassays. RESULTS In comparison to women with a normal pregnancy, (1) women with preeclampsia had higher median concentrations of sE-selectin, sP-selectin, and sVCAM-1, and a lower concentration of sL-selectin (all p values < .001); (2) patients with SGA fetuses had higher median concentrations of sE-selectin, sP-selectin, and sVCAM-1 (all p values < .05); (3) patients with a fetal death had higher median concentrations of sE-selectin and sP-selectin (all p values < .05); (4) patients with acute pyelonephritis had higher median plasma concentrations of sE-selectin, sICAM-1, and sVCAM-1 (all p values < .001); (5) patients with preeclampsia and acute pyelonephritis, plasma concentrations of sVCAM-1, sE-selectin, and sP-selectin correlated with those of the proinflammatory cytokines TNF-α and interleukin (IL)-8 (all p values < .05); (6) patients with PTL had a higher median concentration of sP-selectin and a lower median concentration of VCAM-1 (all p values < .05); and (7) women with preterm PROM had lower median concentrations of sL-selectin and sVCAM-1 (all p values < .05). CONCLUSIONS The results of this study show that endothelial cell activation/dysfunction reflected by the plasma concentration of sE-selectin is not specific to preeclampsia but is present in pregnancies complicated by SGA fetuses, acute pyelonephritis, and fetal death. Collectively, we report that each obstetrical syndrome appears to have a stereotypical profile of soluble adhesion molecules in the peripheral circulation.
Collapse
Affiliation(s)
- Nikolina Docheva
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Roberto Romero
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,c Department of Obstetrics and Gynecology , University of Michigan , Ann Arbor , MI , USA.,d Department of Epidemiology and Biostatistics , Michigan State University , East Lansing , MI , USA.,e Center for Molecular Medicine and Genetics , Wayne State University , Detroit , MI , USA
| | - Piya Chaemsaithong
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Adi L Tarca
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Gaurav Bhatti
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Percy Pacora
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Bogdan Panaitescu
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Noppadol Chaiyasit
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Tinnakorn Chaiworapongsa
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Eli Maymon
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA.,f Department of Obstetrics and Gynecology , Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beersheba , Israel
| | - Sonia S Hassan
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA.,g Department of Physiology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Offer Erez
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA.,f Department of Obstetrics and Gynecology , Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beersheba , Israel
| |
Collapse
|
26
|
Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. Am J Obstet Gynecol 2018; 218:S745-S761. [PMID: 29422210 DOI: 10.1016/j.ajog.2017.11.577] [Citation(s) in RCA: 543] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 01/03/2023]
Abstract
Placental-related fetal growth restriction arises primarily due to deficient remodeling of the uterine spiral arteries supplying the placenta during early pregnancy. The resultant malperfusion induces cell stress within the placental tissues, leading to selective suppression of protein synthesis and reduced cell proliferation. These effects are compounded in more severe cases by increased infarction and fibrin deposition. Consequently, there is a reduction in villous volume and surface area for maternal-fetal exchange. Extensive dysregulation of imprinted and nonimprinted gene expression occurs, affecting placental transport, endocrine, metabolic, and immune functions. Secondary changes involving dedifferentiation of smooth muscle cells surrounding the fetal arteries within placental stem villi correlate with absent or reversed end-diastolic umbilical artery blood flow, and with a reduction in birthweight. Many of the morphological changes, principally the intraplacental vascular lesions, can be imaged using ultrasound or magnetic resonance imaging scanning, enabling their development and progression to be followed in vivo. The changes are more severe in cases of growth restriction associated with preeclampsia compared to those with growth restriction alone, consistent with the greater degree of maternal vasculopathy reported in the former and more extensive macroscopic placental damage including infarcts, extensive fibrin deposition and microscopic villous developmental defects, atherosis of the spiral arteries, and noninfectious villitis. The higher level of stress may activate proinflammatory and apoptotic pathways within the syncytiotrophoblast, releasing factors that cause the maternal endothelial cell activation that distinguishes between the 2 conditions. Congenital anomalies of the umbilical cord and placental shape are the only placental-related conditions that are not associated with maldevelopment of the uteroplacental circulation, and their impact on fetal growth is limited.
Collapse
|
27
|
Küssel L, Herkner H, Wahrmann M, Eskandary F, Doberer K, Binder J, Pateisky P, Zeisler H, Böhmig GA, Bond G. Longitudinal assessment of HLA and MIC-A antibodies in uneventful pregnancies and pregnancies complicated by preeclampsia or gestational diabetes. Sci Rep 2017; 7:13524. [PMID: 29051520 PMCID: PMC5648869 DOI: 10.1038/s41598-017-13275-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/21/2017] [Indexed: 11/30/2022] Open
Abstract
The significance of antibodies directed against paternal epitopes in the context of obstetric disorders is discussed controversially. In this study anti-HLA and anti-MIC-A antibodies were analysed in sera of women with uneventful pregnancy (n = 101), preeclampsia (PE, n = 55) and gestational diabetes (GDM, n = 36) using antigen specific microbeads. While two thirds of the women with uneventful pregnancy or GDM were HLA and MIC-A antibody positive in gestational week 11 to 13 with a modest increase towards the end of pregnancy, women with PE showed an inverse kinetic: 90% were HLA antibody positive in gestational week 11 to 13 and only 10% showed HLA reactivities at the end of the pregnancy. HLA antibody binding strength was more pronounced in gestational week 14 to 17 in patients with PE compared to women with uneventful pregnancy (maximum median fluorescence intensity of the highest ranked positive bead 7403, IQR 2193–7938 vs. 1093, IQR 395–5689; p = 0.04) and was able to predict PE with an AUC of 0.80 (95% CI 0.67–0.93; p = 0.002). Our data suggest a pathophysiological involvement of HLA antibodies in PE. HLA antibody quantification in early pregnancy may provide a useful tool to increase diagnostic awareness in women prone to develop PE.
