1
|
Cheung BB, Mittra R, Murray J, Wang Q, Seneviratne JA, Raipuria M, Wong IPL, Restuccia D, Gifford A, Salib A, Sutton S, Huang L, Ferdowsi PV, Tsang J, Sekyere E, Mayoh C, Luo L, Brown DL, Stow JL, Zhu S, Young RJ, Solomon BJ, Chappaz S, Kile B, Kueh A, Herold MJ, Hilton DJ, Liu T, Norris MD, Haber M, Carter DR, Parker MW, Marshall GM. Golgi-localized Ring Finger Protein 121 is necessary for MYCN-driven neuroblastoma tumorigenesis. Commun Biol 2024; 7:1322. [PMID: 39402275 PMCID: PMC11473750 DOI: 10.1038/s42003-024-06899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
MYCN amplification predicts poor prognosis in childhood neuroblastoma. To identify MYCN oncogenic signal dependencies we performed N-ethyl-N-nitrosourea (ENU) mutagenesis on the germline of neuroblastoma-prone TH-MYCN transgenic mice to generate founders which had lost tumorigenesis. Sequencing of the mutant mouse genomes identified the Ring Finger Protein 121 (RNF121WT) gene mutated to RNFM158R associated with heritable loss of tumorigenicity. While the RNF121WT protein localised predominantly to the cis-Golgi Complex, the RNF121M158R mutation in Helix 4 of its transmembrane domain caused reduced RNF121 protein stability and absent Golgi localisation. RNF121WT expression markedly increased during TH-MYCN tumorigenesis, whereas hemizygous RNF121WT gene deletion reduced TH-MYCN tumorigenicity. The RNF121WT-enhanced growth of MYCN-amplified neuroblastoma cells depended on RNF121WT transmembrane Helix 5. RNF121WT directly bound MYCN protein and enhanced its stability. High RNF121 mRNA expression associated with poor prognosis in human neuroblastoma tissues and another MYC-driven malignancy, laryngeal cancer. RNF121 is thus an essential oncogenic cofactor for MYCN and a target for drug development.
Collapse
Affiliation(s)
- Belamy B Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Ritu Mittra
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Jayne Murray
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Qian Wang
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Janith A Seneviratne
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Mukesh Raipuria
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Iris Poh Ling Wong
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - David Restuccia
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Andrew Gifford
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Alice Salib
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Selina Sutton
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Libby Huang
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Parisa Vahidi Ferdowsi
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Joanna Tsang
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Eric Sekyere
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Lin Luo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Darren L Brown
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Cancer Center and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Stephane Chappaz
- Anatomy & Developmental Biology, Monash University, Melbourne, Australia
| | - Benjamin Kile
- Faculty of Health and Medical Sciences at the University of Adelaide, Adelaide, Australia
| | - Andrew Kueh
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, 3052, Australia
| | - Marco J Herold
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, 3052, Australia
| | - Douglas J Hilton
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, 3052, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
- University of New South Wales Centre for Childhood Cancer Research, Sydney, NSW 2052, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
- University of New South Wales Centre for Childhood Cancer Research, Sydney, NSW 2052, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Daniel R Carter
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Michael W Parker
- ACRF Facility for Innovative Cancer Drug Discovery and Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia.
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, 2031, NSW, Australia.
| |
Collapse
|
2
|
Applebaum M, Ramesh S, Dyer E, Pomaville M, Doytcheva K, Dolezal J, Kochanny S, Terhaar R, Mehrhoff C, Patel K, Brewer J, Kusswurm B, Naranjo A, Shimada H, Sokol E, Cohn S, George R, Pearson A. Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology. RESEARCH SQUARE 2024:rs.3.rs-4396782. [PMID: 38883758 PMCID: PMC11177984 DOI: 10.21203/rs.3.rs-4396782/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
A deep learning model using attention-based multiple instance learning (aMIL) and self-supervised learning (SSL) was developed to perform pathologic classification of neuroblastic tumors and assess MYCN-amplification status using H&E-stained whole slide digital images. The model demonstrated strong performance in identifying diagnostic category, grade, mitosis-karyorrhexis index (MKI), and MYCN-amplification on an external test dataset. This AI-based approach establishes a valuable tool for automating diagnosis and precise classification of neuroblastoma tumors.
Collapse
Affiliation(s)
| | | | - Emma Dyer
- University of Chicago Medical Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ren J, Fu Z, Zhao Y. Clinical value of 18F-FDG PET/CT to predict MYCN gene, chromosome 1p36 and 11q status in pediatric neuroblastoma and ganglioneuroblastoma. Front Oncol 2023; 13:1099290. [PMID: 37035169 PMCID: PMC10079884 DOI: 10.3389/fonc.2023.1099290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To explore the value of 18F-2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography(CT) in MYCN gene and chromosome 1p36 and 11 statuses in newly diagnosed pediatric NB(neuroblastoma) and GNB(ganglioneuroblastoma). Methods We retrospectively analyzed newly diagnosed patients with 48 NB and 12 with GNB in our hospital. The data obtained from the clinical medical records included age, sex, pathologic type, and laboratory parameters such as lactate dehydrogenase (LDH), neuron-specific enolase (NSE) and the status of MYCN gene and chromosome 1p36 and 11q. The bone conditions were also obtained in the examination of bone marrow biopsy. Primary tumors were manually segmented to measure the maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), tumor volume(MTV) and total lesion glycolysis(TLG) and the maximal length of the lesion in the axial image(LEGmax). Results The differences in bone marrow involvement and lymph node metastases in patients with chromosome 11q deletions were statistically significant (all p < 0.05). Chromosome 11q deletion was an independent factor affecting bone marrow involvement (OR=17.796, p=0.011). The levels of NSE, LDH, LEGmax and SUVmax, SUVmean, MTV, TLG all predicted MYCN gene amplification (all p < 0.05). The levels of LDH, LEGmax and MTV, TLG all predicted deletions in chromosomes 1p36 (all p < 0.05), while NSE, SUVmax and SUVmean did not (all p > 005). Conclusion The LDH levels, LEGmax, MTV and TLG can effectively predict the status of the MYCN oncogene and chromosome 1p36 in pediatric neuroblastoma and ganglioneuroblastoma. Those patients with chromosome 11q deletions are more likely to develop bone marrow involvement and lymph node metastases, showing a worse progression-free survival.
Collapse
Affiliation(s)
- Jiazhong Ren
- Department of Medical Imaging, PET-CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zheng Fu
- Department of Medical Imaging, PET-CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yaqing Zhao
- Department of General Affairs Section, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yaqing Zhao,
| |
Collapse
|
4
|
Shirai R, Osumi T, Sato-Otsubo A, Nakabayashi K, Ishiwata K, Yamada Y, Yoshida M, Yoshida K, Shioda Y, Kiyotani C, Terashima K, Tomizawa D, Takasugi N, Takita J, Miyazaki O, Kiyokawa N, Yoneda A, Kanamori Y, Hishiki T, Matsumoto K, Hata K, Yoshioka T, Kato M. Quantitative assessment of copy number alterations by liquid biopsy for neuroblastoma. Genes Chromosomes Cancer 2022; 61:662-669. [PMID: 35655408 DOI: 10.1002/gcc.23073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
Liquid biopsy, a method of detecting genomic alterations using blood specimens, has recently attracted attention as a non-invasive alternative to surgical tissue biopsy. We attempted quantitative analysis to detect amplification of MYCN (MYCNamp) and loss of heterozygosity at 11q (11qLOH), which are clinical requisites as prognostic factors of neuroblastoma. In this study, cell-free DNA (cfDNA) was extracted from plasma samples from 24 neuroblastoma patients at diagnosis. Copy numbers of MYCN and NAGK genes were quantitatively analyzed by droplet digital PCR (ddPCR). 11qLOH was also assessed by detecting allelic imbalances of heterozygous single nucleotide polymorphisms in the 11q region. The results obtained were compared to those of specimens from tumor tissues. The correlation coefficient of MYCN copy number of cfDNA and tumor DNA was 0.88 (P < 0.00001). 11qLOH was also accurately detected from cfDNA, except for one case with localized NB. Given the high accuracy of liquid biopsy, to investigate components of cfDNA, the proportion of tumor-derived DNA was estimated by examining the variant allele frequency of tumor-specific mutations in cfDNA. The proportion of tumor-derived DNA in cfDNA was 42.5% (range, 16.9%-55.9%), suggesting sufficient sensitivity of liquid biopsy for neuroblastoma. In conclusion, MYCN copy number and 11qLOH could be quantitatively analyzed in plasma cfDNA by ddPCR assay. These results suggest that plasma cfDNA can be substituted for tumor DNA and can also be applied for comprehensive genomic profiling analysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ryota Shirai
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Tomoo Osumi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, University of Tokyo, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuji Yamada
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masanori Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Kaoru Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoko Shioda
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Chikako Kiyotani
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Keita Terashima
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Nao Takasugi
- Department of Pediatrics, University of Tokyo, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Graduate School of Medicine Kyoto University, Kyoto City, Japan
| | - Osamu Miyazaki
- Department of Radiology, National Center for Child Health and Development, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akihiro Yoneda
- Division of Surgical Oncology, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yutaka Kanamori
- Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, Tokyo, Japan
| | - Tomoro Hishiki
- Division of Surgical Oncology, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kimikazu Matsumoto
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Angrisani A, Di Fiore A, De Smaele E, Moretti M. The emerging role of the KCTD proteins in cancer. Cell Commun Signal 2021; 19:56. [PMID: 34001146 PMCID: PMC8127222 DOI: 10.1186/s12964-021-00737-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
The human family of Potassium (K+) Channel Tetramerization Domain (KCTD) proteins counts 25 members, and a significant number of them are still only partially characterized. While some of the KCTDs have been linked to neurological disorders or obesity, a growing tally of KCTDs are being associated with cancer hallmarks or involved in the modulation of specific oncogenic pathways. Indeed, the potential relevance of the variegate KCTD family in cancer warrants an updated picture of the current knowledge and highlights the need for further research on KCTD members as either putative therapeutic targets, or diagnostic/prognostic markers. Homology between family members, capability to participate in ubiquitination and degradation of different protein targets, ability to heterodimerize between members, role played in the main signalling pathways involved in development and cancer, are all factors that need to be considered in the search for new key players in tumorigenesis. In this review we summarize the recent published evidence on KCTD members' involvement in cancer. Furthermore, by integrating this information with data extrapolated from public databases that suggest new potential associations with cancers, we hypothesize that the number of KCTD family members involved in tumorigenesis (either as positive or negative modulator) may be bigger than so far demonstrated. Video abstract.
Collapse
Affiliation(s)
| | - Annamaria Di Fiore
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Qin C, He X, Zhao Y, Tong CY, Zhu KY, Sun Y, Cheng C. Systematic computational identification of prognostic cytogenetic markers in neuroblastoma. BMC Med Genomics 2019; 12:192. [PMID: 31831008 PMCID: PMC6909636 DOI: 10.1186/s12920-019-0620-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/12/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor found in children. The frequent gain/loss of many chromosome bands in tumor cells and absence of mutations found at diagnosis suggests that NB is a copy number-driven cancer. Despite the previous work, a systematic analysis that investigates the relationship between such frequent gain/loss of chromosome bands and patient prognosis has yet to be implemented. METHODS First, we analyzed two NB CNV datasets to select chromosomal bands with a high frequency of gain or loss. Second, we applied a computational approach to infer sample-specific CNVs for each chromosomal band selected in step 1 based on gene expression data. Third, we applied univariate Cox proportional hazards models to examine the association between the resulting inferred copy number values (iCNVs) and patient survival. Finally, we applied multivariate Cox proportional hazards models to select chromosomal bands that remained significantly associated with prognosis after adjusting for critical clinical variables, including age, stage, gender, and MYCN amplification status. RESULTS Here, we used a computational method to infer the copy number variations (CNVs) of sample-specific chromosome bands from NB patient gene expression profiles. The resulting inferred CNVs (iCNVs) were highly correlated with the experimentally determined CNVs, demonstrating CNVs can be accurately inferred from gene expression profiles. Using this iCNV metric, we identified 58 frequent gain/loss chromosome bands that were significantly associated with patient survival. Furthermore, we found that 7 chromosome bands were still significantly associated with patient survival even when clinical factors, such as MYCN status, were considered. Particularly, we found that the chromosome band chr11p14 has high potential as a novel candidate cytogenetic biomarker for clinical use. CONCLUSION Our analysis resulted in a comprehensive list of prognostic chromosome bands supported by strong statistical evidence. In particular, the chr11p14 gain event provided additional prognostic value in addition to well-established clinical factors, including MYCN status, and thereby represents a novel candidate cytogenetic biomarker with high clinical potential. Additionally, this computational framework could be readily extended to other cancer types, such as leukemia.
Collapse
Affiliation(s)
- Chao Qin
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, No.3 Shangyuancun, Beijing, 100044 Haidian District China
- Department of Medicine, Baylor College of Medicine, BCM451, Suite 100D, Houston, TX 77030 USA
| | - Xiaoyan He
- Center for Clinical Molecular Medicine, Children’s Hospital, Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014 China
| | - Yanding Zhao
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03766 USA
| | - Chun-Yip Tong
- Department of Medicine, Baylor College of Medicine, BCM451, Suite 100D, Houston, TX 77030 USA
| | - Kenneth Y. Zhu
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Yongqi Sun
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, No.3 Shangyuancun, Beijing, 100044 Haidian District China
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, BCM451, Suite 100D, Houston, TX 77030 USA
| |
Collapse
|
7
|
Trigg RM, Shaw JA, Turner SD. Opportunities and challenges of circulating biomarkers in neuroblastoma. Open Biol 2019; 9:190056. [PMID: 31088252 PMCID: PMC6544987 DOI: 10.1098/rsob.190056] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular analysis of nucleic acid and protein biomarkers is becoming increasingly common in paediatric oncology for diagnosis, risk stratification and molecularly targeted therapeutics. However, many current and emerging biomarkers are based on analysis of tumour tissue, which is obtained through invasive surgical procedures and in some cases may not be accessible. Over the past decade, there has been growing interest in the utility of circulating biomarkers such as cell-free nucleic acids, circulating tumour cells and extracellular vesicles as a so-called liquid biopsy of cancer. Here, we review the potential of emerging circulating biomarkers in the management of neuroblastoma and highlight challenges to their implementation in the clinic.
Collapse
Affiliation(s)
- Ricky M. Trigg
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jacqui A. Shaw
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK
| | - Suzanne D. Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
8
|
Transcriptional Profiling Reveals a Common Metabolic Program in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells. Cell Rep 2017; 17:609-623. [PMID: 27705805 DOI: 10.1016/j.celrep.2016.09.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/04/2016] [Accepted: 09/08/2016] [Indexed: 01/02/2023] Open
Abstract
High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here, we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of the TH-MYCN mouse, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma.
Collapse
|
9
|
Mlakar V, Jurkovic Mlakar S, Lopez G, Maris JM, Ansari M, Gumy-Pause F. 11q deletion in neuroblastoma: a review of biological and clinical implications. Mol Cancer 2017; 16:114. [PMID: 28662712 PMCID: PMC5492892 DOI: 10.1186/s12943-017-0686-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022] Open
Abstract
Deletion of the long arm of chromosome 11 (11q deletion) is one of the most frequent events that occur during the development of aggressive neuroblastoma. Clinically, 11q deletion is associated with higher disease stage and decreased survival probability. During the last 25 years, extensive efforts have been invested to identify the precise frequency of 11q aberrations in neuroblastoma, the recurrently involved genes, and to understand the molecular mechanisms of 11q deletion, but definitive answers are still unclear. In this review, it is our intent to compile and review the evidence acquired to date on 11q deletion in neuroblastoma.
Collapse
Affiliation(s)
- Vid Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Gonzalo Lopez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Ansari
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland.,Department of Pediatrics, Onco-Hematology Unit, Geneva University Hospitals, Rue Willy-Donzé 6, 1205, Geneva, Switzerland
| | - Fabienne Gumy-Pause
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland. .,Department of Pediatrics, Onco-Hematology Unit, Geneva University Hospitals, Rue Willy-Donzé 6, 1205, Geneva, Switzerland.
| |
Collapse
|
10
|
Abstract
Id (DNA binding and/or differentiation) proteins occur physiologically during ontogenesis and negatively regulate the activity of other helix-loop-helix (HLH) proteins. Id2 protein causes block of cells differentiation in the S phase of the cell cycle and regulates the activity of Rb protein. The role of Id2 protein in physiological cell cycle progression and in neuroblastoma (NBL) pathogenesis was proposed by Lasorella. The aim of the study was evaluation of Id2 expression and its prognostic significance in NBL cells coming from primary tumors and evaluation of its prognostic significance, and correlation of Id2 expression with known prognostic factors. Sixty patients with primary NBL treated from 1991 to 2005 were included in the analysis. We found 50 patients with high and 10 patients with low intensity of Id2 expression. The median percentage of NBL cells with Id2 expression was 88 %. We found no correlation between the number of NBL cells or the intensity of Id2 expression and OS and DFS. In patients with stage 4 NBL, almost all patients had high expression of Id2 and it was significantly more common than in other disease stages (p = 0,03). We found no correlation between Id2 expression and other known prognostic factor in NBL patients. We assume that Id2 is not prognostic factor. However, due to its abundant expression in most of NBL cells and its role in cell cycle, it may be potential therapeutic target. Exact knowledge of expression time may be helpful in explaining mechanisms of oncogenesis.
Collapse
Affiliation(s)
- Aleksandra Wieczorek
- Department of Pediatric Oncology and Hematology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland,
| | | |
Collapse
|
11
|
Mandriota SJ, Valentijn LJ, Lesne L, Betts DR, Marino D, Boudal-Khoshbeen M, London WB, Rougemont AL, Attiyeh EF, Maris JM, Hogarty MD, Koster J, Molenaar JJ, Versteeg R, Ansari M, Gumy-Pause F. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism. Oncotarget 2015; 6:18558-76. [PMID: 26053094 PMCID: PMC4621910 DOI: 10.18632/oncotarget.4061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/14/2015] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma, a childhood cancer with highly heterogeneous biology and clinical behavior, is characterized by genomic aberrations including amplification of MYCN. Hemizygous deletion of chromosome 11q is a well-established, independent marker of poor prognosis. While 11q22-q23 is the most frequently deleted region, the neuroblastoma tumor suppressor in this region remains to be identified. Chromosome bands 11q22-q23 contain ATM, a cell cycle checkpoint kinase and tumor suppressor playing a pivotal role in the DNA damage response. Here, we report that haploinsufficiency of ATM in neuroblastoma correlates with lower ATM expression, event-free survival, and overall survival. ATM loss occurs in high stage neuroblastoma without MYCN amplification. In SK-N-SH, CLB-Ga and GI-ME-N human neuroblastoma cells, stable ATM silencing promotes neuroblastoma progression in soft agar assays, and in subcutaneous xenografts in nude mice. This effect is dependent on the extent of ATM silencing and does not appear to involve MYCN. Our findings identify ATM as a potential haploinsufficient neuroblastoma tumor suppressor, whose inactivation mirrors the increased aggressiveness associated with 11q deletion in neuroblastoma.
Collapse
Affiliation(s)
- Stefano J. Mandriota
- Department of Pediatrics, CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Linda J. Valentijn
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Laurence Lesne
- Department of Pediatrics, CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - David R. Betts
- Department of Clinical Genetics, Our Lady's Children's Hospital, Dublin, Ireland
| | - Denis Marino
- Department of Pediatrics, CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mary Boudal-Khoshbeen
- Department of Pediatrics, CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Wendy B. London
- Division of Pediatric Hematology/Oncology, Harvard Medical School, Dana-Farber/Children's Hospital Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Edward F. Attiyeh
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - John M. Maris
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D. Hogarty
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jan J. Molenaar
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Marc Ansari
- Department of Pediatrics, CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pediatrics, Onco-hematology Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Fabienne Gumy-Pause
- Department of Pediatrics, CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pediatrics, Onco-hematology Unit, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Newman EA, Lu F, Bashllari D, Wang L, Opipari AW, Castle VP. Alternative NHEJ Pathway Components Are Therapeutic Targets in High-Risk Neuroblastoma. Mol Cancer Res 2015; 13:470-82. [PMID: 25563294 DOI: 10.1158/1541-7786.mcr-14-0337] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED In neuroblastoma, MYCN genomic amplification and segmental chromosomal alterations including 1p or 11q loss of heterozygocity and/or 17q gain are associated with progression and poor clinical outcome. Segmental alterations are the strongest predictor of relapse and result from unbalanced translocations attributable to erroneous repair of chromosomal breaks. Although sequence analysis of affected genomic regions suggests that these errors arise by nonhomologous end-joining (NHEJ) of DNA double-strand breaks (DSB), abnormalities in NHEJ have not been implicated in neuroblastoma pathogenesis. On this basis, the hypothesis that an error-prone mechanism of NHEJ is critical for neuroblastoma cell survival was tested. Plasmid-based DSB repair assays demonstrated efficient NHEJ activity in human neuroblastoma cells with repair products that were error-prone relative to nontransformed cells. Neuroblastoma cells derived from tumorigenic neuroblastic phenotypes had differential DNA repair protein expression patterns compared with nontumorigenic cells. Tumorigenic neuroblastoma cells were deficient in DNA ligase IV (Lig4) and Artemis (DCLRE1C), mediators of canonical NHEJ. Conversely, enzymes required for an error-prone alternative NHEJ pathway (alt-NHEJ), DNA Ligase IIIα (Lig3), DNA Ligase I (Lig1), and PARP1 protein were upregulated. Inhibition of Lig3 and Lig1 led to DSB accumulation and cell death, linking alt-NHEJ to cell survival in neuroblastoma. Neuroblastoma cells demonstrated sensitivity to PARP1 inhibition (PARPi) that paralleled PARP1 expression. In a dataset of human neuroblastoma patient tumors, overexpression of genes encoding alt-NHEJ proteins associated with poor survival. IMPLICATIONS These findings provide an insight into DNA repair fidelity in neuroblastoma and identify components of the alt-NHEJ pathway as promising therapeutic targets.
Collapse
Affiliation(s)
- Erika A Newman
- Department of Surgery, C.S. Mott Children and Women's Hospital, Translational Oncology Program, The University of Michigan Medical School, Ann Arbor, Michigan.
| | - Fujia Lu
- Department of Surgery, C.S. Mott Children and Women's Hospital, Translational Oncology Program, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniela Bashllari
- Department of Surgery, C.S. Mott Children and Women's Hospital, Translational Oncology Program, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Li Wang
- Department of Pediatrics, C.S. Mott Children and Women's Hospital, Translational Oncology Program, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Anthony W Opipari
- Department of Obstetrics and Gynecology, C.S. Mott Children and Women's Hospital, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Valerie P Castle
- Department of Pediatrics, C.S. Mott Children and Women's Hospital, Translational Oncology Program, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
13
|
Meany HJ, London WB, Ambros PF, Matthay KK, Monclair T, Simon T, Garaventa A, Berthold F, Nakagawara A, Cohn SL, Pearson ADJ, Park JR. Significance of clinical and biologic features in Stage 3 neuroblastoma: a report from the International Neuroblastoma Risk Group project. Pediatr Blood Cancer 2014; 61:1932-9. [PMID: 25044743 DOI: 10.1002/pbc.25134] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/13/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND International Neuroblastoma Staging System (INSS) Stage 3 neuroblastoma is a heterogeneous disease. Data from the International Neuroblastoma Risk Group (INRG) database were analyzed to define patient and tumor characteristics predictive of outcome. PROCEDURE Of 8,800 patients in the INRG database, 1,483 with INSS Stage 3 neuroblastoma and complete follow-up data were analyzed. Secondary analysis was performed in 1,013 patients (68%) with MYCN-non-amplified (NA) tumors. Significant prognostic factors were identified via log-rank test comparisons of survival curves. Multivariable Cox proportional hazards regression model was used to identify factors independently predictive of event-free survival (EFS). RESULTS Age at diagnosis (P < 0.0001), tumor MYCN status (P < 0.0001), and poorly differentiating/undifferentiated histology (P = 0.03) were independent predictors of EFS. Compared to other Stage 3 subgroups, outcome was inferior for patients ≥ 547 days with MYCN-NA neuroblastoma (P < 0.0001), and within this cohort, serum ferritin ≥ 96 ng/ml was associated with inferior EFS (P = 0.02). For patients <547 days of age with MYCN-NA tumors, serum ferritin levels were prognostic of overall survival (OS) (P = 0.04) and chromosome 11q aberration was prognostic of EFS (P = 0.03). CONCLUSIONS Among patients with INSS Stage 3 neuroblastoma patients, age at diagnosis, MYCN status and histology predict outcome. Patients <547 days of age with MYCN-NA tumors that lack chromosome 11q aberrations or those with serum ferritin <96 ng/ml have excellent prognosis and should be considered for therapy reduction. Prospective clinical trials are needed to identify optimal therapy for those patients ≥ 547 days of age with undifferentiated histology or elevated serum ferritin.
Collapse
Affiliation(s)
- Holly J Meany
- Department of Hematology/Oncology, Children's National Medical Center, Washington, District of Columbia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Morandi F, Corrias MV, Pistoia V. Evaluation of bone marrow as a metastatic site of human neuroblastoma. Ann N Y Acad Sci 2014; 1335:23-31. [PMID: 25315505 DOI: 10.1111/nyas.12554] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arising from neural crest cells, neuroblastoma (NB) is the most common extracranial pediatric solid tumor. The clinical presentation of NB is heterogeneous, ranging from patients with asymptomatic tumor masses, who require minimal treatment, to patients with metastatic disease who are treated with multimodal therapies. Clinical outcome is also variable, with overall survival ranging from 98% to 100% in infants with stage 1 NB, to less than 30% in patients with stage 4 MYCN-amplified NB. More than 50% of patients show metastasis at diagnosis, with the involvement of different vascularized tissues, including the bone marrow (BM). In this paper, we focus on BM infiltration by NB cells, which is considered an adverse prognostic factor. In particular, we discuss the role of different biological factors that may favor the dissemination of NB cells in the BM, such as chromosomic abnormalities, gene amplification, transcription factors, cell-surface receptors, products of oncogenes, and, more importantly, cytokines and chemokines. In addition, we analyze different techniques to evaluate BM infiltration by malignant cells (i.e., flow cytometry, immunocytochemistry, and quantitative reverse transcriptase polymerase chain reaction). Finally, we review recent data regarding phenotypic and genetic characterization of BM-infiltrating malignant cells and characterization of the BM microenvironment in NB patients compared to healthy subjects.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | | | | |
Collapse
|
15
|
Williams P, Wegner E, Ziegler DS. Outcomes in multifocal neuroblastoma as part of the neurocristopathy syndrome. Pediatrics 2014; 134:e611-6. [PMID: 25070313 DOI: 10.1542/peds.2013-3340] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The neurocristopathy syndrome occurs because of a germline mutation of the paired-like homeobox 2b (PHOX2B) gene at 4p12, a neurogenesis regulator gene. The result is abnormal neural crest cell development resulting in congenital central hypoventilation syndrome, Hirschsprung disease, and neuroblastoma (NB), which is often multifocal and disseminated in its presentation. Previously, such widespread disease was regarded as highly aggressive and treated either with palliative intent or, conversely, with very intense, high-dose chemotherapy. We now present a patient who had neurocristopathy syndrome who had multifocal NB associated with an underlying germline PHOX2B mutation. He was treated conservatively with surgery and low-dose chemotherapy. After treatment he had extensive residual disease that has continued to mature despite no further treatment. A literature review identified 26 similar patients presenting with multifocal NB as part of the neurocristopathy syndrome. In all cases the NB behaved in an indolent manner with no deaths from tumor reported when patients received appropriate treatment. These provocative findings suggest for the first time that children who have neurocristopathy-associated NB should be treated conservatively, despite the aggressive appearance of their disease.
Collapse
Affiliation(s)
- Phoebe Williams
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Eva Wegner
- Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia;School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Australia; and
| |
Collapse
|
16
|
Klampfl T, Milosevic JD, Puda A, Schönegger A, Bagienski K, Berg T, Harutyunyan AS, Gisslinger B, Rumi E, Malcovati L, Pietra D, Elena C, Della Porta MG, Pieri L, Guglielmelli P, Bock C, Doubek M, Dvorakova D, Suvajdzic N, Tomin D, Tosic N, Racil Z, Steurer M, Pavlovic S, Vannucchi AM, Cazzola M, Gisslinger H, Kralovics R. Complex patterns of chromosome 11 aberrations in myeloid malignancies target CBL, MLL, DDB1 and LMO2. PLoS One 2013; 8:e77819. [PMID: 24147083 PMCID: PMC3797696 DOI: 10.1371/journal.pone.0077819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
Exome sequencing of primary tumors identifies complex somatic mutation patterns. Assignment of relevance of individual somatic mutations is difficult and poses the next challenge for interpretation of next generation sequencing data. Here we present an approach how exome sequencing in combination with SNP microarray data may identify targets of chromosomal aberrations in myeloid malignancies. The rationale of this approach is that hotspots of chromosomal aberrations might also harbor point mutations in the target genes of deletions, gains or uniparental disomies (UPDs). Chromosome 11 is a frequent target of lesions in myeloid malignancies. Therefore, we studied chromosome 11 in a total of 813 samples from 773 individual patients with different myeloid malignancies by SNP microarrays and complemented the data with exome sequencing in selected cases exhibiting chromosome 11 defects. We found gains, losses and UPDs of chromosome 11 in 52 of the 813 samples (6.4%). Chromosome 11q UPDs frequently associated with mutations of CBL. In one patient the 11qUPD amplified somatic mutations in both CBL and the DNA repair gene DDB1. A duplication within MLL exon 3 was detected in another patient with 11qUPD. We identified several common deleted regions (CDR) on chromosome 11. One of the CDRs associated with de novo acute myeloid leukemia (P=0.013). One patient with a deletion at the LMO2 locus harbored an additional point mutation on the other allele indicating that LMO2 might be a tumor suppressor frequently targeted by 11p deletions. Our chromosome-centered analysis indicates that chromosome 11 contains a number of tumor suppressor genes and that the role of this chromosome in myeloid malignancies is more complex than previously recognized.
Collapse
Affiliation(s)
- Thorsten Klampfl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jelena D. Milosevic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ana Puda
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andreas Schönegger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Klaudia Bagienski
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tiina Berg
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ashot S. Harutyunyan
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bettina Gisslinger
- Division of Hematology and Blood Coagulation, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Elisa Rumi
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luca Malcovati
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniela Pietra
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Elena
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matteo Giovanni Della Porta
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Lisa Pieri
- Section of Hematology, University of Florence, Florence, Italy
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Michael Doubek
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno, Masaryk University Brno, Brno, Czech Republic, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University Brno, Brno, Czech Republic
| | - Dana Dvorakova
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno, Masaryk University Brno, Brno, Czech Republic, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University Brno, Brno, Czech Republic
| | - Nada Suvajdzic
- Clinic of Hematology, Clinical Center of Serbia, University of Belgrade, School of Medicine, Belgrade, Serbia
| | - Dragica Tomin
- Clinic of Hematology, Clinical Center of Serbia, University of Belgrade, School of Medicine, Belgrade, Serbia
| | - Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Zdenek Racil
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno, Masaryk University Brno, Brno, Czech Republic, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University Brno, Brno, Czech Republic
| | - Michael Steurer
- Division of Hematology and Oncology, Innsbruck University Hospital, Innsbruck, Austria
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Mario Cazzola
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Heinz Gisslinger
- Division of Hematology and Blood Coagulation, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Division of Hematology and Blood Coagulation, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
17
|
Domingo-Fernandez R, Watters K, Piskareva O, Stallings RL, Bray I. The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis. Pediatr Surg Int 2013; 29:101-19. [PMID: 23274701 PMCID: PMC3557462 DOI: 10.1007/s00383-012-3239-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2012] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a highly heterogeneous tumor accounting for 15 % of all pediatric cancer deaths. Clinical behavior ranges from the spontaneous regression of localized, asymptomatic tumors, as well as metastasized tumors in infants, to rapid progression and resistance to therapy. Genomic amplification of the MYCN oncogene has been used to predict outcome in neuroblastoma for over 30 years, however, recent methodological advances including miRNA and mRNA profiling, comparative genomic hybridization (array-CGH), and whole-genome sequencing have enabled the detailed analysis of the neuroblastoma genome, leading to the identification of new prognostic markers and better patient stratification. In this review, we will describe the main genetic factors responsible for these diverse clinical phenotypes in neuroblastoma, the chronology of their discovery, and the impact on patient prognosis.
Collapse
Affiliation(s)
- Raquel Domingo-Fernandez
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Karen Watters
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Olga Piskareva
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Raymond L. Stallings
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Isabella Bray
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| |
Collapse
|
18
|
Yagyu S, Iehara T, Gotoh T, Miyachi M, Katsumi Y, Kikuchi K, Tsuchiya K, Osone S, Kuroda H, Sugimoto T, Sawada T, Hosoi H. Preoperative analysis of 11q loss using circulating tumor-released DNA in serum: a novel diagnostic tool for therapy stratification of neuroblastoma. Cancer Lett 2011; 309:185-9. [PMID: 21726937 DOI: 10.1016/j.canlet.2011.05.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 03/05/2011] [Accepted: 05/29/2011] [Indexed: 11/17/2022]
Abstract
Allelic deletion of the long arm of chromosome 11 (11q loss) is closely associated with the prognosis of neuroblastoma (NB). Here we examined 11q loss using tumor-released DNA fragments in the sera of 24 cases. The allelic intensity score of a panel of polymorphic markers in 11q23 in serum DNA was significantly different between the 11q loss-positive group and the11q loss-negative group. The 11q loss-positive and -negative groups did not overlap when a cut-off value of 0.5 was chosen for the allelic intensity score. Our serum-based 11q loss analysis could predict the allelic status of 11q in tumors.
Collapse
Affiliation(s)
- Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Parodi F, Passoni L, Massimo L, Luksch R, Gambini C, Rossi E, Zuffardi O, Pistoia V, Pezzolo A. Identification of novel prognostic markers in relapsing localized resectable neuroblastoma. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:113-21. [PMID: 21319993 DOI: 10.1089/omi.2010.0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Patients with localized resectable neuroblastoma (NB) generally have an excellent prognosis and can be treated by surgery alone, but approximately 10% of them develop local recurrences or metastatic progression. The known predictive risk factors are important for the identification of localized resectable NB patients at risk of relapse and/or progression, who may benefit from early and aggressive treatment. These factors, however, identify only a subset of patients at risk, and the search for novel prognostic markers is warranted. This review focuses on the recent advances in the identification of new prognostic markers. Recently we addressed the search of novel genetic prognostic markers in a selected cohort of patients with stroma-poor localized resectable NB who underwent disease relapse or progression (group 1) or complete remission (group 2). High-resolution array-comparative genomic hybridization (CGH) DNA copy-number analysis technology was used. Chromosome 1p36.22p36.32 loss and 1q22qter gain, detected almost exclusively in group 1 patients, were significantly associated with poor event-free survival (EFS). Increasing evidence points to anaplastic lymphoma kinase (ALK) as a fundamental oncogene associated with NB. The immunohistochemical analysis of sporadic NB localized resectable primary tumors (stage 1-2) showed a correlation between aberrant ALK level of expression and tumor progression and clinical outcome. Moreover, other factors that might influence the clinical behavior of these tumors will be reviewed.
Collapse
Affiliation(s)
- Federica Parodi
- Laboratory of Oncology, IRCCS G.Gaslini Hospital, Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
k-Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction. THE PHARMACOGENOMICS JOURNAL 2010; 10:292-309. [PMID: 20676068 PMCID: PMC2920072 DOI: 10.1038/tpj.2010.56] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the clinical application of genomic data analysis and modeling, a number of factors contribute to the performance of disease classification and clinical outcome prediction. This study focuses on the k-nearest neighbor (KNN) modeling strategy and its clinical use. Although KNN is simple and clinically appealing, large performance variations were found among experienced data analysis teams in the MicroArray Quality Control Phase II (MAQC-II) project. For clinical end points and controls from breast cancer, neuroblastoma and multiple myeloma, we systematically generated 463 320 KNN models by varying feature ranking method, number of features, distance metric, number of neighbors, vote weighting and decision threshold. We identified factors that contribute to the MAQC-II project performance variation, and validated a KNN data analysis protocol using a newly generated clinical data set with 478 neuroblastoma patients. We interpreted the biological and practical significance of the derived KNN models, and compared their performance with existing clinical factors.
Collapse
|
21
|
Van Roy N, De Preter K, Hoebeeck J, Van Maerken T, Pattyn F, Mestdagh P, Vermeulen J, Vandesompele J, Speleman F. The emerging molecular pathogenesis of neuroblastoma: implications for improved risk assessment and targeted therapy. Genome Med 2009; 1:74. [PMID: 19638189 PMCID: PMC2717400 DOI: 10.1186/gm74] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Neuroblastoma is one of the most common solid tumors of childhood, arising from immature sympathetic nervous system cells. The clinical course of patients with neuroblastoma is highly variable, ranging from spontaneous regression to widespread metastatic disease. Although the outcome for children with cancer has improved considerably during the past decades, the prognosis of children with aggressive neuroblastoma remains dismal. The clinical heterogeneity of neuroblastoma mirrors the biological and genetic heterogeneity of these tumors. Ploidy and MYCN amplification have been used as genetic markers for risk stratification and therapeutic decision making, and, more recently, gene expression profiling and genome-wide DNA copy number analysis have come into the picture as sensitive and specific tools for assessing prognosis. The applica tion of new genetic tools also led to the discovery of an important familial neuroblastoma cancer gene, ALK, which is mutated in approximately 8% of sporadic tumors, and genome-wide association studies have unveiled loci with risk alleles for neuroblastoma development. For some of the genomic regions that are deleted in some neuroblastomas, on 1p, 3p and 11q, candidate tumor suppressor genes have been identified. In addition, evidence has emerged for the contribution of epigenetic disturbances in neuroblastoma oncogenesis. As in other cancer entities, altered microRNA expression is also being recognized as an important player in neuroblastoma. The recent successes in unraveling the genetic basis of neuroblastoma are now opening opportunities for development of targeted therapies.
Collapse
Affiliation(s)
- Nadine Van Roy
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hoebeeck J, De Wilde B, Michels E, Combaret V, Yigit N, De Smet E, Van Roy N, Stanbridge E, Ru N, Laureys G, De Paepe A, Speleman F, Vandesompele J. Chromosome 3p microsatellite allelotyping in neuroblastoma: a report on the technical hurdles. Cancer Invest 2009; 27:857-68. [PMID: 19544108 DOI: 10.1080/07357900902769731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pinpointing critical regions of recurrent loss may help localize tumor suppressor genes. To determine the regions of loss on chromosome 3p in neuroblastoma, we performed loss of heterozygosity analysis using 16 microsatellite markers in a series of 65 primary tumors and 29 neuroblastoma cell lines. In this study, we report the results and discuss the technical hurdles that we encountered during data generation and interpretation that are of relevance for current studies or tests employing microsatellites. To provide functional support for the implication of 3p tumor suppressor genes in this childhood malignancy, we performed a microcell-mediated chromosome 3 transfer in neuroblastoma cells.
Collapse
|
23
|
Pezzolo A, Rossi E, Gimelli S, Parodi F, Negri F, Conte M, Pistorio A, Sementa A, Pistoia V, Zuffardi O, Gambini C. Presence of 1q gain and absence of 7p gain are new predictors of local or metastatic relapse in localized resectable neuroblastoma. Neuro Oncol 2009; 11:192-200. [PMID: 18923191 PMCID: PMC2718991 DOI: 10.1215/15228517-2008-086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 04/29/2008] [Indexed: 11/19/2022] Open
Abstract
We have addressed the search of novel genetic prognostic markers in a selected cohort of patients with stroma-poor localized resectable neuroblastoma (NB) who underwent relapse or progression (group 1) or complete remission (group 2) over a minimum follow-up of 32 months from diagnosis. Twenty-three Italian patients with localized resectable NB (stages 1 and 2) diagnosed from 1994 through 2005 were studied. All patients received surgical treatment. Chemotherapy was administered only to the three stage 2 patients who had MYCN-amplified tumors. High-resolution array-comparative genomic hybridization (CGH) DNA copy-number analysis technology was used to identify novel prognostic markers. Chromosome 1p36.22p36.32 loss and 1q22qter gain, detected almost exclusively in group 1 patients, were significantly associated with poor event-free survival (EFS) (p = 0.0024 and p = 0.024, respectively). In contrast, patients with 7p11.2p22 gain, who belonged predominantly to group 2, had a significantly better EFS (p = 0.015). The frequency of 17q gain or 3p and 11q losses did not differ significantly in group 1 versus group 2 NBs. The sensitive technique allowed us to define the smallest region of 1p deletion. In conclusion, 1q22qter gain and 7p11.2p22 gain might represent new prognostic markers in localized resectable NB, but the small study size and the retrospective nature of the findings warrant further validation of the results in larger studies.
Collapse
Affiliation(s)
- Annalisa Pezzolo
- Department of Oncology, IRCCS G. Gaslini Hospital, Genova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
8q deletion in MYCN-amplified neuroblastoma of a child born from assisted reproductive technology. J Pediatr Hematol Oncol 2009; 31:215-9. [PMID: 19262252 DOI: 10.1097/mph.0b013e3181979c94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The occurrence of pediatric cancer in children born from assisted reproductive technologies has been sporadically reported. Chromosomal characterization of the neoplasic disease in this setting is poorly described. In the present study, neuroblastoma cells from a 13-month-old infant boy born after intracytoplasmatic sperm injection were characterized by combining conventional cytogenetics, fluorescence in situ hybridization (FISH), comparative genomic hybridization, and quantitative polymerase chain reaction methods. Cytogenetic analysis of neuroblastoma (NB) metaphase spreads at the time of diagnosis revealed numerous centromere-free extrachromosomal double minutes, suggesting high MYCN amplification. Comparative genomic hybridization analysis demonstrated the amplification of 2q24 approximately pter, with additional gain of the long arm of chromosome 17. Chromosome losses involved 8q, 9q, and 11q. No deletion of 1p was found. MYCN amplification was confirmed by quantitative polymerase chain reaction and fluorescence in situ hybridization analysis. This report describes several chromosomal abnormalities that were present in NB of a child born after intracytoplasmatic sperm injection. Besides some well described and prognostic genetic findings in NB as MYCN amplification, gain on 17q and losses on 9q and 11q23, we report an unusual deletion involving 8q region in this disease. Whether this genetic abnormality may be associated to assisted reproductive technologies deserves further investigation.
Collapse
|
25
|
Michels E, Hoebeeck J, De Preter K, Schramm A, Brichard B, De Paepe A, Eggert A, Laureys G, Vandesompele J, Speleman F. CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23. BMC Cancer 2008; 8:173. [PMID: 18559103 PMCID: PMC2442116 DOI: 10.1186/1471-2407-8-173] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 06/17/2008] [Indexed: 11/24/2022] Open
Abstract
Background Recurrent loss of part of the long arm of chromosome 11 is a well established hallmark of a subtype of aggressive neuroblastomas. Despite intensive mapping efforts to localize the culprit 11q tumour suppressor gene, this search has been unsuccessful thus far as no sufficiently small critical region could be delineated for selection of candidate genes. Methods To refine the critical region of 11q loss, the chromosome 11 status of 100 primary neuroblastoma tumours and 29 cell lines was analyzed using a BAC array containing a chromosome 11 tiling path. For the genes mapping within our refined region of loss, meta-analysis on published neuroblastoma mRNA gene expression datasets was performed for candidate gene selection. The DNA methylation status of the resulting candidate gene was determined using re-expression experiments by treatment of neuroblastoma cells with the demethylating agent 5-aza-2'-deoxycytidine and bisulphite sequencing. Results Two small critical regions of loss within 11q23 at chromosomal band 11q23.1-q23.2 (1.79 Mb) and 11q23.2-q23.3 (3.72 Mb) were identified. In a first step towards further selection of candidate neuroblastoma tumour suppressor genes, we performed a meta-analysis on published expression profiles of 692 neuroblastoma tumours. Integration of the resulting candidate gene list with expression data of neuroblastoma progenitor cells pinpointed CADM1 as a compelling candidate gene. Meta-analysis indicated that CADM1 expression has prognostic significance and differential expression for the gene was noted in unfavourable neuroblastoma versus normal neuroblasts. Methylation analysis provided no evidence for a two-hit mechanism in 11q deleted cell lines. Conclusion Our study puts CADM1 forward as a strong candidate neuroblastoma suppressor gene. Further functional studies are warranted to elucidate the role of CADM1 in neuroblastoma development and to investigate the possibility of CADM1 haploinsufficiency in neuroblastoma.
