1
|
O’Callaghan TF, Vázquez-Fresno R, Serra-Cayuela A, Dong E, Mandal R, Hennessy D, McAuliffe S, Dillon P, Wishart DS, Stanton C, Ross RP. Pasture Feeding Changes the Bovine Rumen and Milk Metabolome. Metabolites 2018; 8:E27. [PMID: 29642378 PMCID: PMC6027121 DOI: 10.3390/metabo8020027] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to examine the effects of two pasture feeding systems-perennial ryegrass (GRS) and perennial ryegrass and white clover (CLV)-and an indoor total mixed ration (TMR) system on the (a) rumen microbiome; (b) rumen fluid and milk metabolome; and (c) to assess the potential to distinguish milk from different feeding systems by their respective metabolomes. Rumen fluid was collected from nine rumen cannulated cows under the different feeding systems in early, mid and late lactation, and raw milk samples were collected from ten non-cannulated cows in mid-lactation from each of the feeding systems. The microbiota present in rumen liquid and solid portions were analysed using 16S rRNA gene sequencing, while ¹H-NMR untargeted metabolomic analysis was performed on rumen fluid and raw milk samples. The rumen microbiota composition was not found to be significantly altered by any feeding system in this study, likely as a result of a shortened adaptation period (two weeks' exposure time). In contrast, feeding system had a significant effect on both the rumen and milk metabolome. Increased concentrations of volatile fatty acids including acetic acid, an important source of energy for the cow, were detected in the rumen of TMR and CLV-fed cows. Pasture feeding resulted in significantly higher concentrations of isoacids in the rumen. The ruminal fluids of both CLV and GRS-fed cows were found to have increased concentrations of p-cresol, a product of microbiome metabolism. CLV feeding resulted in increased rumen concentrations of formate, a substrate compound for methanogenesis. The TMR feeding resulted in significantly higher rumen choline content, which contributes to animal health and milk production, and succinate, a product of carbohydrate metabolism. Milk and rumen-fluids were shown to have varying levels of dimethyl sulfone in each feeding system, which was found to be an important compound for distinguishing between the diets. CLV feeding resulted in increased concentrations of milk urea. Milk from pasture-based feeding systems was shown to have significantly higher concentrations of hippuric acid, a potential biomarker of pasture-derived milk. This study has demonstrated that ¹H-NMR metabolomics coupled with multivariate analysis is capable of distinguishing both rumen-fluid and milk derived from cows on different feeding systems, specifically between indoor TMR and pasture-based diets used in this study.
Collapse
Affiliation(s)
- Tom F. O’Callaghan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (T.F.O.); (C.S.)
- APC Microbiome Institute, University College Cork, T12 YT20 Cork, Ireland
| | - Rosa Vázquez-Fresno
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G1C9, Canada; (R.V.-F.); (A.S.-C.); (E.D.); (R.M.); (D.S.W.)
| | - Arnau Serra-Cayuela
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G1C9, Canada; (R.V.-F.); (A.S.-C.); (E.D.); (R.M.); (D.S.W.)
| | - Edison Dong
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G1C9, Canada; (R.V.-F.); (A.S.-C.); (E.D.); (R.M.); (D.S.W.)
| | - Rupasri Mandal
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G1C9, Canada; (R.V.-F.); (A.S.-C.); (E.D.); (R.M.); (D.S.W.)
| | - Deirdre Hennessy
- Teagasc Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (D.H.); (S.M.); (P.D.)
| | - Stephen McAuliffe
- Teagasc Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (D.H.); (S.M.); (P.D.)
- School of Biological Sciences, Queens University, Belfast BT7 1NN, Northern Ireland, UK
| | - Pat Dillon
- Teagasc Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (D.H.); (S.M.); (P.D.)
| | - David S. Wishart
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G1C9, Canada; (R.V.-F.); (A.S.-C.); (E.D.); (R.M.); (D.S.W.)
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (T.F.O.); (C.S.)
- APC Microbiome Institute, University College Cork, T12 YT20 Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (T.F.O.); (C.S.)
- APC Microbiome Institute, University College Cork, T12 YT20 Cork, Ireland
- College of Science, Engineering and Food Science, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
2
|
Alothman M, Lusk KA, Silcock PJ, Bremer PJ. Relationship between total microbial numbers, volatile organic compound composition, and the sensory characteristics of whole fresh chilled pasteurized milk. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2017.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Antunes-Fernandes EC, van Gastelen S, Dijkstra J, Hettinga KA, Vervoort J. Milk metabolome relates enteric methane emission to milk synthesis and energy metabolism pathways. J Dairy Sci 2016; 99:6251-6262. [PMID: 27236769 DOI: 10.3168/jds.2015-10248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 04/15/2016] [Indexed: 01/15/2023]
Abstract
Methane (CH4) emission of dairy cows contributes significantly to the carbon footprint of the dairy chain; therefore, a better understanding of CH4 formation is urgently needed. The present study explored the milk metabolome by gas chromatography-mass spectrometry (milk volatile metabolites) and nuclear magnetic resonance (milk nonvolatile metabolites) to better understand the biological pathways involved in CH4 emission in dairy cattle. Data were used from a randomized block design experiment with 32 multiparous Holstein-Friesian cows and 4 diets. All diets had a roughage:concentrate ratio of 80:20 (dry matter basis) and the roughage was grass silage (GS), corn silage (CS), or a mixture of both (67% GS, 33% CS; 33% GS, 67% CS). Methane emission was measured in climate respiration chambers and expressed as CH4 yield (per unit of dry matter intake) and CH4 intensity (per unit of fat- and protein-corrected milk; FPCM). No volatile or nonvolatile metabolite was positively related to CH4 yield, and acetone (measured as a volatile and as a nonvolatile metabolite) was negatively related to CH4 yield. The volatile metabolites 1-heptanol-decanol, 3-nonanone, ethanol, and tetrahydrofuran were positively related to CH4 intensity. None of the volatile metabolites was negatively related to CH4 intensity. The nonvolatile metabolites acetoacetate, creatinine, ethanol, formate, methylmalonate, and N-acetylsugar A were positively related to CH4 intensity, and uridine diphosphate (UDP)-hexose B and citrate were negatively related to CH4 intensity. Several volatile and nonvolatile metabolites that were correlated with CH4 intensity also were correlated with FPCM and not significantly related to CH4 intensity anymore when FPCM was included as covariate. This suggests that changes in these milk metabolites may be related to changes in milk yield or metabolic processes involved in milk synthesis. The UDP-hexose B was correlated with FPCM, whereas citrate was not. Both metabolites were still related to CH4 intensity when FPCM was included as covariate. The UDP-hexose B is an intermediate of lactose metabolism, and citrate is an important intermediate of Krebs cycle-related energy processes. Therefore, the negative correlation of UDP-hexose B and citrate with CH4 intensity may reflect a decrease in metabolic activity in the mammary gland. Our results suggest that an integrative approach including milk yield and composition, and dietary and animal traits will help to explain the biological metabolism of dairy cows in relation to methane CH4 emission.
Collapse
Affiliation(s)
- E C Antunes-Fernandes
- Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands; Food Quality and Design Group, Wageningen University, PO Box 17, 6700 AH Wageningen, the Netherlands
| | - S van Gastelen
- Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands; Animal Nutrition Group, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - K A Hettinga
- Food Quality and Design Group, Wageningen University, PO Box 17, 6700 AH Wageningen, the Netherlands.
| | - J Vervoort
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, the Netherlands
| |
Collapse
|
4
|
Walsh RB, Walton JS, Kelton DF, LeBlanc SJ, Leslie KE, Duffield TF. The effect of subclinical ketosis in early lactation on reproductive performance of postpartum dairy cows. J Dairy Sci 2007; 90:2788-96. [PMID: 17517719 DOI: 10.3168/jds.2006-560] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Data generated from 796 Holstein cows enrolled in a clinical trial to investigate the health effect of a monensin controlled release capsule were analyzed to investigate the association between circulating serum beta-hydroxybutyrate (BHBA) concentration in the peri-parturient period and subsequent reproductive performance. Overall, accounting for both repeated measures within cow and clustering at the herd level, non-pregnant cows after first insemination tended to have increased circulating BHBA concentrations from 3 wk before calving to 9 wk after calving relative to pregnant cows. Including the interaction between the week of sample collection and pregnancy outcome, non-pregnant cows had higher circulating BHBA concentrations in the second week after calving than cows diagnosed pregnant after first artificial insemination. Within individual weeks, cows with circulating BHBA concentrations > or =1,000 micromol/L in the first week postpartum were less likely to be diagnosed pregnant after first insemination. In the second week postpartum, the cows with circulating BHBA concentrations > or =1,400 micromol/L were significantly less likely to be pregnant after first artificial insemination. A dose response relationship was found when a comparison of the probability of pregnancy after first insemination and duration of elevated circulating ketone bodies was investigated. The probability of pregnancy was reduced by 20% in cows diagnosed subclinically ketotic in either the first or second week postpartum. Nevertheless, cows above the subclinical ketosis threshold in both the first and second week postpartum were 50% less likely to be pregnant after first insemination. Similarly, the median time to pregnancy increased in cows experiencing elevated BHBA concentrations in either (124 d) or both (130 d) the first and second week postpartum relative to cows never experiencing elevated BHBA concentrations (108 d). To further investigate this, the effect of elevated circulating BHBA was permitted to vary with time. The effect decreased with time, such that the daily probability of pregnancy increased similar to nonsubclinically ketotic cows by approximately 160 d in milk. From this analysis, both the relative circulating concentration of BHBA and the duration of elevated circulating BHBA were negatively associated with the probability of pregnancy at first service.
Collapse
Affiliation(s)
- R B Walsh
- Department of Population Medicine, University of Guelph, Ontario, Canada, N1G 2W1.
| | | | | | | | | | | |
Collapse
|