1
|
Machaty Z. The signal that stimulates mammalian embryo development. Front Cell Dev Biol 2024; 12:1474009. [PMID: 39355121 PMCID: PMC11442298 DOI: 10.3389/fcell.2024.1474009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Embryo development is stimulated by calcium (Ca2+) signals that are generated in the egg cytoplasm by the fertilizing sperm. Eggs are formed via oogenesis. They go through a cell division known as meiosis, during which their diploid chromosome number is halved and new genetic combinations are created by crossing over. During formation the eggs also acquire cellular components that are necessary to produce the Ca2+ signal and also, to support development of the newly formed embryo. Ionized calcium is a universal second messenger used by cells in a plethora of biological processes and the eggs develop a "toolkit", a set of molecules needed for signaling. Meiosis stops twice and these arrests are controlled by a complex interaction of regulatory proteins. The first meiotic arrest lasts until after puberty, when a luteinizing hormone surge stimulates meiotic resumption. The cell cycle proceeds to stop again in the middle of the second meiotic division, right before ovulation. The union of the female and male gametes takes place in the oviduct. Following gamete fusion, the sperm triggers the release of Ca2+ from the egg's intracellular stores which in mammals is followed by repetitive Ca2+ spikes known as Ca2+ oscillations in the cytosol that last for several hours. Downstream sensor proteins help decoding the signal and stimulate other molecules whose actions are required for proper development including those that help to prevent the fusion of additional sperm cells to the egg and those that assist in the release from the second meiotic arrest, completion of meiosis and entering the first mitotic cell division. Here I review the major steps of egg formation, discuss the signaling toolkit that is essential to generate the Ca2+ signal and describe the steps of the signal transduction mechanism that activates the egg's developmental program and turns it into an embryo.
Collapse
Affiliation(s)
- Zoltan Machaty
- Department of Animal Sciences Purdue University West Lafayette, West Lafayette, IN, United States
| |
Collapse
|
2
|
Swann K, Fissore R. In memoriam of Shun-ichi Miyazaki 1941-2024. Cell Calcium 2024; 124:102948. [PMID: 39270408 DOI: 10.1016/j.ceca.2024.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Affiliation(s)
- Karl Swann
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK.
| | - Rafael Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Swann K. Sperm-Induced Ca 2+ Release in Mammalian Eggs: The Roles of PLCζ, InsP 3, and ATP. Cells 2023; 12:2809. [PMID: 38132129 PMCID: PMC10741559 DOI: 10.3390/cells12242809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Mammalian egg activation at fertilization is triggered by a long-lasting series of increases in cytosolic Ca2+ concentration. These Ca2+ oscillations are due to the production of InsP3 within the egg and the subsequent release of Ca2+ from the endoplasmic reticulum into the cytosol. The generation of InsP3 is initiated by the diffusion of sperm-specific phospholipase Czeta1 (PLCζ) into the egg after gamete fusion. PLCζ enables a positive feedback loop of InsP3 production and Ca2+ release which then stimulates further InsP3 production. Most cytosolic Ca2+ increases in eggs at fertilization involve a fast Ca2+ wave; however, due to the limited diffusion of InsP3, this means that InsP3 must be generated from an intracellular source rather than at the plasma membrane. All mammalian eggs studied generated Ca2+ oscillations in response to PLCζ, but the sensitivity of eggs to PLCζ and to some other stimuli varies between species. This is illustrated by the finding that incubation in Sr2+ medium stimulates Ca2+ oscillations in mouse and rat eggs but not eggs from other mammalian species. This difference appears to be due to the sensitivity of the type 1 InsP3 receptor (IP3R1). I suggest that ATP production from mitochondria modulates the sensitivity of the IP3R1 in a manner that could account for the differential sensitivity of eggs to stimuli that generate Ca2+ oscillations.
Collapse
Affiliation(s)
- Karl Swann
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
4
|
Swann K. The role of Ca 2+ in oocyte activation during In Vitro fertilization: Insights into potential therapies for rescuing failed fertilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1830-1837. [PMID: 29746897 DOI: 10.1016/j.bbamcr.2018.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
At fertilization the mature mammalian oocyte is activated to begin development by a sperm-induced series of increases in the cytosolic free Ca2+ concentration. These so called Ca2+ oscillations, or repetitive Ca2+ spikes, are also seen after intracytoplasmic sperm injection (ICSI) and are primarily triggered by a sperm protein called phospholipase Czeta (PLCζ). Whilst ICSI is generally an effective way to fertilizing human oocytes, there are cases where oocyte activation fails to occur after sperm injection. Many such cases appear to be associated with a PLCζ deficiency. Some IVF clinics are now attempting to rescue such cases of failed fertilization by using artificial means of oocyte activation such as the application of Ca2+ ionophores. This review presents the scientific background for these therapies and also considers ways to improve artificial oocyte activation after failed fertilization.