Collapse
Affiliation(s)
- Evi Michels
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Revet I, Huizenga G, Chan A, Koster J, Volckmann R, van Sluis P, Øra I, Versteeg R, Geerts D. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma. Exp Cell Res 2008; 314:707-19. [PMID: 18201699 DOI: 10.1016/j.yexcr.2007.12.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 11/05/2007] [Accepted: 12/05/2007] [Indexed: 02/03/2023]
Abstract
Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneural gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages.
Collapse
Affiliation(s)
- Ingrid Revet
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zheng HT, Jiang LX, Lv ZC, Li DP, Zhou CZ, Gao JJ, He L, Peng ZH. Are there tumor suppressor genes on chromosome 4p in sporadic colorectal carcinoma? World J Gastroenterol 2008; 14:90-4. [PMID: 18176968 PMCID: PMC2673398 DOI: 10.3748/wjg.14.90] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients.
METHODS: Seven fluorescent labeled polymorphic microsatellite markers were analyzed in 83 cases of colorectal carcinoma and matched normal tissue DNA by PCR. PCR products were eletrophoresed on an ABI 377 DNA sequencer. Genescan 3.7 and Genotype 3.7 software were used for LOH scanning and analysis. The same procedure was performed by the other six microsatellite markers spanning D4S3013 locus to make further detailed deletion mapping. Comparison between LOH frequency and clinicopathological factors was performed by χ2 test.
RESULTS: Data were collected from all informative loci. The average LOH frequency on 4p was 24.25%, and 42.3% and 35.62% on D4S405 and D4S3013 locus, respectively. Adjacent markers of D4S3013 displayed a low LOH frequency (< 30%) by detailed deletion mapping. Significant opposite difference was observed between LOH frequency and tumor diameter on D4S412 and D4S1546 locus (0% vs 16.67%, P = 0.041; 54.55% vs 11.11%, P = 0.034, respectively). On D4S403 locus, LOH was significantly associated with tumor gross pattern (11.11%, 0, 33.33%, P = 0.030). No relationship was detected on other loci compared with clinicopathological features.
CONCLUSION: By deletion mapping, two obvious high frequency LOH regions spanning D4S3013 (4p15.2) and D4S405 (4p14) locus are detected. Candidate TSG, which is involved in carcinogenesis and progression of sporadic colorectal carcinoma on chromosome 4p, may be located between D4S3017 and D4S2933 (about 1.7 cm).
Collapse
|
28
|
Stallings R. Origin and functional significance of large-scale chromosomal imbalances in neuroblastoma. Cytogenet Genome Res 2007; 118:110-5. [DOI: 10.1159/000108291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 12/20/2006] [Indexed: 11/19/2022] Open
|
29
|
Spitz R, Hero B, Simon T, Berthold F. Loss in chromosome 11q identifies tumors with increased risk for metastatic relapses in localized and 4S neuroblastoma. Clin Cancer Res 2007; 12:3368-73. [PMID: 16740759 DOI: 10.1158/1078-0432.ccr-05-2495] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To improve risk prediction in neuroblastoma and to specify the type of a possible relapse, alterations in the long arm of chromosome 11 were analyzed. EXPERIMENTAL DESIGN A representative cohort of 611 neuroblastomas was investigated for deletion events in distal chromosome 11q using interphase fluorescence in situ hybridization. RESULTS Alterations in 11q were found in 159 of 611 tumors in the whole cohort (26%) and were associated with stage 4 disease (P < 0.001) and age at diagnosis of >2.5 years (P < 0.001). Event-free survival and overall survival were significantly poorer for patients with 11q loss in the whole cohort (event-free survival and overall survival, P < 0.001) and in different subsets: neuroblastoma without MYCN amplification (MNA) (event-free survival and overall survival, P < 0.001), with MNA (event-free survival, P = 0.03; overall survival, P = 0.02), and MYCN-nonamplified stage 1, 2, 3, and 4S tumors with and without del 1p (event-free survival and overall survival, P < 0.001). In stage 4, the 11q status did not discriminate outcome. By multivariate analysis, the 11q status proved prognostic for event-free survival in the whole cohort (P = 0.008; hazard ratio, 1.573) and in the subgroup of stages 1, 2, 3, and 4S without MNA (P < 0.001; hazard ratio, 3.534). Moreover, 11q alterations were strongly correlated with the occurrence of metastatic relapses (P < 0.001). CONCLUSION In addition to the current risk stratification, the status of 11q enables the identification of patients with an increased risk for relapses in general and metastatic relapses in particular.
Collapse
Affiliation(s)
- Ruediger Spitz
- Authors' Affiliations: Department of Pediatric Oncology, University Children's Hospital, Köln, Germany.
| | | | | | | |
Collapse
|
30
|
Peet AC, McConville C, Wilson M, Levine BA, Reed M, Dyer SA, Edwards EC, Strachan MC, McMullan DJ, Wilkes TM, Grundy RG. 1H MRS identifies specific metabolite profiles associated with MYCN-amplified and non-amplified tumour subtypes of neuroblastoma cell lines. NMR IN BIOMEDICINE 2007; 20:692-700. [PMID: 17506115 DOI: 10.1002/nbm.1181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Neuroblastoma is the most common extracranial solid malignancy in children. The disease possesses a broad range of clinical phenotypes with widely varying prognoses. Numerous studies have sought to identify the associated genetic abnormalities in the tumour, resulting in the identification of useful prognostic markers. In particular, the presence of multiple copies of the MYCN oncogene (referred to as MYCN amplification) has been found to confer a poor prognosis. However, the molecular pathways involved are as yet poorly defined. Metabolite profiles generated by in vitro (1)H MRS provide a means of investigating the downstream metabolic consequences of genetic alterations and can identify potential targets for new agents. Thirteen neuroblastoma cell lines possessing multiple genetic alterations were investigated; seven were MYCN amplified and six MYCN non-amplified. In vitro magic angle spinning (1)H MRS was performed on cell suspensions, and the spectra analysed to obtain metabolite concentration ratios relative to total choline (tCho). A principal component analysis using these concentration ratios showed that MYCN-amplified and non-amplified cell lines form separate classes according to their metabolite profiles. Phosphocholine/tCho and taurine/tCho were found to be significantly raised (p < 0.05) and glycerophosphocholine/tCho significantly reduced (p < 0.05) in the MYCN-amplified compared with the MYCN non-amplified cell lines (two-tailed t test). (1)H MRS of the SH-EP1 cell line and an isogenic cell line transfected with the MYCN oncogene also showed that MYCN oncogene over-expression causes alterations in phosphocholine, glycerophosphocholine and taurine concentrations. Molecular pathways of choline and taurine metabolism are potential targets for new agents tailored to MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Andrew C Peet
- Department of Academic Paediatrics and Child Health, University of Birmingham, Whittall Street, Birmingham B4 6NH, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schleiermacher G, Michon J, Huon I, d'Enghien CD, Klijanienko J, Brisse H, Ribeiro A, Mosseri V, Rubie H, Munzer C, Thomas C, Valteau-Couanet D, Auvrignon A, Plantaz D, Delattre O, Couturier J. Chromosomal CGH identifies patients with a higher risk of relapse in neuroblastoma without MYCN amplification. Br J Cancer 2007; 97:238-46. [PMID: 17579628 PMCID: PMC2360301 DOI: 10.1038/sj.bjc.6603820] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas neuroblastoma (NB) with MYCN amplification presents a poor prognosis, no single marker allows to reliably predict outcome in tumours without MYCN amplification. We report here an extensive analysis of 147 NB samples at diagnosis, without MYCN amplification, by chromosomal comparative genomic hybridisation (CGH), providing a comprehensive overview of their genomic imbalances. Comparative genomic hybridisation profiles showed gains or losses of entire chromosomes (type 1) in 71 cases, whereas partial chromosome gains or losses (type 2), including gain involving 17q were observed in 68 cases. Atypical profiles were present in eight cases. A type 1 profile was observed more frequently in localised disease (P<0.0001), and in patients of less than 12 months at diagnosis (P<0.0001). A type 2 genomic profile was associated with a higher risk of relapse in the overall population (log-rank test; P<0.0001), but also in the subgroup of patients with localised disease (log-rank test, P=0.007). In multivariate analysis, the genomic profile was the strongest independent prognostic factor. In conclusion, the genomic profile is of prognostic impact in patients without MYCN amplification, making it a help in the management of low-stage NB. Further studies using higher-resolution CGH are needed to better characterise atypical genomic alterations.
Collapse
|
32
|
Hoebeeck J, Michels E, Menten B, Van Roy N, Eggert A, Schramm A, De Preter K, Yigit N, De Smet E, De Paepe A, Laureys G, Vandesompele J, Speleman F. High resolution tiling-path BAC array deletion mapping suggests commonly involved 3p21-p22 tumor suppressor genes in neuroblastoma and more frequent tumors. Int J Cancer 2007; 120:533-8. [PMID: 17096344 DOI: 10.1002/ijc.22326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The recurrent loss of 3p segments in neuroblastoma suggests the implication of 1 or more tumor suppressor genes but thus far few efforts have been made to pinpoint their detailed chromosomal position. To achieve this goal, array-based comparative genomic hybridization was performed on a panel of 23 neuroblastoma cell lines and 75 primary tumors using a tiling-path bacterial artificial chromosome array for chromosome 3p. A total of 45 chromosome 3 losses were detected, including whole chromosome losses, large terminal deletions and interstitial deletions. The latter, observed in cell lines as well as a number of distal deletions detected in primary tumors, allowed us to demarcate 3 minimal regions of loss of 3.6 Mb [3p21.31-p21.2, shortest regions of overlap (SRO)1], 1.4 Mb (3p22.3-3p22.2, SRO2) and 3.8 Mb (3p25.3-p25.1, SRO3) in size. The present data significantly extend previous findings and now firmly establish critical regions on 3p implicated in neuroblastoma. Interestingly, the 2 proximal regions coincide with previously defined SROs on 3p21.3 in more frequent tumors including lung and breast cancer. As such, similar tumor suppressor genes may play a critical role in development or progression of a variety of neoplasms, including neuroblastoma.
Collapse
Affiliation(s)
- Jasmien Hoebeeck
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Noguera Salvá R, Piqueras Franco M, Ruiz Saurí A, Llombart-Bosch A, Castel Sánchez V, Navarro Fos S. [Genomic profile in high risk neuroblastoma by comparative genomic hybridization]. An Pediatr (Barc) 2006; 64:449-56. [PMID: 16756886 DOI: 10.1157/13087872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different subtypes of neuroblastoma (NB) carry associated genetic aberrations that predict their clinical course. Whole chromosome gains are usually associated with early clinical stages and good prognosis, while 1p deletion, 17q gain and MYCN amplification (MNA) are related to advanced stages and poor prognosis. High-risk neuroblastomas (NB-HR) include NB in children aged more than 1 year old, either stage 4 or any stages showing MNA except stage 1. The prognosis of NB-HR patients remains poor, despite aggressive therapy. Only MNA confers poor prognosis. Between January 2000 and February 2005, tumoral specimens from 60 patients with NB-HR were sent to the Spanish Reference Center for NB biological studies. In all cases, MYCN together with 1p36 status was analyzed by fluorescence in situ hybridization (FISH). Comparative genomic hybridization (CGH) was performed in 24 cases. Using FISH we detected 31 MNA cases including 29 with 1p36 deletion; there were 21 cases without MYCN amplification (MNNA) but 7 of these had 1p36 deletion; 8 cases showed MYCN gain (MNG) but 6 of these had 1p36 deletion. CGH showed other chromosomal alterations. Of 11 MNA cases, none had 11q loss and all of them showed 17q gain or 17 disomy. Of the 7 MNNA cases, there were 4 with 11q loss including 2 with 3p loss and all presented 17q gain or 17 disomy. The 6 MNG cases included 4 cases with 11q loss and 5 cases with 17q gain or 17 disomy. Genomic profiling by CGH in NB-HR confirms the interaction among genetic alterations, the prognostic significance of which should be evaluated to establish new treatment criteria.
Collapse
Affiliation(s)
- R Noguera Salvá
- Departamento de Patología, Facultad de Medicina y Odontología, Universidad de Valencia, España.
| | | | | | | | | | | |
Collapse
|
34
|
Chughtai SA, Genus T, Ramani P, Dyer S, Powell JE, McMullan D, Davison V, McConville CM. Multilocus loss of heterozygosity allelotypes identify a genetic pathway associated with progression from low to high stage disease in neuroblastoma. Eur J Cancer 2006; 42:1826-34. [PMID: 16872824 DOI: 10.1016/j.ejca.2006.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/27/2006] [Accepted: 03/15/2006] [Indexed: 01/02/2023]
Abstract
Neuroblastoma is a heterogeneous tumour with a variety of clinical phenotypes, ranging from a localised tumour with excellent outcome (stage 1) to a metastatic, usually fatal malignancy (stage 4). In order to investigate the genetic relationship between these tumour subtypes, a loss of heterozygosity (LOH) analysis was carried out. Composite LOH allelotypes incorporating data from 96 loci on 5 chromosomes (1p, 3p, 4p, 11q, 14q), were constructed for 62 neuroblastomas. Neuroblastomas with similar allelotypes were clustered into groups and allelotype patterns correlated with clinical features. Three distinct genetic subgroups of neuroblastoma were observed. The largest group (50% of tumours) was characterised by specific allelotype patterns indicative of a stepwise accumulation of genetic alterations (11q LOH-->1p, 4p, and/or 14q LOH-->3p LOH), associated with progression from low to high stage disease. These tumours are distinct from MYCN amplified neuroblastomas which have a more rapid and aggressive disease course, and also a proportion of low stage tumours, often ganglioneuromas or ganglioneuroblastomas, with restricted growth potential.
Collapse
Affiliation(s)
- Shaheen A Chughtai
- Division of Reproductive and Child Health, University of Birmingham, B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hoebeeck J, Vandesompele J, Nilsson H, De Preter K, Van Roy N, De Smet E, Yigit N, De Paepe A, Laureys G, Påhlman S, Speleman F. The von Hippel-Lindau tumor suppressor gene expression level has prognostic value in neuroblastoma. Int J Cancer 2006; 119:624-9. [PMID: 16506218 DOI: 10.1002/ijc.21888] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deletions of the short arm of chromosome 3 are often observed in a specific subset of aggressive neuroblastomas (NBs) with loss of distal 11q and without MYCN amplification. The critical deleted region encompasses the locus of the von Hippel-Lindau gene (VHL, 3p25). Constitutional loss of function mutations in the VHL gene are responsible for the VHL syndrome, a dominantly inherited familial cancer syndrome predisposing to a variety of neoplasms, including pheochromocytoma. Pheochromocytomas are, like NB, derived from neural crest cells, but, unlike NB, consist of more mature chromaffin cells instead of immature neuroblasts. Further arguments for a putative role of VHL in NB are its function as oxygen sensitizer and the reported relation between hypoxia and dedifferentiation of NB cells, leading to a more aggressive phenotype. To test the possible involvement of VHL in NB, we did mRNA expression analysis and sought evidence for VHL gene inactivation. Although no evidence for a classic tumor suppressor role for VHL in NB could be obtained, a strong correlation was observed between reduced levels of VHL mRNA and low patient survival probability (p=0.013). Furthermore, VHL appears to have predictive power in NTRK1 (TRKA) positive tumor samples with presumed favorable prognosis, which makes it a potentially valuable marker for more accurate risk assessment in this subgroup of patients. The significance of the reduced VHL expression levels in relation to NB tumor biology remains unexplained, as functional analysis demonstrated no clear effect of the reduction in VHL mRNA expression on protein stability of its downstream target hypoxia-inducible factor alpha.
Collapse
Affiliation(s)
- Jasmien Hoebeeck
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Simon T, Spitz R, Hero B, Berthold F, Faldum A. Risk estimation in localized unresectable single copy MYCN neuroblastoma by the status of chromosomes 1p and 11q. Cancer Lett 2006; 237:215-22. [PMID: 16019135 DOI: 10.1016/j.canlet.2005.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/30/2005] [Accepted: 06/01/2005] [Indexed: 11/19/2022]
Abstract
In localized neuroblastoma, the identification of patients requiring intensive treatment is still difficult. We retrospectively analyzed data of 280 single copy MYCN stage 2 and 3 neuroblastoma patients with gross residual tumor after initial surgery. The 3-year-event free survival of the total group was 83+/-2%, and 3-year-overall survival was 92+/-2%. Patients < or=1.5 years had a better outcome than older children. Deletions/imbalances of chromosome 1p were found in 9/90 patients and were associated with a higher event rate but not with a higher death rate. Aberrations of chromosome 11q in 14/91 patients were correlated with a higher event and death rate. Multivariate analysis identified 1p aberrations as important for event free survival and 11q aberrations for overall survival.
Collapse
Affiliation(s)
- Thorsten Simon
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Str. 62, D-50924 Köln, Germany.
| | | | | | | | | |
Collapse
|
37
|
Attiyeh EF, London WB, Mossé YP, Wang Q, Winter C, Khazi D, McGrady PW, Seeger RC, Look AT, Shimada H, Brodeur GM, Cohn SL, Matthay KK, Maris JM. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med 2005; 353:2243-53. [PMID: 16306521 DOI: 10.1056/nejmoa052399] [Citation(s) in RCA: 390] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuroblastoma is a childhood cancer with considerable morbidity and mortality. Tumor-derived biomarkers may improve risk stratification. METHODS We screened 915 samples of neuroblastoma for loss of heterozygosity (LOH) at chromosome bands 1p36 and 11q23. Additional analyses identified a subgroup of cases of 11q23 LOH with unbalanced 11q LOH (unb11q LOH; defined as loss of 11q with retention of 11p). The associations of LOH with relapse and survival were determined. RESULTS LOH at 1p36 was identified in 209 of 898 tumors (23 percent) and LOH at 11q23 in 307 of 913 (34 percent). Unb11q LOH was found in 151 of 307 tumors with 11q23 LOH (17 percent of the total cohort). There was a strong association of 1p36 LOH, 11q23 LOH, and unb11q LOH with most high-risk disease features (P<0.001). LOH at 1p36 was associated with amplification of the MYCN oncogene (P<0.001), but 11q23 LOH and unb11q LOH were not (P<0.001 and P=0.002, respectively). Cases with unb11q LOH were associated with three-year event-free and overall survival rates (+/-SE) of 50+/-5 percent and 66+/-5 percent, respectively, as compared with 74+/-2 percent and 83+/-2 percent among cases without unb11q LOH (P<0.001 for both comparisons). In a multivariate model, unb11q LOH was independently associated with decreased event-free survival (P=0.009) in the entire cohort, and both 1p36 LOH and unb11q LOH were independently associated with decreased progression-free survival in the subgroup of patients with features of low-risk and intermediate-risk disease (P=0.002 and P=0.02, respectively). CONCLUSIONS Unb11q LOH and 1p36 LOH are independently associated with a worse outcome in patients with neuroblastoma.
Collapse
Affiliation(s)
- Edward F Attiyeh
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, PA 19104-4318, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bilke S, Chen QR, Westerman F, Schwab M, Catchpoole D, Khan J. Inferring a tumor progression model for neuroblastoma from genomic data. J Clin Oncol 2005; 23:7322-31. [PMID: 16145061 DOI: 10.1200/jco.2005.03.2821] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The knowledge of the key genomic events that are causal to cancer development and progression not only is invaluable for our understanding of cancer biology but also may have a direct clinical impact. The task of deciphering a model of tumor progression by requiring that it explains (or at least does not contradict) known clinical and molecular evidence can be very demanding, particularly for cancers with complex patterns of clinical and molecular evidence. MATERIALS AND METHODS We formalize the process of model inference and show how a progression model for neuroblastoma (NB) can be inferred from genomic data. The core idea of our method is to translate the model of clonal cancer evolution to mathematical testable rules of inheritance. Seventy-eight NB samples in stages 1, 4S, and 4 were analyzed with array-based comparative genomic hybridization. RESULTS The pattern of recurrent genomic alterations in NB is strongly stage dependent and it is possible to identify traces of tumor progression in this type of data. CONCLUSION A tumor progression model for neuroblastoma is inferred, which is in agreement with clinical evidence, explains part of the heterogeneity of the clinical behavior observed for NB, and is compatible with existing empirical models of NB progression.
Collapse
Affiliation(s)
- Sven Bilke
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD, USA
| | | | | | | | | | | |
Collapse
|
39
|
Schmidt ML, Lal A, Seeger RC, Maris JM, Shimada H, O'Leary M, Gerbing RB, Matthay KK. Favorable prognosis for patients 12 to 18 months of age with stage 4 nonamplified MYCN neuroblastoma: a Children's Cancer Group Study. J Clin Oncol 2005; 23:6474-80. [PMID: 16116154 DOI: 10.1200/jco.2005.05.183] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The long-term survival of children between age 12 and 24 months with stage 4 neuroblastoma and nonamplified MYCN (MYCN-NA) has not been defined previously. PATIENTS AND METHODS Survival for stage 4 MYCN-NA neuroblastoma patients enrolled onto Children's Cancer Group (CCG) protocols 321P2 (1986 to 1991) and 3891 (1991 to 1996) was analyzed. Treatment consisted of intensive alkylator-based induction chemotherapy with or without autologous bone marrow transplantation (ABMT) with or without 13 cis-retinoic acid. Survival was analyzed by age strata less than 12, 12 to 18, 18 to 24, and more than 24 months at diagnosis. Patients younger than 12 months were treated on the moderate-intensity CCG protocol 3881. RESULTS Forty-three patients with stage 4 MYCN-NA disease enrolled onto CCG-321P2 (n = 17) or CCG-3891 (n = 26) were between 12 and 24 months of age at diagnosis. After a median follow-up of 94 months (range, 4 to 140 months), the 6-year event-free survival (EFS) for the 12- to 18-month age group was superior to that of the 18- to 24-month age group (74% +/- 8% v 31% +/- 12%; P = .008). The EFS for children older than 24 months with stage 4 MYCN-NA neuroblastoma was 23% +/- 3%, and for children younger than 12 months was 92% +/- 3%. CONCLUSION Children diagnosed with stage 4 MYCN-NA neuroblastoma in the second year of life form a transitional group between infants and older children in terms of prognosis. Patients between 12 and 18 months of age have significantly better long-term survival than that of older children treated with intensive chemotherapy with or without ABMT. These patients may not benefit from additional intensification of therapy beyond that provided in earlier clinical trials and may even maintain this high survival rate with less intensive therapy.
Collapse
Affiliation(s)
- Mary Lou Schmidt
- Department of Pediatrics, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Maris JM, Hii G, Gelfand CA, Varde S, White PS, Rappaport E, Surrey S, Fortina P. Region-specific detection of neuroblastoma loss of heterozygosity at multiple loci simultaneously using a SNP-based tag-array platform. Genome Res 2005; 15:1168-76. [PMID: 16077016 PMCID: PMC1182230 DOI: 10.1101/gr.3865305] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 05/17/2005] [Indexed: 11/25/2022]
Abstract
Many cancers are characterized by chromosomal aberrations that may be predictive of disease outcome. Human neuroblastomas are characterized by somatically acquired copy number changes, including loss of heterozygosity (LOH) at multiple chromosomal loci, and these aberrations are strongly associated with clinical phenotype including patient outcome. We developed a method to assess region-specific LOH by genotyping multiple SNPs simultaneously in DNA from tumor tissues. We identified informative SNPs at an average 293-kb density across nine regions of recurrent LOH in human neuroblastomas. We also identified SNPs in two copy number neutral regions, as well as two regions of copy number gain. SNPs were PCR-amplified in 12-plex reactions and used in solution-phase single-nucleotide extension incorporating tagged dideoxynucleotides. Each extension primer had 5' complementarity to one of 2000 oligonucleotides on a commercially available tag-array platform allowing for solid-phase sorting and identification of individual SNPs. This approach allowed for simultaneous detection of multiple regions of LOH in six human neuroblastoma-derived cell lines, and, more importantly, 14 human neuroblastoma primary tumors. Concordance with conventional genotyping was nearly absolute. Detection of LOH in this assay may not require comparison to matched normal DNAs because of the redundancy of informative SNPs in each region. The customized tag-array system for LOH detection described here is rapid, results in parallel assessment of multiple genomic alterations, and may speed identification of and/or assaying prognostically relevant DNA copy number alterations in many human cancers.
Collapse
Affiliation(s)
- John M Maris
- Division of Oncology, The Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
De Preter K, Vandesompele J, Menten B, Carr P, Fiegler H, Edsjö A, Carter NP, Yigit N, Waelput W, Van Roy N, Bader S, Påhlman S, Speleman F. Positional and functional mapping of a neuroblastoma differentiation gene on chromosome 11. BMC Genomics 2005; 6:97. [PMID: 16000168 PMCID: PMC1185534 DOI: 10.1186/1471-2164-6-97] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 07/06/2005] [Indexed: 11/10/2022] Open
Abstract
Background Loss of chromosome 11q defines a subset of high-stage aggressive neuroblastomas. Deletions are typically large and mapping efforts have thus far not lead to a well defined consensus region, which hampers the identification of positional candidate tumour suppressor genes. In a previous study, functional evidence for a neuroblastoma suppressor gene on chromosome 11 was obtained through microcell mediated chromosome transfer, indicated by differentiation of neuroblastoma cells with loss of distal 11q upon introduction of chromosome 11. Interestingly, some of these microcell hybrid clones were shown to harbour deletions in the transferred chromosome 11. We decided to further exploit this model system as a means to identify candidate tumour suppressor or differentiation genes located on chromosome 11. Results In a first step, we performed high-resolution arrayCGH DNA copy-number analysis in order to evaluate the chromosome 11 status in the hybrids. Several deletions in both parental and transferred chromosomes in the investigated microcell hybrids were observed. Subsequent correlation of these deletion events with the observed morphological changes lead to the delineation of three putative regions on chromosome 11: 11q25, 11p13->11p15.1 and 11p15.3, that may harbour the responsible differentiation gene. Conclusion Using an available model system, we were able to put forward some candidate regions that may be involved in neuroblastoma. Additional studies will be required to clarify the putative role of the genes located in these chromosomal segments in the observed differentiation phenotype specifically or in neuroblastoma pathogenesis in general.
Collapse
Affiliation(s)
- Katleen De Preter
- Center for Medical Genetics, Ghent University Hospital MRB 2floor, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University Hospital MRB 2floor, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital MRB 2floor, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Philippa Carr
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Heike Fiegler
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Anders Edsjö
- Department of Laboratory Medicine, Molecular Medicine, Lund University, University Hospital MAS, S-20502 Malmö, Sweden
| | - Nigel P Carter
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Nurten Yigit
- Center for Medical Genetics, Ghent University Hospital MRB 2floor, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Wim Waelput
- Department of Pathological Anatomy, Ghent University Hospital BLOK A, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Nadine Van Roy
- Center for Medical Genetics, Ghent University Hospital MRB 2floor, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Scott Bader
- Sir Alastair Currie Cancer Research U.K. Laboratories, Division of Pathology, Molecular Medicine Centre, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Sven Påhlman
- Department of Laboratory Medicine, Molecular Medicine, Lund University, University Hospital MAS, S-20502 Malmö, Sweden
| | - Frank Speleman
- Center for Medical Genetics, Ghent University Hospital MRB 2floor, De Pintelaan 185, B-9000 Ghent, Belgium
| |
Collapse
|
42
|
Bhargava R, Oppenheimer O, Gerald W, Jhanwar SC, Chen B. Identification of MYCN Gene Amplification in Neuroblastoma Using Chromogenic In Situ Hybridization (CISH). ACTA ACUST UNITED AC 2005; 14:72-6. [PMID: 15905689 DOI: 10.1097/01.pas.0000149878.78117.ff] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromogenic in situ hybridization (CISH) is a recently developed technique, which utilizes the general principles of in situ hybridization and a detection system similar to immunohistochemistry. To assess the utility of CISH for analysis of MYCN gene amplification, we compared this assay with established diagnostic assays such as Southern blot analysis (SB) and fluorescent in situ hybridization (FISH). CISH was performed on 67 cases of neuroblastoma using tissue microarray (65 cases) and whole tissue sections (2 cases). Unequivocal, high-level amplification (> or =10 gene copies per tumor nucleus) was identified in 19 of 67 (28.4%) tumors. Two (3%) tumors showed low-level amplification (6-9 gene copies per tumor nucleus). No amplification was seen in 46 of 67 (68.6%) tumors. SB data were available in 44 tumors. Forty-one of the 44 tumors (93%) showed concordant results between CISH and SB. Three tumors showed MYCN amplification by CISH but no amplification by SB, most likely due to dilution effect of nonneoplastic tissue in the test samples. Two of these three tumors also showed MYCN amplification by FISH, and the third tumor was not analyzed by FISH. FISH data were available in total of 30 tumors. All 30 tumors showed concordant results between CISH and FISH for classifying a tumor as MYCN amplified or not amplified. We conclude that CISH is an accurate method for determining MYCN gene amplification, with added advantages that make it a more practically useful method.
Collapse
Affiliation(s)
- Rohit Bhargava
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
43
|
Vandesompele J, Baudis M, De Preter K, Van Roy N, Ambros P, Bown N, Brinkschmidt C, Christiansen H, Combaret V, Lastowska M, Nicholson J, O'Meara A, Plantaz D, Stallings R, Brichard B, Van den Broecke C, De Bie S, De Paepe A, Laureys G, Speleman F. Unequivocal delineation of clinicogenetic subgroups and development of a new model for improved outcome prediction in neuroblastoma. J Clin Oncol 2005; 23:2280-99. [PMID: 15800319 DOI: 10.1200/jco.2005.06.104] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Neuroblastoma is a genetically heterogeneous pediatric tumor with a remarkably variable clinical behavior ranging from widely disseminated disease to spontaneous regression. In this study, we aimed for comprehensive genetic subgroup discovery and assessment of independent prognostic markers based on genome-wide aberrations detected by comparative genomic hybridization (CGH). MATERIALS AND METHODS Published CGH data from 231 primary untreated neuroblastomas were converted to a digitized format suitable for global data mining, subgroup discovery, and multivariate survival analyses. RESULTS In contrast to previous reports, which included only a few genetic parameters, we present here for the first time a strategy that allows unbiased evaluation of all genetic imbalances detected by CGH. The presented approach firmly established the existence of three different clinicogenetic subgroups and indicated that chromosome 17 status and tumor stage were the only independent significant predictors for patient outcome. Important new findings were: (1) a normal chromosome 17 status as a delineator of a subgroup of presumed favorable-stage tumors with highly increased risk; (2) the recognition of a survivor signature conferring 100% 5-year survival for stage 1, 2, and 4S tumors presenting with whole chromosome 17 gain; and (3) the identification of 3p deletion as a hallmark of older age at diagnosis. CONCLUSION We propose a new regression model for improved patient outcome prediction, incorporating tumor stage, chromosome 17, and amplification/deletion status. These findings may prove highly valuable with respect to more reliable risk assessment, evaluation of clinical results, and optimization of current treatment protocols.
Collapse
Affiliation(s)
- Jo Vandesompele
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, MRB, De Pintelaan 185, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Betts DR, Cohen N, Leibundgut KE, Kühne T, Caflisch U, Greiner J, Traktenbrot L, Niggli FK. Characterization of karyotypic events and evolution in neuroblastoma. Pediatr Blood Cancer 2005; 44:147-57. [PMID: 15390360 DOI: 10.1002/pbc.20179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Neuroblastoma (NB) is cytogenetically characterized by a number of non-random events. However, knowledge is limited concerning the timing of occurrence and inter-action of many of these events. METHODS Karyotypic patterns were obtained from a study group of 49 NB tumors that had been analyzed by conventional cytogenetics combined with FISH and in some instances SKY. RESULTS All chromosomes were involved in a numerical and structural aberration in at least one tumor. There was a positive correlation between the occurrence of MYCN and del(1p) and between del(1p) and 17q. Aberrations involving chromosomes X, 3, 19, and del(1p) could be considered early events, whereas those involving chromosomes 9, 13, 15, 18, 20, and 21 were often late events. CONCLUSIONS This study suggests that the karyotypic patterns characterizing NB are complex. There are aberrations that can be grouped into early or late karyotypic events, but others, such as gain of 17q, are variable.
Collapse
Affiliation(s)
- David R Betts
- Department of Oncology, University Children's Hospital, Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Stallings RL, Carty P, McArdle L, Mullarkey M, McDermott M, O'Meara A, Ryan E, Catchpoole D, Breatnach F. Evolution of unbalanced gain of distal chromosome 2p in neuroblastoma. Cytogenet Genome Res 2004; 106:49-54. [PMID: 15218241 DOI: 10.1159/000078560] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 03/18/2004] [Indexed: 11/19/2022] Open
Abstract
Neuroblastoma, one of the most common tumors of childhood, presents at diagnosis with a vast number of recurrent chromosomal imbalances that include hyperdiploidy for whole chromosomes, partial loss of 1p, 3p, 4p, 11q, 14q, partial gain of 1q, 7q, 17q and amplification of MYCN. These abnormalities are nonrandomly distributed in neuroblastoma as loss of 3p and 11q rarely occur in MYCN amplified neuroblastomas. Here, we report on a patient who had a non-MYCN amplified 3p-/11q- neuroblastoma at diagnosis who subsequently developed a high level of MYCN amplification in bone marrow metastases 41 months after induction of complete remission. The tumor at diagnosis had low level unbalanced gain of distal 2p. In order to assess the frequency of low level gain of distal 2p in neuroblastoma, we examined the comparative genomic hybridization results from 60 neuroblastomas. Among non-MYCN amplified neuroblastomas, 8/45 (18%) had low level gain of distal 2p. Low level gain for a segment of 2p (i.e. a region larger than the 2p23-->p24 undergoing amplification) was also detected in five of the 15 tumors that had high level MYCN amplification. The possibility that low level gain of distal 2p is a risk factor for high level MYCN amplification is discussed.
Collapse
Affiliation(s)
- R L Stallings
- National Centre for Medical Genetics, Our Lady's Hospital for Sick Children, Crumlin, Dublin, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Stallings RL, Carty P, McArdle L, Mullarkey M, McDermott M, Breatnach F, O'Meara A. Molecular cytogenetic analysis of recurrent unbalanced t(11;17) in neuroblastoma. ACTA ACUST UNITED AC 2004; 154:44-51. [PMID: 15381371 DOI: 10.1016/j.cancergencyto.2004.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 04/05/2004] [Accepted: 04/05/2004] [Indexed: 11/27/2022]
Abstract
Loss of 11q material occurs in approximately 30% of advanced stage neuroblastoma and defines a distinct genetic subtype of this disease. These tumors almost always possess unbalanced gain of the 17q, along with many additional recurrent chromosomal imbalances. Loss of 11q and gain of 17q is often the consequence of an unbalanced translocation between the long arms of both chromosomes, but because of the involvement of other chromosomal mechanisms, the actual frequency of t(11;17) is unknown. In addition, chromosomal breakpoint positions for the t(11;17) are variable in different tumors, with breakpoints on neither the 11q nor 17q being well defined. We have used interphase fluorescence in situ hybridization analysis to detect a der(11)t(11;17) in a series of neuroblastomas with 11q loss/17q gain using a statistical approach which could be applicable to the detection of translocations in other solid tumors. The frequency of der(11)t(11;17) was approximately 90% in our neuroblastoma series. A balanced t(11;17) was also detected in a MYCN amplified tumor, which is a distinctly different genetic subtype from the 11q- tumors. Breakpoint positions on 11q were determined to be variable, whereas all breakpoints on 17q appeared to cluster proximal to position 43.1 Mb on the DNA sequence map. The majority of tumors had large numbers of nuclei with 2 or more copies of der(11)t(11;17), which led to unbalanced gain of 11p, and further increases in 17q imbalance. The prevalence of t(11;17) in neuroblastoma warrants additional studies to further define the range in variation in breakpoint positions on both chromosomes and to elucidate the molecular mechanisms that lead to this important and interesting recurrent genetic abnormality.
Collapse
Affiliation(s)
- R L Stallings
- National Centre for Medical Genetics Our Lady's Hospital for Sick Children Crumlin, Dublin 12, Ireland.
| | | | | | | | | | | | | |
Collapse
|
47
|
Chen QR, Bilke S, Wei JS, Whiteford CC, Cenacchi N, Krasnoselsky AL, Greer BT, Son CG, Westermann F, Berthold F, Schwab M, Catchpoole D, Khan J. cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma. BMC Genomics 2004; 5:70. [PMID: 15380028 PMCID: PMC520814 DOI: 10.1186/1471-2164-5-70] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 09/20/2004] [Indexed: 11/23/2022] Open
Abstract
Background Recurrent non-random genomic alterations are the hallmarks of cancer and the characterization of these imbalances is critical to our understanding of tumorigenesis and cancer progression. Results We performed array-comparative genomic hybridization (A-CGH) on cDNA microarrays containing 42,000 elements in neuroblastoma (NB). We found that only two chromosomes (2p and 12q) had gene amplifications and all were in the MYCN amplified samples. There were 6 independent non-contiguous amplicons (10.4–69.4 Mb) on chromosome 2, and the largest contiguous region was 1.7 Mb bounded by NAG and an EST (clone: 757451); the smallest region was 27 Kb including an EST (clone: 241343), NCYM, and MYCN. Using a probabilistic approach to identify single copy number changes, we systemically investigated the genomic alterations occurring in Stage 1 and Stage 4 NBs with and without MYCN amplification (stage 1-, 4-, and 4+). We have not found genomic alterations universally present in all (100%) three subgroups of NBs. However we identified both common and unique patterns of genomic imbalance in NB including gain of 7q32, 17q21, 17q23-24 and loss of 3p21 were common to all three categories. Finally we confirm that the most frequent specific changes in Stage 4+ tumors were the loss of 1p36 with gain of 2p24-25 and they had fewer genomic alterations compared to either stage 1 or 4-, indicating that for this subgroup of poor risk NB requires a smaller number of genomic changes are required to develop the malignant phenotype. Conclusions cDNA A-CGH analysis is an efficient method for the detection and characterization of amplicons. Furthermore we were able to detect single copy number changes using our probabilistic approach and identified genomic alterations specific to stage and MYCN amplification.
Collapse
Affiliation(s)
- Qing-Rong Chen
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, 8717 Grovemont Circle, Gaithersburg, MD 20877, USA
| | - Sven Bilke
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, 8717 Grovemont Circle, Gaithersburg, MD 20877, USA
| | - Jun S Wei
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, 8717 Grovemont Circle, Gaithersburg, MD 20877, USA
| | - Craig C Whiteford
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, 8717 Grovemont Circle, Gaithersburg, MD 20877, USA
| | - Nicola Cenacchi
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, 8717 Grovemont Circle, Gaithersburg, MD 20877, USA
| | - Alexei L Krasnoselsky
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, 8717 Grovemont Circle, Gaithersburg, MD 20877, USA
| | - Braden T Greer
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, 8717 Grovemont Circle, Gaithersburg, MD 20877, USA
| | - Chang-Gue Son
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, 8717 Grovemont Circle, Gaithersburg, MD 20877, USA
- Department of Internal Medicine, College of Oriental Medicine, Daejeon University, Daejeon 301-724, Korea
| | - Frank Westermann
- Department of Cytogenetics, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Frank Berthold
- Department of Pediatrics, Klinik für Kinderheilkunde der Universität zu Köln, Joseph Stelzmann Straße 9, D-50924 Köln, Germany
| | - Manfred Schwab
- Department of Cytogenetics, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Daniel Catchpoole
- Tumour Bank, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, 8717 Grovemont Circle, Gaithersburg, MD 20877, USA
| |
Collapse
|
48
|
De Preter K, Vandesompele J, Hoebeeck J, Vandenbroecke C, Smet J, Nuyts A, Laureys G, Combaret V, Van Roy N, Roels F, Van Coster R, Praet M, De Paepe A, Speleman F. No evidence for involvement of SDHD in neuroblastoma pathogenesis. BMC Cancer 2004; 4:55. [PMID: 15331017 PMCID: PMC517501 DOI: 10.1186/1471-2407-4-55] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 08/24/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deletions in the long arm of chromosome 11 are observed in a subgroup of advanced stage neuroblastomas with poor outcome. The deleted region harbours the tumour suppressor gene SDHD that is frequently mutated in paraganglioma and pheochromocytoma, which are, like neuroblastoma, tumours originating from the neural crest. In this study, we sought for evidence for involvement of SDHD in neuroblastoma. METHODS SDHD was investigated on the genome, transcriptome and proteome level using mutation screening, methylation specific PCR, real-time quantitative PCR based homozygous deletion screening and mRNA expression profiling, immunoblotting, functional protein analysis and ultrastructural imaging of the mitochondria. RESULTS Analysis at the genomic level of 67 tumour samples and 37 cell lines revealed at least 2 bona-fide mutations in cell lines without allelic loss at 11q23: a 4bp-deletion causing skip of exon 3 resulting in a premature stop codon in cell line N206, and a Y93C mutation in cell line NMB located in a region affected by germline SDHD mutations causing hereditary paraganglioma. No evidence for hypermethylation of the SDHD promotor region was observed, nor could we detect homozygous deletions. Interestingly, SDHD mRNA expression was significantly reduced in SDHD mutated cell lines and cell lines with 11q allelic loss as compared to both cell lines without 11q allelic loss and normal foetal neuroblast cells. However, protein analyses and assessment of mitochondrial morphology presently do not provide clues as to the possible effect of reduced SDHD expression on the neuroblastoma tumour phenotype. CONCLUSIONS Our study provides no indications for 2-hit involvement of SDHD in the pathogenesis of neuroblastoma. Also, although a haplo-insufficient mechanism for SDHD involvement in advanced stage neuroblastoma could be considered, the present data do not provide consistent evidence for this hypothesis.
Collapse
Affiliation(s)
- Katleen De Preter
- Center for Medical Genetics, Ghent University Hospital, K5, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University Hospital, K5, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Jasmien Hoebeeck
- Center for Medical Genetics, Ghent University Hospital, K5, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Caroline Vandenbroecke
- Department of Pathological Anatomy, Ghent University Hospital, BLOK A, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Jöel Smet
- Department of Paediatrics, Ghent University Hospital, K6, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Annick Nuyts
- Department of Pathological Anatomy, Ghent University Hospital, BLOK A, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Geneviève Laureys
- Department of Paediatrics, Ghent University Hospital, K6, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Valérie Combaret
- Molecular Oncology Unit, Centre Léon Bérard, 28 rue Laennec, F-69373 Lyon, France
| | - Nadine Van Roy
- Center for Medical Genetics, Ghent University Hospital, K5, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Frank Roels
- Department of Pathological Anatomy, Ghent University Hospital, BLOK A, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Rudy Van Coster
- Department of Paediatrics, Ghent University Hospital, K6, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Marleen Praet
- Department of Pathological Anatomy, Ghent University Hospital, BLOK A, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Anne De Paepe
- Center for Medical Genetics, Ghent University Hospital, K5, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Ghent University Hospital, K5, De Pintelaan 185, B-9000 Ghent, Belgium
| |
Collapse
|
49
|
Ross RA, Spengler BA. The Conundrum Posed by Cellular Heterogeneity in Analysis of Human Neuroblastoma. J Natl Cancer Inst 2004; 96:1192-3. [PMID: 15316046 DOI: 10.1093/jnci/djh262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
Abstract
Neuroblastoma is the most frequently occurring solid tumour in children, with an incidence of 1.3 cases per 100000 children aged 0-14 years. Despite many advances during the past three decades, neuroblastoma has remained an enigmatic challenge to clinical and basic scientists. 20 years ago, the MYCN gene was found to be amplified in neuroblastomas, and research since then has focused on the search for other genetic markers. It has emerged that neuroblastoma cells, like cells of many other tumour types, often suffer from extensive, non-random genetic damage at multiple genetic loci. Elucidation of the exact molecular make-up of neuroblastomas will enable researchers to analyse how much specific markers, alone or in combination, can help to stratify disease in prospective studies; at present, stratification is based on age, stage, MYCN, and Shimada pathology. Neuroblastoma may be one of the first examples of the use of genetic tumour markers as a tool for defining tumour behaviour and to aid clinical staging.
Collapse
|