Collapse
Affiliation(s)
- Lorenz Küssel
- Department for Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Harald Herkner
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Wahrmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Konstantin Doberer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Julia Binder
- Department for Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Petra Pateisky
- Department for Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Harald Zeisler
- Department for Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gregor Bond
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Benzo[a]pyrene-7,8-diol-9,10-epoxide suppresses the migration and invasion of human extravillous trophoblast HTR-8/SVneo cells by down-regulating MMP2 through inhibition of FAK/SRC/PI3K/AKT pathway. Toxicology 2017; 386:72-83. [DOI: 10.1016/j.tox.2017.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/18/2017] [Accepted: 05/16/2017] [Indexed: 12/14/2022]
|
29
|
Plasma cross-gestational sphingolipidomic analyses reveal potential first trimester biomarkers of preeclampsia. PLoS One 2017; 12:e0175118. [PMID: 28384202 PMCID: PMC5383057 DOI: 10.1371/journal.pone.0175118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/21/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction Preeclampsia (PE) is a gestational disorder, manifested in the second half of pregnancy by maternal hypertension, proteinuria and generalized edema. PE is a major cause of maternal and fetal morbidity and mortality, accounting for nearly 40% of all premature births worldwide. Bioactive sphingolipids are emerging as key molecules involved in etiopathogenesis of PE, characterized by maternal angiogenic imbalance and symptoms of metabolic syndrome. The aim of this study was to compare the cross-gestational profile of circulating bioactive sphingolipids in maternal plasma from preeclamptic (PE) versus normotensive control (CTL) subjects with the goal of identifying sphingolipids as candidate first trimester biomarkers of PE for early prediction of the disease. Methods A prospective cohort of patients was sampled at the first, second and third trimester of pregnancy for each patient (11–14, 22–24, and 32–36 weeks´ gestation). A retrospective stratified study design was used to quantify different classes of sphingolipids in maternal plasma. We used a reverse-phase high-performance liquid chromatography-tandem mass spectrometry (HPLC-ESI-MS/MS) approach for determining different sphingolipid molecular species (sphingosine-1-phosphate (S1P), dihydro-sphingosine-1-phosphate (DH-S1P), sphingomyelins (SM) and ceramides (Cer)) in cross-gestational samples of human plasma from PE (n = 7, 21 plasma samples across pregnancy) and CTL (n = 7, 21 plasma samples across pregnancy) patients. Results Plasma levels of angiogenic S1P did not change significantly in control and in preeclamptic patients´ group across gestation. DH-S1P was significantly decreased in second trimester plasma of PE patients in comparison to their first trimester, which could contribute to reduced endothelial barrier observed in PE. The major ceramide species (Cer 16:0 and Cer 24:0) tended to be up-regulated in plasma of control and PE subjects across gestation. The levels of a less abundant plasma ceramide species (Cer 14:0) were significantly lower in first trimester plasma of PE patients when compared with their gestational-matched control samples (p = 0.009). Major plasma sphingomyelin species (SM 16:0, SM 18:1 and SM 24:0) tended to be higher in control pregnancies across gestation. However, in PE patients, SM 16:0, SM 18:0 and SM 18:1 showed significant up-regulation across gestation, pointing to atherogenic properties of the sphingomyelins and particularly the potential contribution of SM 18:0 to the disease development. In addition, two major sphingomyelins, SM 16:0 and SM 18:0, were significantly lower in first trimester plasma of PE patients versus first trimester samples of respective controls (p = 0.007 and p = 0.002, respectively). Conclusions Cross-gestational analysis of maternal plasma of preeclamptic and normotensive women identifies differences in the biochemical profile of major sphingolipids (DH-S1P, sphingomyelins and ceramides) between these two groups. In addition, first trimester maternal plasma sphingolipids (Cer 14:0, SM 16:0 and SM 18:0) may serve in the future as early biomarkers of PE occurrence and development.
Collapse
|
30
|
Sultana Z, Maiti K, Aitken J, Morris J, Dedman L, Smith R. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. Am J Reprod Immunol 2017; 77. [PMID: 28240397 DOI: 10.1111/aji.12653] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/20/2017] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress (OS), an imbalance between free radical generation and antioxidant defence, is recognized as a key factor in the pathogenesis of adverse pregnancy outcomes. Although OS is a common future of normal pregnancy, persistent, overwhelming OS leads to consumption and decline of antioxidants, affecting placental antioxidant capacity and reducing systems. The accumulation of OS causes damage to lipids, proteins and DNA in the placental tissue that induces a form of accelerated ageing. Premature ageing of the placenta is associated with placental insufficiency that prevents the organ meeting the needs of the foetus, and as a consequence, the viability of the foetus is compromised. This review summarizes the literature regarding the role of OS and premature placental ageing in the pathophysiology of pregnancy complications.
Collapse
Affiliation(s)
- Zakia Sultana
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Newcastle, NSW, Australia
| | - Kaushik Maiti
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Newcastle, NSW, Australia
| | - John Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Newcastle, NSW, Australia
| | - Jonathan Morris
- Kolling Institute, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
| | - Lee Dedman
- Faculty of Science and Information Technology, School of Design, Communication and Information Technology, University of Newcastle, Newcastle, NSW, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
31
|
HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia. Proc Natl Acad Sci U S A 2016; 113:E7212-E7221. [PMID: 27807143 DOI: 10.1073/pnas.1612626113] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The hemochorial placenta develops from the coordinated multilineage differentiation of trophoblast stem (TS) cells. An invasive trophoblast cell lineage remodels uterine spiral arteries, facilitating nutrient flow, failure of which is associated with pathological conditions such as preeclampsia, intrauterine growth restriction, and preterm birth. Hypoxia plays an instructive role in influencing trophoblast cell differentiation and regulating placental organization. Key downstream hypoxia-activated events were delineated using rat TS cells and tested in vivo, using trophoblast-specific lentiviral gene delivery and genome editing. DNA microarray analyses performed on rat TS cells exposed to ambient or low oxygen and pregnant rats exposed to ambient or hypoxic conditions showed up-regulation of genes characteristic of an invasive/vascular remodeling/inflammatory phenotype. Among the shared up-regulated genes was matrix metallopeptidase 12 (MMP12). To explore the functional importance of MMP12 in trophoblast cell-directed spiral artery remodeling, we generated an Mmp12 mutant rat model using transcription activator-like nucleases-mediated genome editing. Homozygous mutant placentation sites showed decreased hypoxia-dependent endovascular trophoblast invasion and impaired trophoblast-directed spiral artery remodeling. A link was established between hypoxia/HIF and MMP12; however, evidence did not support Mmp12 as a direct target of HIF action. Lysine demethylase 3A (KDM3A) was identified as mediator of hypoxia/HIF regulation of Mmp12 Knockdown of KDM3A in rat TS cells inhibited the expression of a subset of the hypoxia-hypoxia inducible factor (HIF)-dependent transcripts, including Mmp12, altered H3K9 methylation status, and decreased hypoxia-induced trophoblast cell invasion in vitro and in vivo. The hypoxia-HIF-KDM3A-MMP12 regulatory circuit is conserved and facilitates placental adaptations to environmental challenges.
Collapse
|
32
|
Kweider N, Huppertz B, Rath W, Lambertz J, Caspers R, ElMoursi M, Pecks U, Kadyrov M, Fragoulis A, Pufe T, Wruck CJ. The effects of Nrf2 deletion on placental morphology and exchange capacity in the mouse. J Matern Fetal Neonatal Med 2016; 30:2068-2073. [PMID: 27633272 DOI: 10.1080/14767058.2016.1236251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Intrauterine growth restriction (IUGR) is defined as a pathological decreased fetal growth. Oxidative stress has been connected to the restriction in the fetal growth. The transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) is a potent activator of the cellular antioxidant response. The effect Nrf2 on fetal-placental development has not yet been sufficiently investigated. Here, we evaluated the placental and fetal growth in Nrf2 knockout (Nrf2-KO) and Nrf2-wild type mice (Nrf2-WT) throughout pregnancy. METHODS Heterozygote Nrf2 (Nrf2+/-) mice were paired to get Nrf2-KO and Nrf2-WT in the litters. Placentae and embryos from both genotypes were collected and weighed on days 13.5, 15.5 and 18.5 post coitum. The absolute volumes of the labyrinth zone and the total volume of the placenta were determined using the Cavalieri principle. RESULTS On E 18.5 the fetal weight in Nrf2-KO was significantly reduced versus Nrf2-WT indicating a decrease in placental efficiency. A significant reduction in both total and labyrinth-volume in the placenta of Nrf2-KO mice was observed. CONCLUSION This data points out the necessity of functional Nrf2 for fetal and placental growth. A deficiency in Nrf2 signaling may negatively affect nutrient transfer capacity which is then no longer able to meet fetal growth demands.
Collapse
Affiliation(s)
- Nisreen Kweider
- a Department of Anatomy and Cell Biology , RWTH Aachen University Hospital , Aachen , Germany
| | - Berthold Huppertz
- b Institute of Cell Biology, Histology & Embryology, Medical University of Graz , Graz , Austria
| | - Werner Rath
- c Faculty of Medicine , Gynecology and Obstetrics, RWTH Aachen University Hospital , Aachen , Germany
| | - Jessica Lambertz
- d Institut of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital , Aachen , Germany
| | - Rebecca Caspers
- e Department of Obstetrics and Gynecology , RWTH Aachen University Hospital , Aachen , Germany
| | - Mohamed ElMoursi
- f Section of Obstetrics and Gynecology, Leeds Institute of Biomedical and Clinical sciences, University of Leeds , Leeds , UK.,g Department of Obstetrics and Gynecology , Mansoura University Faculty of Medicine , Mansoura , Egypt
| | - Ulrich Pecks
- e Department of Obstetrics and Gynecology , RWTH Aachen University Hospital , Aachen , Germany.,h Department of Obstetrics and Gynecology , University Hospital Schleswig-Holstein , Kiel , Germany , and
| | - Mamed Kadyrov
- a Department of Anatomy and Cell Biology , RWTH Aachen University Hospital , Aachen , Germany.,i Department of Neurology Mittelbaden Klinikum Baden-Baden , Baden-Baden , Germany
| | - Athanassios Fragoulis
- a Department of Anatomy and Cell Biology , RWTH Aachen University Hospital , Aachen , Germany
| | - Thomas Pufe
- a Department of Anatomy and Cell Biology , RWTH Aachen University Hospital , Aachen , Germany
| | - Christoph Jan Wruck
- a Department of Anatomy and Cell Biology , RWTH Aachen University Hospital , Aachen , Germany
| |
Collapse
|
33
|
Ilekis JV, Tsilou E, Fisher S, Abrahams VM, Soares MJ, Cross JC, Zamudio S, Illsley NP, Myatt L, Colvis C, Costantine MM, Haas DM, Sadovsky Y, Weiner C, Rytting E, Bidwell G. Placental origins of adverse pregnancy outcomes: potential molecular targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am J Obstet Gynecol 2016; 215:S1-S46. [PMID: 26972897 DOI: 10.1016/j.ajog.2016.03.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/11/2016] [Accepted: 03/01/2016] [Indexed: 12/26/2022]
Abstract
Although much progress is being made in understanding the molecular pathways in the placenta that are involved in the pathophysiology of pregnancy-related disorders, a significant gap exists in the utilization of this information for the development of new drug therapies to improve pregnancy outcome. On March 5-6, 2015, the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health sponsored a 2-day workshop titled Placental Origins of Adverse Pregnancy Outcomes: Potential Molecular Targets to begin to address this gap. Particular emphasis was given to the identification of important molecular pathways that could serve as drug targets and the advantages and disadvantages of targeting these particular pathways. This article is a summary of the proceedings of that workshop. A broad number of topics were covered that ranged from basic placental biology to clinical trials. This included research in the basic biology of placentation, such as trophoblast migration and spiral artery remodeling, and trophoblast sensing and response to infectious and noninfectious agents. Research findings in these areas will be critical for the formulation of the development of future treatments and the development of therapies for the prevention of a number of pregnancy disorders of placental origin that include preeclampsia, fetal growth restriction, and uterine inflammation. Research was also presented that summarized ongoing clinical efforts in the United States and in Europe that has tested novel interventions for preeclampsia and fetal growth restriction, including agents such as oral arginine supplementation, sildenafil, pravastatin, gene therapy with virally delivered vascular endothelial growth factor, and oxygen supplementation therapy. Strategies were also proposed to improve fetal growth by the enhancement of nutrient transport to the fetus by modulation of their placental transporters and the targeting of placental mitochondrial dysfunction and oxidative stress to improve placental health. The roles of microRNAs and placental-derived exosomes, as well as messenger RNAs, were also discussed in the context of their use for diagnostics and as drug targets. The workshop discussed the aspect of safety and pharmacokinetic profiles of potential existing and new therapeutics that will need to be determined, especially in the context of the unique pharmacokinetic properties of pregnancy and the hurdles and pitfalls of the translation of research findings into practice. The workshop also discussed novel methods of drug delivery and targeting during pregnancy with the use of macromolecular carriers, such as nanoparticles and biopolymers, to minimize placental drug transfer and hence fetal drug exposure. In closing, a major theme that developed from the workshop was that the scientific community must change their thinking of the pregnant woman and her fetus as a vulnerable patient population for which drug development should be avoided, but rather be thought of as a deprived population in need of more effective therapeutic interventions.
Collapse
Affiliation(s)
- John V Ilekis
- Pregnancy and Perinatology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services, Bethesda, MD.
| | - Ekaterini Tsilou
- Obstetric and Pediatric Pharmacology and Therapeutics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services, Bethesda, MD.
| | - Susan Fisher
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA
| | - Vikki M Abrahams
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine; New Haven, CT
| | - Michael J Soares
- Institute of Reproductive Health and Regenerative Medicine and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - James C Cross
- Comparative Biology and Experimental Medicine, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Stacy Zamudio
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ
| | - Nicholas P Illsley
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ
| | - Leslie Myatt
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX
| | - Christine Colvis
- Therapeutics Discovery Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| | - Maged M Costantine
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - David M Haas
- Department of Obstetrics and Gynecology Indiana University, Indianapolis, IN
| | | | - Carl Weiner
- University of Kansas Medical Center, Kansas City, KS
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Gene Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
34
|
Kuessel L, Kasimir-Bauer S, Zeillinger R, Pateisky P, Ott J, Zeisler H, Birdir C. Detection of circulating trophoblast particles in maternal blood using density gradient centrifugation in preeclampsia and in normotensive pregnancies. Hypertens Pregnancy 2016; 35:323-9. [PMID: 26930176 DOI: 10.3109/10641955.2016.1143487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Preeclampsia (PE) is a frequent pregnancy-related disease and a major cause of maternal and fetal morbidity and mortality. Despite that, exact mechanisms of its pathophysiology remain largely unknown. In pregnancies complicated by PE, changes in the regulation of apoptosis seem to result in increased apoptotic shedding of trophoblast particles (TPs) into maternal circulation. Since the number of TP in peripheral blood is low, their detection necessitates pre-analytical enrichment. METHODS In this prospective multicenter pilot study we aimed to analyze TP in peripheral blood of 29 women with PE and of 13 unaffected controls using the OncoQuick®plus system for cell enrichment. Using immunocytochemistry, slides were evaluated microscopically for TP. Statistical analyses were performed using Welch's t-test or Fisher's exact test. RESULTS TP were detected in 10 (34.5%) women with PE and in two (15.4%) of unaffected controls. More than one TP were only found in PE. Comparing the mean counts of TP between groups, we detected significantly more TP in PE (p = 0.046). CONCLUSIONS The OncoQuick®plus system can be applied to detect TP in both women with PE and in normotensive pregnancies. Longitudinal studies investigating the role of TP as a screening method for patients at risk for PE are warranted.
Collapse
Affiliation(s)
- Lorenz Kuessel
- a Department of Obstetrics and Gynecology , Medical University of Vienna , Vienna , Austria
| | - Sabine Kasimir-Bauer
- b Department of Obstetrics and Gynecology , University of Duisburg-Essen , Essen , Germany
| | - Robert Zeillinger
- a Department of Obstetrics and Gynecology , Medical University of Vienna , Vienna , Austria
| | - Petra Pateisky
- a Department of Obstetrics and Gynecology , Medical University of Vienna , Vienna , Austria
| | - Johannes Ott
- a Department of Obstetrics and Gynecology , Medical University of Vienna , Vienna , Austria
| | - Harald Zeisler
- a Department of Obstetrics and Gynecology , Medical University of Vienna , Vienna , Austria
| | - Cahit Birdir
- b Department of Obstetrics and Gynecology , University of Duisburg-Essen , Essen , Germany
| |
Collapse
|
35
|
Jin F, Qiao C, Luan N, Shang T. The expression of the imprinted gene pleckstrin homology-like domain family A member 2 in placental tissues of preeclampsia and its effects on the proliferation, migration and invasion of trophoblast cells JEG-3. Clin Exp Pharmacol Physiol 2015. [PMID: 26218012 DOI: 10.1111/1440-1681.12468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Feng Jin
- Department of Obstetrics and Gynaecology; Shengjing Hospital of China Medical University; Shenyang China
| | - Chong Qiao
- Department of Obstetrics and Gynaecology; Shengjing Hospital of China Medical University; Shenyang China
| | - Nannan Luan
- Department of Obstetrics and Gynaecology; Shengjing Hospital of China Medical University; Shenyang China
| | - Tao Shang
- Department of Obstetrics and Gynaecology; Shengjing Hospital of China Medical University; Shenyang China
| |
Collapse
|
36
|
Khalil A, Hardman L, O´Brien P. The role of arginine, homoarginine and nitric oxide in pregnancy. Amino Acids 2015; 47:1715-27. [DOI: 10.1007/s00726-015-2014-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/21/2015] [Indexed: 12/12/2022]
|
37
|
Soares MJ, Chakraborty D, Kubota K, Renaud SJ, Rumi MAK. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 58:247-59. [PMID: 25023691 DOI: 10.1387/ijdb.140083ms] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Implantation of the embryo into the uterus triggers the initiation of hemochorial placentation. The hemochorial placenta facilitates the acquisition of maternal resources required for embryo/fetal growth. Uterine spiral arteries form the nutrient supply line for the placenta and fetus. This vascular conduit undergoes gestation stage-specific remodeling directed by maternal natural killer cells and embryo-derived invasive trophoblast lineages. The placentation site, including remodeling of the uterine spiral arteries, is shaped by environmental challenges. In this review, we discuss the cellular participants controlling pregnancy-dependent uterine spiral artery remodeling and mechanisms responsible for their development and function.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproductive Health and Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | | | | | | | | |
Collapse
|
38
|
Stanek J. Placental hypoxic overlap lesions: A clinicoplacental correlation. J Obstet Gynaecol Res 2014; 41:358-69. [DOI: 10.1111/jog.12539] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Jerzy Stanek
- Division of Pathology; Cincinnati Children's Hospital Medical Center; Cincinnati Ohio USA
| |
Collapse
|
39
|
Desforges M, Harris LK, Aplin JD. Elastin-derived peptides stimulate trophoblast migration and invasion: a positive feedback loop to enhance spiral artery remodelling. Mol Hum Reprod 2014; 21:95-104. [PMID: 25245255 DOI: 10.1093/molehr/gau089] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Elastin breakdown in the walls of uterine spiral arteries during early pregnancy facilitates their transformation into dilated, high-flow, low-resistance channels. Elastin-derived peptides (EDP) can influence cell migration, invasion and protease activity, and so we hypothesized that EDP released during elastolysis promote extravillous trophoblast (EVT) invasion and further elastin breakdown. Treatment of the trophoblast cell line SGHPL4 with the elastin-derived matrikine VGVAPG (1 μg/ml) significantly increased total elastase activity, promoted migration in a wound healing assay and increased invasion through Matrigel-coated transwells compared with vehicle control (0.1% DMSO) or the scrambled sequence VVGPGA. Furthermore, treatment of first-trimester placental villous explants with this EDP significantly increased both the area of trophoblast outgrowth and distance of migration away from the villous tips. Primary first-trimester cytotrophoblast exposed to VGVAPG (1 μg/ml) for 30 min showed increased phosphorylation of endothelial nitric oxide synthase and activation of the mitogen activated protein kinase pathway, events also associated with tumour cell migration and invasion. These in vitro observations suggest liberation of bioactive EDP during induction of elastolysis in the uterine spiral arteries may orchestrate a positive feedback loop that promotes EVT invasion and further elastin breakdown, contributing to the process of vascular remodelling.
Collapse
Affiliation(s)
- Michelle Desforges
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, UK Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, UK Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, UK Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| |
Collapse
|
40
|
Macdonald EM, Natale R, Regnault TRH, Koval JJ, Campbell MK. Obstetric conditions and the placental weight ratio. Placenta 2014; 35:582-6. [PMID: 24909371 DOI: 10.1016/j.placenta.2014.04.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 01/29/2023]
Abstract
INTRODUCTION To elucidate how obstetric conditions are associated with atypical placental weight ratios (PWR)s in infants born: (a) ≥37 weeks gestation; (b) at ≥33 but <37 weeks gestation; and (c) <33 weeks gestation. METHODS The study included all in-hospital singleton births in London, Ontario between June 1, 2006 and March 31, 2011. PWR was assessed as <10th or >90th percentile by gestational age-specific local population standards. Multivariable analysis was carried out using multinomial logistic regression with blockwise variable entry in order of temporality. RESULTS Baseline factors and maternal obstetric conditions associated with PWR <10th percentile were: increasing maternal height, overweight and obese body mass indexes (BMI), large for gestational age infants, smoking, and gestational diabetes. Obstetric factors associated with PWR >90th percentile were: underweight, overweight and obese BMIs, smoking, preeclampsia, placenta previa, and placental abruption. In particular, indicators of hypoxia and altered placental function were generally associated with elevated PWR at all gestations. DISCUSSION An association between obstetric conditions associated with fetal hypoxia and PWR ≥90th percentile was illustrated. CONCLUSIONS The multivariable findings suggest that the PWR is similarly increased regardless of the etiology of the hypoxia.
Collapse
Affiliation(s)
- E M Macdonald
- Department of Epidemiology and Biostatistics, The University of Western Ontario, London, Canada N6A 5C1.
| | - R Natale
- Department of Obstetrics and Gynecology, The University of Western Ontario, London, Canada N6A 5C1; Department of Paediatrics, The University of Western Ontario, London, Canada N6A 5C1.
| | - T R H Regnault
- Department of Obstetrics and Gynecology, The University of Western Ontario, London, Canada N6A 5C1; Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada N6A 5C1; The Children's Health Research Institute, London, Canada N6A 5C1.
| | - J J Koval
- Department of Epidemiology and Biostatistics, The University of Western Ontario, London, Canada N6A 5C1.
| | - M K Campbell
- Department of Epidemiology and Biostatistics, The University of Western Ontario, London, Canada N6A 5C1; Department of Obstetrics and Gynecology, The University of Western Ontario, London, Canada N6A 5C1; Department of Paediatrics, The University of Western Ontario, London, Canada N6A 5C1; The Children's Health Research Institute, London, Canada N6A 5C1.
| |
Collapse
|
41
|
Zhang J, Ren R, Luo X, Fan P, Liu X, Liang S, Ma L, Yu P, Bai H. A small physiological electric field mediated responses of extravillous trophoblasts derived from HTR8/SVneo cells: involvement of activation of focal adhesion kinase signaling. PLoS One 2014; 9:e92252. [PMID: 24643246 PMCID: PMC3958492 DOI: 10.1371/journal.pone.0092252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/18/2014] [Indexed: 11/18/2022] Open
Abstract
Moderate invasion of trophoblast cells into endometrium is essential for the placental development and normal pregnancy. Electric field (EF)-induced effects on cellular behaviors have been observed in many cell types. This study was to investigate the effect of physiological direct current EF (dc EF) on cellular responses such as elongation, orientation and motility of trophoblast cells. Immortalized first trimester extravillous trophoblast cells (HTR-8/SVneo) were exposed to the dc EF at physiological magnitude. Cell images were recorded and analyzed by image analyzer. Cell lysates were used to detect protein expression by Western blot. Cultured in the dc EFs the cells showed elongation, orientation and enhanced migration rate compared with non-EF stimulated cells at field strengths of 100 mV/mm to 200 mV/mm. EF exposure increased focal adhesion kinase (FAK) phosphorylation in a time-dependent manner and increased expression levels of MMP-2. Pharmacological inhibition of FAK impaired the EF-induced responses including motility and abrogated the elevation of MMP-2 expression. However, the expression levels of integrins like integrin α1, α5, αV and β1 were not affected by EF stimulation. Our results demonstrate the importance of FAK activation in migration/motility of trophobalst cells driven by EFs. In addition, it raises the feasibility of using applied EFs to promote placentation through effects on trophoblast cells.
Collapse
Affiliation(s)
- Juan Zhang
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Rongmei Ren
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Xuefeng Luo
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Ping Fan
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Shanshan Liang
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Lei Ma
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Ping Yu
- Laboratory of Cell and Gene Therapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Huai Bai
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
- * E-mail:
| |
Collapse
|
42
|
Daskalakis G, Papapanagiotou A, Antonakopoulos N, Mesogitis S, Papantoniou N, Loutradis D, Antsaklis A. Invasive diagnostic procedures and risk of hypertensive disorders in pregnancy. Int J Gynaecol Obstet 2014; 125:146-9. [DOI: 10.1016/j.ijgo.2013.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/16/2013] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
|
43
|
Cotechini T, Komisarenko M, Sperou A, Macdonald-Goodfellow S, Adams MA, Graham CH. Inflammation in rat pregnancy inhibits spiral artery remodeling leading to fetal growth restriction and features of preeclampsia. ACTA ACUST UNITED AC 2014; 211:165-79. [PMID: 24395887 PMCID: PMC3892976 DOI: 10.1084/jem.20130295] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abnormal maternal inflammation leads to TNF-mediated fetal growth restriction and some features of preeclampsia that can be ameliorated with the nitric oxide mimetic nitroglycerin. Fetal growth restriction (FGR) and preeclampsia (PE) are often associated with abnormal maternal inflammation, deficient spiral artery (SA) remodeling, and altered uteroplacental perfusion. Here, we provide evidence of a novel mechanistic link between abnormal maternal inflammation and the development of FGR with features of PE. Using a model in which pregnant rats are administered low-dose lipopolysaccharide (LPS) on gestational days 13.5–16.5, we show that abnormal inflammation resulted in FGR mediated by tumor necrosis factor-α (TNF). Inflammation was also associated with deficient trophoblast invasion and SA remodeling, as well as with altered uteroplacental hemodynamics and placental nitrosative stress. Moreover, inflammation increased maternal mean arterial pressure (MAP) and was associated with renal structural alterations and proteinuria characteristic of PE. Finally, transdermal administration of the nitric oxide (NO) mimetic glyceryl trinitrate prevented altered uteroplacental perfusion, LPS-induced inflammation, placental nitrosative stress, renal structural and functional alterations, increase in MAP, and FGR. These findings demonstrate that maternal inflammation can lead to severe pregnancy complications via a mechanism that involves increased maternal levels of TNF. Our study provides a rationale for the use of antiinflammatory agents or NO-mimetics in the treatment and/or prevention of inflammation-associated pregnancy complications.
Collapse
Affiliation(s)
- Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
44
|
An integrative view on the physiology of human early placental villi. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 114:33-48. [PMID: 24291663 DOI: 10.1016/j.pbiomolbio.2013.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/20/2013] [Indexed: 01/08/2023]
Abstract
The placenta is an indispensable organ for intrauterine protection, development and growth of the embryo and fetus. It provides tight contact between mother and conceptus, enabling the exchange of gas, nutrients and waste products. The human placenta is discoidal in shape, and bears a hemo-monochorial interface as well as villous materno-fetal interdigitations. Since Peter Medawar's astonishment to the paradoxical nature of the mother-fetus relationship in 1953, substantial knowledge in the domain of placental physiology has been gathered. In the present essay, an attempt has been made to build an integrated understanding of morphological dynamics, cell biology, and functional aspects of genomic and proteomic expression of human early placental villous trophoblast cells followed by a commentary on the future directions of research in this field.
Collapse
|
45
|
Affiliation(s)
- Suzanne D. Burke
- From the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Howard Hughes Medical Institute, Chevy Chase, MD
| | - S. Ananth Karumanchi
- From the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
46
|
Lyall F, Robson SC, Bulmer JN. Spiral Artery Remodeling and Trophoblast Invasion in Preeclampsia and Fetal Growth Restriction. Hypertension 2013; 62:1046-54. [DOI: 10.1161/hypertensionaha.113.01892] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Fiona Lyall
- From the Institute of Medical Genetics, College of Medicine, Veterinary and Life Sciences, University of Glasgow School of Medicine, Glasgow, United Kingdom (F.L.); and Reproductive and Vascular Biology Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom (J.N.B., S.R.)
| | - Stephen C. Robson
- From the Institute of Medical Genetics, College of Medicine, Veterinary and Life Sciences, University of Glasgow School of Medicine, Glasgow, United Kingdom (F.L.); and Reproductive and Vascular Biology Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom (J.N.B., S.R.)
| | - Judith N. Bulmer
- From the Institute of Medical Genetics, College of Medicine, Veterinary and Life Sciences, University of Glasgow School of Medicine, Glasgow, United Kingdom (F.L.); and Reproductive and Vascular Biology Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom (J.N.B., S.R.)
| |
Collapse
|
47
|
Saito S, Nakashima A. A review of the mechanism for poor placentation in early-onset preeclampsia: the role of autophagy in trophoblast invasion and vascular remodeling. J Reprod Immunol 2013; 101-102:80-88. [PMID: 23969229 DOI: 10.1016/j.jri.2013.06.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 01/12/2023]
Abstract
Shallow trophoblast invasion and impaired vascular remodeling of spiral arteries have been recognized in early-onset preeclampsia. Placentation and vascular remodeling are multistep processes, and hypoxia, placental oxidative stress, excessive or atypical maternal immune response to trophoblasts, exaggerated inflammation, and increased production of anti-angiogenic factors such as the soluble form of the vascular endothelial growth factor (VEGF) receptor (sFlt-1) and soluble endoglin (sENG) may play a role in poor placentation in preeclampsia. Recent findings suggest that autophagy plays an important role in extravillous trophoblast (EVT) invasion and vascular remodeling under hypoxia, and sENG inhibits EVT invasion and vascular remodeling by the inhibition of autophagy under hypoxic conditions. In this review, we discuss the relationship between inadequate autophagy and poor placentation in preeclampsia.
Collapse
Affiliation(s)
- Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan.
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| |
Collapse
|
48
|
Naicker T, Dorsamy E, Ramsuran D, Burton GJ, Moodley J. The role of apoptosis on trophoblast cell invasion in the placental bed of normotensive and preeclamptic pregnancies. Hypertens Pregnancy 2013; 32:245-56. [PMID: 23782106 DOI: 10.3109/10641955.2013.796969] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Placental development depends on careful coordination of trophoblast proliferation and apoptosis; however, the synchrony of its effect on trophoblast invasion is unknown. OBJECTIVE To examine the relationship between trophoblast apoptosis and proliferation in placental bed tissue of preeclamptic and normotensive pregnancies. METHODS Serial sections from archived placental bed biopsies of 12 normotensive (group 1) and 12 preeclamptic (group 2) were immunolabeled with a rabbit anti-Ki67 antibody, a mouse anti-cytokeratin 18 and its neo-epitope, and a monoclonal cytodeath M30 antibody. RESULTS The immunoexpression of Ki67 for all trophoblast cell subpopulations within the myometrium was non-reactive in both study groups. Smooth muscle cells of the microvasculature reflected a moderate degree of proliferation in both groups. Morphometric image analysis of the wall of the spiral artery revealed a mean area of 31,1729 ± 51,180 µm(2) compared to 35,795 ± 8045 µm(2) in groups 1 and 2, respectively. An elevation of intramural trophoblast was evident within the spiral artery of group 1 (13%). Comparative analyses of M30 distribution on corresponding serial sections were 0.06% versus 0% in groups 1 and 2, respectively. The mean field area percentage of interstitial trophoblast invasion was 10.79% versus 2.87% with corresponding areas of apoptosis been 0.8 % versus 1.9 % in groups 1 and 2, respectively. CONCLUSIONS This study demonstrates an increased trophoblast apoptosis in placental bed of preeclamptic compared to normotensive pregnancies with concurrent absence of proliferation at term.
Collapse
Affiliation(s)
- Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| | | | | | | | | |
Collapse
|
49
|
Abstract
CONTEXT In utero hypoxia is an important cause of perinatal morbidity and mortality and can be evaluated retrospectively to explain perinatal outcomes, to assess recurrence risk in subsequent pregnancies, and to investigate for medicolegal purposes by identification of many hypoxic placental lesions. Definitions of some placental hypoxic lesions have been applied relatively liberally, and many of them are frequently underreported. Objectives To present a comprehensive assessment of the criteria for diagnosing acute and chronic histologic features, patterns, and lesions of placental and fetal hypoxia and to discuss clinicopathologic associations and limitations of the use thereof. The significance of lesions that have been described relatively recently and are not yet widely used, such as laminar necrosis; excessive, extravillous trophoblasts; decidual multinucleate extravillous trophoblasts; and, most important, the patterns of diffuse chronic hypoxic preuterine, uterine, and postuterine placental injury and placental maturation defect, will be discussed. DATA SOURCES Literature review. CONCLUSIONS The placenta does not respond in a single way to hypoxia, and various placental hypoxic features should be explained within a clinical context. Because the placenta has a large reserve capacity, hypoxic lesions may not result in poor fetal condition or outcome. On the other hand, very acute, in utero, hypoxic events, followed by prompt delivery, may not be associated with placental pathology, and many poor perinatal outcomes can be explained by an etiology other than hypoxia. Nevertheless, assessment of placental hypoxic lesions is helpful for retrospective explanations of complications in pregnancy and in medicolegal investigation.
Collapse
Affiliation(s)
- Jerzy Stanek
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
50
|
Abstract
The human genome contains a hidden and large layer of biologic information that is not accessible by proteomic or metabolic methods. Insight into the nature, size, function and importance of this information is increasing rapidly. This additional layer of information includes non-coding RNA and DNA and can be retrieved and analyzed using nucleic acids that circulate in the maternal plasma during pregnancy, originate from the developing placenta and provide information on fetal well being. This review explains why, when and how fetal information as carried on and provided by the placental DNA and RNA molecules circulating in the plasma of pregnant women can be explored to understand and to analyze the primary placental processes, that underlie pre-eclampsia and related disorders.
Collapse
Affiliation(s)
- Cees Bm Oudejans
- VU University Medical Center, Department of Clinical Chemistry, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands +31 20 444 3867 ; +31 20 444 3895 ;
| |
Collapse
|