Collapse
Affiliation(s)
- Karl Swann
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
5
|
Águila L, Felmer R, Arias ME, Navarrete F, Martin-Hidalgo D, Lee HC, Visconti P, Fissore R. Defective sperm head decondensation undermines the success of ICSI in the bovine. Reproduction 2018; 154:307-318. [PMID: 28751536 DOI: 10.1530/rep-17-0270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 12/25/2022]
Abstract
The efficiency of intracytoplasmic sperm injection (ICSI) in the bovine is low compared to other species. It is unknown whether defective oocyte activation and/or sperm head decondensation limit the success of this technique in this species. To elucidate where the main obstacle lies, we used homologous and heterologous ICSI and parthenogenetic activation procedures. We also evaluated whether in vitro maturation negatively impacted the early stages of activation after ICSI. Here we showed that injected bovine sperm are resistant to nuclear decondensation by bovine oocytes and this is only partly overcome by exogenous activation. Remarkably, when we used heterologous ICSI, in vivo-matured mouse eggs were capable of mounting calcium oscillations and displaying normal PN formation following injection of bovine sperm, although in vitro-matured mouse oocytes were unable to do so. Together, our data demonstrate that bovine sperm are especially resistant to nuclear decondensation by in vitro-matured oocytes and this deficiency cannot be simply overcome by exogenous activation protocols, even by inducing physiological calcium oscillations. Therefore, the inability of a suboptimal ooplasmic environment to induce sperm head decondensation limits the success of ICSI in the bovine. Studies aimed to improve the cytoplasmic milieu of in vitro-matured oocytes and to replicate the molecular changes associated with in vivo capacitation and acrosome reaction will deepen our understanding of the mechanism of fertilization and improve the success of ICSI in this species.
Collapse
Affiliation(s)
- Luis Águila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile.,School of Veterinary Medicine, Faculty of Sciences, Universidad Mayor Sede Temuco, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Felipe Navarrete
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - David Martin-Hidalgo
- Research Group of Intracellular Signaling and Technology of Reproduction, Research Institute INBIO G+C, University of Extremadura, Caceres, Spain.,Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hoi Chang Lee
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Pablo Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Rafael Fissore
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 2017; 154:F111-F124. [PMID: 29196493 DOI: 10.1530/rep-17-0357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) has become a useful technique for clinical applications in the horse-breeding industry. However, both ICSI blastocyst and offspring production continues to be limited for most farm and wild species. This article reviews technical differences of ICSI performance among species, possible biological and methodological reasons for the variable efficiency and potential strategies to improve the outcomes. One of the major applications of ICSI in animal production is the reproduction of high-value specimens. Unfortunately, some domestic species like the bovine show low rates of pronuclei formation after sperm injection, which led to the development of various artificial activation protocols and sperm pre-treatments that are discussed in this article. The impact of ICSI technique on equine breeding programs is considered in detail, since in contrast to other species, its use for elite horse reproduction has increased in recent years. ICSI has also been used to produce genetically modified animals; however, despite numerous attempts in several domestic species, only transgenic pigs have been consistently produced. Finally, the ICSI is a promising tool for genetic rescue of endangered and wild species. In conclusion, while ICSI has become a consistent ART for some species, it needs further development for others. The low results obtained for some domestic species, the high training needed and the equipment required have limited this technique to the production of elite specimens or for research purposes.
Collapse
Affiliation(s)
- Daniel F Salamone
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - Natalia G Canel
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - María Belén Rodríguez
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| |
Collapse
|
7
|
Satouh Y, Nozawa K, Yamagata K, Fujimoto T, Ikawa M. Viable offspring after imaging of Ca2+ oscillations and visualization of the cortical reaction in mouse eggs. Biol Reprod 2017; 96:563-575. [PMID: 28339615 DOI: 10.1093/biolre/iox002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/27/2017] [Indexed: 11/14/2022] Open
Abstract
– During mammalian fertilization, egg Ca 2+ oscillations are known to play pivotal roles in triggering downstream events such as resumption of the cell cycle and the establishment of blocks to polyspermy. However, viable offspring have not been obtained after monitoring Ca 2+ oscillations, and their spatiotemporal links to subsequent events are still to be examined. Therefore, the development of imaging methods to avoid phototoxic damage while labeling these events is required. Here, we examined the usefulness of genetically encoded Ca 2+ indicators for optical imaging (GECOs), in combination with spinning-disk confocal imaging. The Ca 2+ imaging of fertilized mouse eggs with GEM-, G-, or R-GECO recorded successful oscillations (8.19 ± 0.31, 7.56 ± 0.23, or 7.53 ± 0.27 spikes in the first 2 h, respectively), similar to those obtained with chemical indicators. Then, in vitro viability tests revealed that imaging with G- or R-GECO did not interfere with the rate of development to the blastocyst stage (61.8 or 70.0%, respectively, vs 75.0% in control). Furthermore, two-cell transfer to recipient female mice after imaging with G- or R-GECO resulted in a similar birthrate (53.3 or 52.0%, respectively) to that of controls (48.7%). Next, we assessed the quality of the cortical reaction (CR) in artificially activated or fertilized eggs using fluorescently labeled Lens culinaris agglutinin fluorescein isothiocyanate. Multicolor imaging demonstrated that the first few Ca 2+ spikes are sufficient for the completion of the CR and subsequent hardening of the zona pellucida in mouse eggs. These methods provide a framework for studying Ca 2+ dynamics in mammalian fertilization.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kaori Nozawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuo Yamagata
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Takao Fujimoto
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Ozil JP, Sainte-Beuve T, Banrezes B. [Mg 2+] o/[Ca 2+] o determines Ca 2+ response at fertilization: tuning of adult phenotype? Reproduction 2017; 154:675-693. [PMID: 28851827 DOI: 10.1530/rep-16-0057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/15/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023]
Abstract
Alteration of the postnatal phenotype has sparked great concern about the developmental impact of culture media used at fertilization. However, the mechanisms and compounds involved are yet to be determined. Here, we used the Ca2+ responses from mouse eggs fertilized by ICSI as a dynamic and quantitative marker to understand the role of compounds in egg functioning and establish possible correlations with adult phenotypes. We computed 134 Ca2+ responses from the first to the last oscillation in media with specific formulations. Analyses demonstrate that eggs generated two times as many Ca2+ oscillations in KSOM as in M16 media (18.8 ± 7.0 vs 9.2 ± 2.5). Moreover, the time increment of the delay between two consecutive oscillations, named TIbO, is the most sensitive coefficient characterizing the mechanism that paces Ca2+ oscillations once the egg has been fertilized. Neither doubling external free Ca2+ nor dispermic fertilization increased significantly the total number of Ca2+ oscillations. In contrast, removing Mg2+ from the M16 boosted Ca2+ oscillations to 54.0 ± 35.2. Hence, [Mg2+]o/[Ca2+]o appears to determine the number, duration and frequency of the Ca2+ oscillations. These changes were correlated with long-term effects. The rate of female's growth was impacted with the 'KSOM' females having only half the fat deposit of 'M16' females. Moreover, adult animals issued from M16 had significantly smaller brain weight vs 'KSOM' and 'control' animals. TIbO is a new Ca2+ coefficient that gauges the very early functional impact of culture media. It offers the possibility of establishing correlations with postnatal consequences according to IVF medium formulation.Free French abstract: A French translation of this abstract is freely available at http://www.reproduction-online.org/content/154/5/675/suppl/DC2.
Collapse
Affiliation(s)
- Jean-Pierre Ozil
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | | |
Collapse
|
9
|
Yamaguchi T, Ito M, Kuroda K, Takeda S, Tanaka A. The establishment of appropriate methods for egg-activation by human PLCZ1 RNA injection into human oocyte. Cell Calcium 2017; 65:22-30. [PMID: 28320563 DOI: 10.1016/j.ceca.2017.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 01/29/2023]
Abstract
Phospholipase C-zeta (PLCZ1), a strong candidate of egg-activating sperm factor, can induce Ca2+ oscillations and cause egg activation. For the application of PLCZ1 to clinical use, we examined the pattern of Ca2+ responses and developmental rate by comparing PLCZ1 RNA injection methods with the other current methods, such as cytosolic aspiration, electrical stimulation and ionomycin treatment in human oocytes. We found that the pattern of Ca2+ oscillations after PLCZ1 RNA injection exhibited similar characteristics to that after ICSI treatment. We also determined the optimal concentration of human PLCZ1 RNA to activate the human oocytes. Our findings suggest that human PLCZ1 RNA is a better therapeutic agent to rescue human oocytes from failed activation, leading to normal and efficient development.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Saint Mother Obstetrics and Gynecology Clinic, Institute for ART, Fukuoka 807-0825, Japan; Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo 113-0033, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Keiji Kuroda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo 113-0033, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo 113-0033, Japan
| | - Atsushi Tanaka
- Saint Mother Obstetrics and Gynecology Clinic, Institute for ART, Fukuoka 807-0825, Japan
| |
Collapse
|
10
|
Feuer S, Liu X, Donjacour A, Simbulan R, Maltepe E, Rinaudo P. Common and specific transcriptional signatures in mouse embryos and adult tissues induced by in vitro procedures. Reproduction 2016; 153:REP-16-0473. [PMID: 27799627 PMCID: PMC5411347 DOI: 10.1530/rep-16-0473] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022]
Abstract
Stressful environmental exposures incurred early in development can affect postnatal metabolic health and susceptibility to non-communicable diseases in adulthood, although the molecular mechanisms by which this occurs have yet to be elucidated. Here we use a mouse model to investigate how assorted in vitro exposures restricted exclusively to the preimplantation period affect transcription both acutely in embryos and long-term in subsequent offspring adult tissues, to determine if reliable transcriptional markers of in vitro stress are present at specific developmental time points and throughout development. Each in vitro fertilization or embryo culture environment led to a specific and unique blastocyst transcriptional profile, but we identified a common 18-gene and 9-pathway signature of preimplantation embryo manipulation that was present in all in vitro embryos irrespective of culture condition or method of fertilization. This fingerprint did not persist throughout development and there was no clear transcriptional cohesion between adult IVF offspring tissues or compared to their preceding embryos, indicating a tissue-specific impact of in vitro stress on gene expression. However, the transcriptional changes present in each IVF tissue were targeted by the same upstream transcriptional regulators, which provide insight as to how acute transcriptional responses to stressful environmental exposures might be preserved throughout development to influence adult gene expression.
Collapse
Affiliation(s)
- Sky Feuer
- S Feuer, Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
| | - Xiaowei Liu
- X Liu, Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
| | - Annemarie Donjacour
- A Donjacour, Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
| | - Rhodel Simbulan
- R Simbulan, Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
| | - Emin Maltepe
- E Maltepe, Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
| | - Paolo Rinaudo
- P Rinaudo, Obstetrics and Gynecology, University of California, San Francisco, San Francisco, 94115, United States
| |
Collapse
|
11
|
Kamali-Dolat Abadi M, Tavalaee M, Shahverdi A, Nasr-Esfahani MH. Evaluation of PLCζ and PAWP Expression in Globozoospermic Individuals. CELL JOURNAL 2016; 18:438-45. [PMID: 27602326 PMCID: PMC5011332 DOI: 10.22074/cellj.2016.4572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/17/2016] [Indexed: 11/28/2022]
Abstract
Objective Globozoospermia is a rare type of teratozoospermia with incidence of 0.1%
among infertile individuals. Phospholipase C zeta (PLCζ) and postacrosomal sheath WW
domain binding protein (PAWP) are the main candidates in sperm taking responsibility for
oocyte activation during fertilization. Therefore, we aimed to evaluate the expression of
these two genes at RNA and protein levels in globozoospermic individuals and compare
the results with fertile individuals.
Materials and Methods In this experimental study, semen samples of 21 infertile
men with globozoospermia and 25 fertile men were collected. Expression of PLCζ
and PAWP at RNA and protein levels were assessed and compared between two
groups by quantitative real time polymerase chain reaction (qPCR) and Western blot,
respectively.
Results Expression of both PLCζ and PAWP were significantly reduced at RNA and protein levels in infertile men with globozoospermia compared to fertile men.
Conclusion This is the first study that simultaneously assessing the respective factors in
a large population of globozoospermia, suggested that intra-cytoplasmic sperm injection
(ICSI) along with artificial oocyte activation may rescue failed fertilization in routine ICSI.
Collapse
Affiliation(s)
- Majid Kamali-Dolat Abadi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Marziyeh Tavalaee
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Isfahan Fertility and Infertility Center, Isfahan, Iran
| |
Collapse
|
12
|
Kang KS, Park TS, Rengaraj D, Lee HC, Lee HJ, Choi HJ, Mizushima S, Ono T, Han JY. Fertilisation of cryopreserved sperm and unfertilised quail ovum by intracytoplasmic sperm injection. Reprod Fertil Dev 2016; 28:1974-1981. [DOI: 10.1071/rd15126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/02/2015] [Indexed: 11/23/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) is an important technique in animal biotechnology for animal cloning and conservation of genetic resources, but has been a challenge for avian species. In the present study, we investigated the ability of cryopreserved quail spermatozoa to achieve fertilisation and embryo development. Female quail were killed 70–120 min after previous oviposition to collect unfertilised oocytes from the oviduct. Fresh or cryopreserved–thawed spermatozoa were injected into the cytoplasm of unfertilised oocytes, and the manipulated oocytes were incubated in quail surrogate eggshells. Injection of fresh spermatozoa supplemented with inositol 1,4,5-trisphosphate (IP3) resulted in a significantly increased rate of embryo development compared with injection of fresh spermatozoa alone (90% vs 13%, respectively). Although >80% of embryos stopped cell division and development before Hamburger and Hamilton (HH) Stage 3, approximately 15% of embryos from the fresh sperm injection developed to past HH Stage 4, and one embryo survived up to HH Stage 39 (11 days of incubation). In the case of cryopreserved spermatozoa, the embryo development rate was 30% after ICSI, and this increased significantly to 74% with IP3 supplementation. In conclusion, cryopreserved spermatozoa combined with ICSI followed by surrogate eggshell culture can develop quail embryos.
Collapse
|
13
|
Sanusi R, Yu Y, Nomikos M, Lai FA, Swann K. Rescue of failed oocyte activation after ICSI in a mouse model of male factor infertility by recombinant phospholipase Cζ. Mol Hum Reprod 2015; 21:783-91. [PMID: 26187950 PMCID: PMC4586348 DOI: 10.1093/molehr/gav042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022] Open
Abstract
Artificial oocyte activation to overcome failed fertilization after intracytoplasmic sperm injection (ICSI) in human oocytes typically employs Ca(2+) ionophores to produce a single cytosolic Ca(2+) increase. In contrast, recombinant phospholipase Czeta (PLCζ) causes Ca(2+) oscillations indistinguishable from those occurring during fertilization, but remains untested for its efficacy in a scenario of ICSI fertilization failure. Here, we compare PLCζ with other activation stimuli in a mouse model of failed oocyte activation after ICSI, in which heat-treated sperm are injected into mouse oocytes. We show that increasing periods of 56 °C exposure of sperm produces a progressive loss of Ca(2+) oscillations after ICSI. The decrease in Ca(2+) oscillations produces a reduction in oocyte activation and embryo development to the blastocyst stage. We treated such oocytes that failed to activate after ICSI either with Ca(2+) ionophore, or with Sr(2+) media which causes Ca(2+) oscillations, or we injected them with recombinant human PLCζ. All these treatments rescued oocyte activation, although Sr(2+) and PLCζ gave the highest rates of development to blastocyst. When recombinant PLCζ was given to oocytes previously injected with control sperm, they developed normally to the blastocyst stage at rates similar to that after control ICSI. The data suggest that recombinant human PLCζ protein is an efficient means of rescuing oocyte activation after ICSI failure and that it can be effectively used even if the sperm already contains endogenous Ca(2+) releasing activity.
Collapse
Affiliation(s)
- Randa Sanusi
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Yuansong Yu
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK Present address: TopChoice Medical, TopChoice Building, 327 Tianmushan Road, Hangzhou City, Zhejiang Province, China
| | - Michail Nomikos
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - F Anthony Lai
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Karl Swann
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
14
|
Escoffier J, Yassine S, Lee HC, Martinez G, Delaroche J, Coutton C, Karaouzène T, Zouari R, Metzler-Guillemain C, Pernet-Gallay K, Hennebicq S, Ray PF, Fissore R, Arnoult C. Subcellular localization of phospholipase Cζ in human sperm and its absence in DPY19L2-deficient sperm are consistent with its role in oocyte activation. Mol Hum Reprod 2014; 21:157-68. [PMID: 25354701 DOI: 10.1093/molehr/gau098] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We recently identified the DPY19L2 gene as the main genetic cause of human globozoospermia (70%) and described that Dpy19l2 knockout (KO) mice faithfully reproduce the human phenotype of globozoospermia making it an excellent model to characterize the molecular physiopathology of globozoospermia. Recent case studies on non-genetically characterized men with globozoospermia showed that phospholipase C, zeta (PLCζ), the sperm factor thought to induce the Ca(2+) oscillations at fertilization, was absent from their sperm, explaining the poor fertilization potential of these spermatozoa. Since 30% of globozoospermic men remain genetically uncharacterized, the absence of PLCζ in DPY19L2 globozoospermic men remains to be formally established. Moreover, the precise localization of PLCζ and the reasons underlying its loss during spermatogenesis in globozoospermic patients are still not understood. Herein, we show that PLCζ is absent, or its presence highly reduced, in human and mouse sperm with DPY19L2-associated globozoospermia. As a consequence, fertilization with sperm from Dpy19l2 KO mice failed to initiate Ca(2+) oscillations and injected oocytes remained arrested at the metaphase II stage, although a few human oocytes injected with DPY19L2-defective sperm showed formation of 2-pronuclei embryos. We report for the first time the subcellular localization of PLCζ in control human sperm, which is along the inner acrosomal membrane and in the perinuclear theca, in the area corresponding to the equatorial region. Because these cellular components are absent in globozoospermic sperm, the loss of PLCζ in globozoospermic sperm is thus consistent and reinforces the role of PLCζ as an oocyte activation factor necessary for oocyte activation. In our companion article, we showed that chromatin compaction during spermiogenesis in Dpy19l2 KO mouse is defective and leads to sperm DNA damage. Together, these defects explain the poor fertilization potential of DPY19L2-globozoospermic sperm and the compromised developmental potential of embryos obtained using sperm from patients with a deletion of the DPY19L2 gene.
Collapse
Affiliation(s)
- Jessica Escoffier
- Université Grenoble Alpes, Grenoble F-38000, France Equipe 'Andrologie, Génétique et Cancer' Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France
| | - Sandra Yassine
- Université Grenoble Alpes, Grenoble F-38000, France Equipe 'Andrologie, Génétique et Cancer' Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France
| | - Hoi Chang Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, 661 North Pleasant Street, Amherst, MA 01003, USA
| | - Guillaume Martinez
- Université Grenoble Alpes, Grenoble F-38000, France Equipe 'Andrologie, Génétique et Cancer' Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France
| | - Julie Delaroche
- Université Grenoble Alpes, Grenoble F-38000, France Grenoble Institut des Neurosciences, INSERM U.836, F-38000 Grenoble, France
| | - Charles Coutton
- Université Grenoble Alpes, Grenoble F-38000, France Equipe 'Andrologie, Génétique et Cancer' Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France CHU de Grenoble, UF de Génétique Chromosomique, Grenoble F-38000, France
| | - Thomas Karaouzène
- Université Grenoble Alpes, Grenoble F-38000, France Equipe 'Andrologie, Génétique et Cancer' Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France
| | - Raoudha Zouari
- Clinique des Jasmins, 23, Av. Louis BRAILLE, 1002 Tunis, Tunisia
| | - Catherine Metzler-Guillemain
- Aix-Marseille Université-Inserm UMR 910, Génétique Médicale et Génomique Fonctionnelle, 13385 Marseille Cedex 5, France APHM Hôpital La Conception, Gynépôle, Laboratoire de Biologie de la Reproduction - CECOS, 13385 Marseille Cedex 5, France
| | - Karin Pernet-Gallay
- Université Grenoble Alpes, Grenoble F-38000, France Grenoble Institut des Neurosciences, INSERM U.836, F-38000 Grenoble, France
| | - Sylviane Hennebicq
- Université Grenoble Alpes, Grenoble F-38000, France CHU de Grenoble, Centre d'AMP-CECOS, BP217, Grenoble Cedex 9 F-38043, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble F-38000, France Equipe 'Andrologie, Génétique et Cancer' Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France CHU de Grenoble, UF de Biochimie et Génétique Moléculaire, Grenoble F-38000, France
| | - Rafael Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, 661 North Pleasant Street, Amherst, MA 01003, USA
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble F-38000, France Equipe 'Andrologie, Génétique et Cancer' Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France
| |
Collapse
|
15
|
Soluble sperm extract specifically recapitulates the initial phase of the Ca2+ response in the fertilized oocyte of P. occelata following a G-protein/ PLCβ signaling pathway. ZYGOTE 2014; 23:821-35. [PMID: 25318389 DOI: 10.1017/s0967199414000501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Matured oocytes of the annelidan worm Pseudopotamilla occelata are fertilized at the first metaphase of the meiotic division. During the activation by fertilizing spermatozoa, the mature oocyte shows a two-step intracellular Ca2+ increase. Whereas the first Ca2+ increase is localized and appears to utilize the inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores, the second Ca2+ increase is global and involves Ca2+ influx via voltage-gated Ca2+ channels on the entire surface of the oocyte. To study how sperm trigger the Ca2+ increases during fertilization, we prepared soluble sperm extract (SE) and examined its ability to induce Ca2+ increases in the oocyte. The SE could evoke a Ca2+ increase in the oocyte when it was added to the medium, but not when it was delivered by microinjection. However, the second-step Ca2+ increase leading to the resumption of meiosis did not follow in these eggs. Local application of SE induced a non-propagating Ca2+ increase and formed a cytoplasmic protrusion that was similar to that created by the fertilizing sperm at the first stage of the Ca2+ response, important for sperm incorporation into the oocyte. Our results suggest that the fertilizing spermatozoon may trigger the first-step Ca2+ increase before it fuses with the oocyte in a pathway that involves the G-protein-coupled receptor and phospholipase C. Thus, the first phase of the Ca2+ response in the fertilized egg of this species is independent of the second phase of the Ca2+ increase for egg activation.
Collapse
|
16
|
Neri QV, Lee B, Rosenwaks Z, Machaca K, Palermo GD. Understanding fertilization through intracytoplasmic sperm injection (ICSI). Cell Calcium 2013; 55:24-37. [PMID: 24290744 DOI: 10.1016/j.ceca.2013.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 01/21/2023]
Abstract
Since the establishment of in vitro fertilization, it became evident that almost half of the couples failed to achieve fertilization and this phenomenon was attributed to a male gamete dysfunction. The adoption of assisted fertilization techniques particularly ICSI has been able to alleviate male factor infertility by granting the consistent ability of a viable spermatozoon to activate an oocyte. Single sperm injection, by pinpointing the beginning of fertilization, has been an invaluable tool in clarifying the different aspects of early fertilization and syngamy. However, even with ICSI some couples fail to fertilize due to ooplasmic dysmaturity in relation to the achieved nuclear maturation marked by the extrusion of the first polar body. More uncommon are cases where the spermatozoa partially or completely lack the specific oocyte activating factor. In this work, we review the most relevant aspects of fertilization and its failure through assisted reproductive technologies. Attempts at diagnosing and treating clinical fertilization failure are described.
Collapse
Affiliation(s)
- Queenie V Neri
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Bora Lee
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Doha, Qatar
| | - Gianpiero D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
17
|
Miao YL, Williams CJ. Calcium signaling in mammalian egg activation and embryo development: the influence of subcellular localization. Mol Reprod Dev 2012; 79:742-56. [PMID: 22888043 DOI: 10.1002/mrd.22078] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 07/27/2012] [Indexed: 11/07/2022]
Abstract
Calcium (Ca(2+) ) signals drive the fundamental events surrounding fertilization and the activation of development in all species examined to date. Initial studies of Ca(2+) signaling at fertilization in marine animals were tightly linked to new discoveries of bioluminescent proteins and their use as fluorescent Ca(2+) sensors. Since that time, there has been rapid progress in our understanding of the key functions for Ca(2+) in many cell types and of the impact of cellular localization on Ca(2+) signaling pathways. In this review, which focuses on mammalian egg activation, we consider how Ca(2+) is regulated and stored at different stages of oocyte development and examine the functions of molecules that serve as both regulators of Ca(2+) release and effectors of Ca(2+) signals. We then summarize studies exploring how Ca(2+) directs downstream effectors mediating both egg activation and later signaling events required for successful preimplantation embryo development. Throughout this review, we focus attention on how localization of Ca(2+) signals influences downstream signaling events, and attempt to highlight gaps in our knowledge that are ripe for future research.
Collapse
Affiliation(s)
- Yi-Liang Miao
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
18
|
Calcium influx-mediated signaling is required for complete mouse egg activation. Proc Natl Acad Sci U S A 2012; 109:4169-74. [PMID: 22371584 DOI: 10.1073/pnas.1112333109] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian fertilization is accompanied by oscillations in egg cytoplasmic calcium (Ca(2+)) concentrations that are critical for completion of egg activation. These oscillations are initiated by Ca(2+) release from inositol 1,4,5-trisphosphate (IP(3))-sensitive intracellular stores. We tested the hypothesis that Ca(2+) influx across the plasma membrane was a requisite component of egg activation signaling, and not simply a Ca(2+) source for store repletion. Using intracytoplasmic sperm injection (ICSI) and standard in vitro fertilization (IVF), we found that Ca(2+) influx was not required to initiate resumption of meiosis II. However, even if multiple oscillations in intracellular Ca(2+) occurred, in the absence of Ca(2+) influx, the fertilized eggs failed to emit the second polar body, resulting in formation of three pronuclei. Additional experiments using the Ca(2+) chelator, BAPTA/AM, demonstrated that Ca(2+) influx is sufficient to support polar body emission and pronucleus formation after only a single sperm-induced Ca(2+) transient, whereas BAPTA/AM-treated ICSI or fertilized eggs cultured in Ca(2+)-free medium remained arrested in metaphase II. Inhibition of store-operated Ca(2+) entry had no effect on ICSI-induced egg activation, so Ca(2+) influx through alternative channels must participate in egg activation signaling. Ca(2+) influx appears to be upstream of CaMKIIγ activity because eggs can be parthenogenetically activated with a constitutively active form of CaMKIIγ in the absence of extracellular Ca(2+). These results suggest that Ca(2+) influx at fertilization not only maintains Ca(2+) oscillations by replenishing Ca(2+) stores, but also activates critical signaling pathways upstream of CaMKIIγ that are required for second polar body emission.
Collapse
|
19
|
Lacham-Kaplan O, Trounson A. Reduced developmental competence of immature, in-vitro matured and postovulatory aged mouse oocytes following IVF and ICSI. Reprod Biol Endocrinol 2008; 6:58. [PMID: 19040764 PMCID: PMC2636812 DOI: 10.1186/1477-7827-6-58] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 12/01/2008] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The present study highlights basic physiological differences associated with oocyte maturation and ageing. The study explores the fertilizing capacity and resistance to injury of mouse oocytes at different stages of maturation and ageing following IVF and ICSI. Also, the study examines the developmental competence of embryos obtained from these oocytes. The outcome of the study supports views that the mouse can be a model for human IVF suggesting that utilizing in-vitro matured and failed fertilized oocytes to produce embryos mainly when limited number of oocytes is retrieved in a specific cycle, should be carefully considered. METHODS Hybrid strain mouse oocytes were inseminated by in-vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). Oocytes groups that were used were germinal vesicle (GV) in-vitro matured metaphase II (IVM-MII), freshly ovulated MII (OV-MII), 13 hrs in-vitro aged MII (13 hrs-MII) and 24 hrs in-vitro aged MII (24 hrs-MII). Fertilization and embryo development to the blastocyst stage were monitored up to 5 days in culture for IVF and ICSI zygotes. Sperm head decondensation and pronuclear formation were examined up to 9 hrs in oocytes following ICSI. Apoptotic events in blocked embryos were examined using the TUNNEL assay. Differences between females for the number and quality of GV and OV-MII oocytes were examined by ANOVA analyses. Differences in survival after ICSI, fertilization by IVF and ICSI and embryo development were analysed by Chi-square test with Yates correction. RESULTS No differences in number and quality of oocytes were identified between females. The findings suggest that inability of GV oocytes to participate in fertilization and embryo development initiates primarily from their inability to support initial post fertilization events such as sperm decondensation and pronuclei formation. These events occur in all MII oocytes in similar rates (87-98% for IVF and ICSI). Following ICSI, pronuclei appeared in IVM and freshly ovulated oocytes by 8-9 hrs after insemination. In comparison, pronuclei appeared in 13 hrs aged oocytes by 4-5 hrs. