1
|
Newton DA, Lottes RG, Ryan RM, Spyropoulos DD, Baatz JE. Dysfunctional lactate metabolism in human alveolar type II cells from idiopathic pulmonary fibrosis lung explant tissue. Respir Res 2021; 22:278. [PMID: 34711218 PMCID: PMC8554831 DOI: 10.1186/s12931-021-01866-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/12/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Idiopathic Pulmonary Fibrosis (IPF) is the most common and progressive form of the interstitial lung diseases, leading most patients to require lung transplants to survive. Despite the relatively well-defined role of the fibroblast in the progression of IPF, it is the alveolar type II epithelial cell (AEC2) that is now considered the initiation site of damage, driver of disease, and the most efficacious therapeutic target for long-term resolution. Based on our previous studies, we hypothesize that altered lactate metabolism in AEC2 plays a pivotal role in IPF development and progression, affecting key cellular and molecular interactions within the pulmonary microenvironment. METHODS AEC2s isolated from human patient specimens of non-fibrotic and IPF lungs were used for metabolic measurements, lactate dehydrogenase (LDH) analyses and siRNA-mediated knockdown experiments. RESULTS AEC2s isolated from human IPF lung explant tissues had lower rates of oxidative metabolism and were more glycolytic lactate-producing cells than were AEC2 from control, non-fibrotic lung explant tissues. Consistent with this shift in metabolism, patient-derived IPF AEC2s exhibited LDH tetramers that have higher ratios of LDHA:LDHB (i.e., favoring pyruvate to lactate conversion) than control AEC2s. Experimental manipulation of LDHA subunit expression in IPF AEC2s restored the bioenergetic profile characteristic of AEC2 from non-fibrotic lungs. CONCLUSIONS These results are consistent with the concept that altered lactate metabolism may be an underlying feature of AEC2 dysfunction in IPF and may be a novel and important target for therapeutic treatment.
Collapse
Affiliation(s)
- Danforth A Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Robyn G Lottes
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Rita M Ryan
- Department of Pediatrics, Case Western Reserve University, UH Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Demetri D Spyropoulos
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John E Baatz
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Department of Pediatrics/Division of Neonatology, Medical University of South Carolina, 165 Ashley Avenue, MSC 917, Charleston, SC, 29425, USA.
| |
Collapse
|
2
|
Kosutova P, Mikolka P, Balentova S, Adamkov M, Calkovska A, Mokra D. Effects of PDE3 Inhibitor Olprinone on the Respiratory Parameters, Inflammation, and Apoptosis in an Experimental Model of Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:E3382. [PMID: 32403267 PMCID: PMC7247002 DOI: 10.3390/ijms21093382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate whether a selective phosphodiesterase-3 (PDE3) inhibitor olprinone can positively influence the inflammation, apoptosis, and respiratory parameters in animals with acute respiratory distress syndrome (ARDS) model induced by repetitive saline lung lavage. Adult rabbits were divided into 3 groups: ARDS without therapy (ARDS), ARDS treated with olprinone i.v. (1 mg/kg; ARDS/PDE3), and healthy ventilated controls (Control), and were oxygen-ventilated for the following 4 h. Dynamic lung-thorax compliance (Cdyn), mean airway pressure (MAP), arterial oxygen saturation (SaO2), alveolar-arterial gradient (AAG), ratio between partial pressure of oxygen in arterial blood to a fraction of inspired oxygen (PaO2/FiO2), oxygenation index (OI), and ventilation efficiency index (VEI) were evaluated every hour. Post mortem, inflammatory and oxidative markers (interleukin (IL)-6, IL-1β, a receptor for advanced glycation end products (RAGE), IL-10, total antioxidant capacity (TAC), 3-nitrotyrosine (3NT), and malondialdehyde (MDA) and apoptosis (apoptotic index and caspase-3) were assessed in the lung tissue. Treatment with olprinone reduced the release of inflammatory mediators and markers of oxidative damage decreased apoptosis of epithelial cells and improved respiratory parameters. The results indicate a future potential of PDE3 inhibitors also in the therapy of ARDS.
Collapse
Affiliation(s)
- Petra Kosutova
- Biomedical Center Martin and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia; (P.K.); (P.M.); (A.C.)
| | - Pavol Mikolka
- Biomedical Center Martin and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia; (P.K.); (P.M.); (A.C.)
| | - Sona Balentova
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia; (S.B.); (M.A.)
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia; (S.B.); (M.A.)
| | - Andrea Calkovska
- Biomedical Center Martin and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia; (P.K.); (P.M.); (A.C.)
| | - Daniela Mokra
- Biomedical Center Martin and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia; (P.K.); (P.M.); (A.C.)
| |
Collapse
|
3
|
Stephan M, Suhling H, Schade J, Wittlake M, Tasic T, Klemann C, Pabst R, Jurawitz MC, Raber KA, Hoymann HG, Braun A, Glaab T, Hoffmann T, Schmiedl A, von Hörsten S. Effects of dipeptidyl peptidase-4 inhibition in an animal model of experimental asthma: a matter of dose, route, and time. Physiol Rep 2013; 1:e00095. [PMID: 24303167 PMCID: PMC3841031 DOI: 10.1002/phy2.95] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/20/2013] [Accepted: 08/27/2013] [Indexed: 12/23/2022] Open
Abstract
The CD26-associated enzymatic activity of dipeptidyl peptidase-4 (DPP4) as well as the recruitment of CD26(+) T cells increase under allergic airway inflammation. Furthermore, genetic deficiency of CD26/DPP4 exerts protective effects in experimental asthma. Therefore, CD26/DPP4 might represent a novel therapeutic target in asthma. To study the effects of pharmacological inhibition of DPP4 on allergic airway inflammation the DPP4-inhibitor isoleucine thiazolidide was tested using different doses at different time points (at sensitization, immediately before and simultaneously with the allergen challenge, as well as continuously via drinking water), and different routes (intraperitoneal, oral, and by inhalation). Allergic-like airway inflammation was induced in Fischer 344 rats (Charles River) sensitized against ovalbumin (OVA) using OVA aerosols. Intraperitoneal application of the DPP4 inhibitor showed effects neither at sensitization nor at challenge, whereas a continuous application via drinking water using high doses of the inhibitor led to an aggravation of the histomorphological signs of airway inflammation. In contrast, aerosolization of the DPP4 inhibitor simultaneously with the allergen significantly reduced airway hyperresponsiveness and ameliorated histopathological signs compared to controls. In addition, this treatment resulted in increased mRNA levels of surfactant proteins, suggesting an involvement of DPP4 inhibitors in surfactant metabolism in OVA-challenged rats. Continuous systemic inhibition of DPP4 via the oral route aggravates allergic airway inflammation. In contrast, topical inhibition of DPP4 exerts potential protective effects, and further research in humans is needed.
Collapse
Affiliation(s)
- Michael Stephan
- Institute of Functional and Applied Anatomy, Hannover Medical School Hannover, Germany ; Clinic of Psychosomatics and Psychotherapy, Hannover Medical School Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV. Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and 2003, and infected patients developed an atypical pneumonia, acute lung injury (ALI), and acute respiratory distress syndrome (ARDS) leading to pulmonary fibrosis and death. We identified sets of differentially expressed genes that contribute to ALI and ARDS using lethal and sublethal SARS-CoV infection models. Mathematical prioritization of our gene sets identified the urokinase and extracellular matrix remodeling pathways as the most enriched pathways. By infecting Serpine1-knockout mice, we showed that the urokinase pathway had a significant effect on both lung pathology and overall SARS-CoV pathogenesis. These results demonstrate the effective use of unbiased modeling techniques for identification of high-priority host targets that regulate disease outcomes. Similar transcriptional signatures were noted in 1918 and 2009 H1N1 influenza virus-infected mice, suggesting a common, potentially treatable mechanism in development of virus-induced ALI.
Collapse
|
5
|
Runck H, Schumann S, Tacke S, Haberstroh J, Guttmann J. Time-dependent recruitment effects in ventilated healthy and lung-injured rats: "recruitment-memory". Respir Physiol Neurobiol 2012; 184:65-72. [PMID: 22910325 DOI: 10.1016/j.resp.2012.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/02/2012] [Accepted: 08/06/2012] [Indexed: 11/29/2022]
Abstract
We investigated the sustained effects of recruitment manoeuvres in terms of "recruitment memory" in healthy and lung injured rats. 46 ventilated rats were allocated to either the control (sham) or the lavage group. Two consecutive low-flow manoeuvres were performed before sham/lavage and hourly during a 2-h-observation period. The slopes of the inspiratory limbs of the two resulting pressure-volume loops were translated into compliance-volume curves. The difference between the two compliance curves was smaller after lavage (root-mean-square deviation: 0.065 ml/cm H2O control group, 0.038 ml/cm H2O lavage group; p<0.05) and stayed small during the whole experiment. In the control group, the deviation was small after sham manoeuvre but increased throughout the experiment. Compliance gain after recruitment was higher in the control group (0.1 ml/cm H2O) compared to the lavage group (0.02 ml/cm H2O, p<0.05). We conclude that lung lavage led to alveolar collapse not susceptible to recruitment manoeuvres. On the contrary in healthy lungs recruitment manoeuvres led to persistent lung recruitment which we interpret as recruitment memory.
Collapse
Affiliation(s)
- Hanna Runck
- Division for Experimental Anaesthesiology, University Medical Center Freiburg, Germany.
| | | | | | | | | |
Collapse
|
6
|
Grek CL, Newton DA, Spyropoulos DD, Baatz JE. Hypoxia up-regulates expression of hemoglobin in alveolar epithelial cells. Am J Respir Cell Mol Biol 2010; 44:439-47. [PMID: 20508070 DOI: 10.1165/rcmb.2009-0307oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alveolar epithelial cells are directly exposed to acute and chronic fluctuations in alveolar oxygen tension. Previously, we found that the oxygen-binding protein hemoglobin is expressed in alveolar Type II cells (ATII). Here, we report that ATII cells also express a number of highly specific transcription factors and other genes normally associated with hemoglobin biosynthesis in erythroid precursors. Because hypoxia-inducible factors (HIFs) were shown to play a role in hypoxia-induced changes in ATII homeostasis, we hypothesized that the hypoxia-induced increase in intracellular HIF exerts a concomitant effect on ATII hemoglobin expression. Treatment of cells from the ATII-like immortalized mouse lung epithelial cell line-15 (MLE-15) with hypoxia for 20 hours resulted in dramatic increases in cellular levels of HIF-2α protein and parallel significant increases in hemoglobin messenger RNA (mRNA) and protein expression, as compared with that of control cells cultured in normoxia. Significant increases in the mRNA of globin-associated transcription factors were also observed, and RNA interference (RNAi) experiments demonstrated that the expression of hemoglobin is at least partially dependent on the cellular levels of globin-associated transcription factor isoform 1 (GATA-1). Conversely, levels of prosurfactant proteins B and C significantly decreased in the same cells after exposure to hypoxia. The treatment of MLE-15 cells cultured in normoxia with prolyl 4-hydroxylase inhibitors, which mimic the effects of hypoxia, resulted in increases of hemoglobin and decreases of surfactant proteins. Taken together, these results suggest a relationship between hypoxia, HIFs, and the expression of hemoglobin, and imply that hemoglobin may be involved in the oxygen-sensing pathway in alveolar epithelial cells.
Collapse
Affiliation(s)
- Christina L Grek
- Department of Pediatrics and Neonatology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
7
|
Acquired Nonneoplastic Neonatal and Pediatric Diseases. DAIL AND HAMMAR’S PULMONARY PATHOLOGY 2008. [PMCID: PMC7122323 DOI: 10.1007/978-0-387-68792-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lung biopsy is an established procedure to procure a pathologic diagnosis in a child with a suspected pneumonic process of undetermined etiology. Improvements in pediatric anesthesia and surgery have reduced the operative complications to a minimum. A biopsy can usually be taken through a small intercostal incision when localization is not especially important in a patient with diffuse changes (see Chapter 1). The alternative method for tissue sampling is the endoscopic transbronchial biopsy. There is less risk to the patient, but the specimen is smaller and crush artifacts from the instrument are more common.
Collapse
|
8
|
Firth MA, Shewen PE, Hodgins DC. Passive and active components of neonatal innate immune defenses. Anim Health Res Rev 2006; 6:143-58. [PMID: 16583779 DOI: 10.1079/ahr2005107] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Innate immune defenses are crucial for survival in the first days and weeks of life. At birth, newborns are confronted with a vast array of potentially pathogenic microorganisms that were not encountered in utero. At this age, cellular components of the adaptive immune system are in a naive state and are slow to respond. Antibodies received from the dam are essential for defense, but represent a finite and dwindling resource. Innate components of the immune system detect pathogen-associated molecular patterns (PAMPs) on microorganisms (and their products) by means of pattern-recognition receptors (PRRs). Soluble mediators of the innate system such as complement proteins, pentraxins, collectins, ficolins, defensins, lactoferrin, lysozyme etc. can bind to structures on pathogens, leading to agglutination, interference with receptor binding, opsonization, neutralization, direct membrane damage and recruitment of additional soluble and cellular elements through inflammation. Cell-associated receptors such as the Toll-like receptors (TLRs) can activate cells and coordinate responses (both innate and adaptive). In this paper, accumulated knowledge of the receptors, soluble and cellular elements that contribute to innate defenses of young animals is reviewed. Research interest in this area has been intermittent, and the literature varies in quantity and quality. It is hoped that documentation of the limitations of our knowledge base will lead to more extensive and enlightening studies.
Collapse
Affiliation(s)
- Matthew A Firth
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada NIG 2W1
| | | | | |
Collapse
|
9
|
Kneyber MCJ, Plötz FB, Kimpen JLL. Bench-to-bedside review: Paediatric viral lower respiratory tract disease necessitating mechanical ventilation--should we use exogenous surfactant? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2005; 9:550-5. [PMID: 16356236 PMCID: PMC1414027 DOI: 10.1186/cc3823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Treatment of infants with viral lower respiratory tract disease (LRTD) necessitating mechanical ventilation is mainly symptomatic. The therapeutic use of surfactant seems rational because significantly lower levels of surfactant phospholipids and proteins, and impaired capacity to reduce surface tension were observed among infants and young children with viral LRTD. This article reviews the role of pulmonary surfactant in the pathogenesis of paediatric viral LRTD. Three randomized trials demonstrated improved oxygenation and reduced duration of mechanical ventilation and paediatric intensive care unit stay in young children with viral LRTD after administration of exogenous surfactant. This suggest that exogenous surfactant is the first beneficial treatment for ventilated infants with viral LRTD. Additionally, in vitro and animal studies demonstrated that surfactant associated proteins SP-A and SP-D bind to respiratory viruses, play a role in eliminating these viruses and induce an inflammatory response. Although these immunomodulating effects are promising, the available data are inconclusive and the findings are unconfirmed in humans. In summary, exogenous surfactant in ventilated infants with viral LRTD could be a useful therapeutic approach. Its beneficial role in improving oxygenation has already been established in clinical trials, whereas the immunomodulating effects are promising but remain to be elucidated.
Collapse
Affiliation(s)
- Martin CJ Kneyber
- Department of Pediatric Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | - Frans B Plötz
- Department of Pediatric Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | - Jan LL Kimpen
- Department of Pediatrics, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
10
|
Tong Q, Zheng L, Dodd-o J, Langer J, Wang D, Li D. Hypoxia-induced mitogenic factor modulates surfactant protein B and C expression in mouse lung. Am J Respir Cell Mol Biol 2005; 34:28-38. [PMID: 16166744 PMCID: PMC2644189 DOI: 10.1165/rcmb.2005-0172oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies have demonstrated a robust pulmonary expression of hypoxia-induced mitogenic factor (HIMF) during the perinatal period, when surfactant protein (SP) synthesis begins. We hypothesized that HIMF modulates SP expression and participates in lung development and maturation. The temporal-spatial expression of HIMF, SP-B, and SP-C in developing mouse lungs was examined by immunohistochemical staining, Western blot, and RT-PCR. The expression and localization of SP-B and SP-C were investigated in mouse lungs after intratracheal instillation of HIMF in adult mice. The effects of HIMF on SP-B and SP-C transcription activity, and on mRNA degradation, were investigated in mouse lung epithelial (MLE)-12 and C10 cells using the promoter-luciferase reporter assay and actinomycin D incubation. The activation of Akt, extracellular signal-regulated kinase (ERK)1/2, and p38 mitogen-activated protein kinase was explored by Western blot. Intratracheal instillation of HIMF resulted in significant increases of SP-B and SP-C production, predominantly localized to alveolar type II cells. In MLE-12 and C10 cells, HIMF enhanced SP-B and SP-C mRNA levels in a dose-dependent manner. Meanwhile, HIMF increased transcription activity and prevented actinomycin D-facilitated SP-B and SP-C mRNA degradation in MLE-12 cells. Incubation of cells with LY294002, PD098059, or U0126 abolished HIMF-induced Akt and ERK1/2 phosphorylation and suppressed HIMF-induced SP-B and SP-C production, whereas SB203580 had no effect. These results indicate that HIMF induces SP-B and SP-C production in mouse lungs and alveolar type II-like cell lines via activations of phosphatidylinositol 3-kinase/Akt and ERK1/2 mitogen-activated protein kinase, suggesting that HIMF plays critical roles in lung development and maturation.
Collapse
Affiliation(s)
- Qiangsong Tong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|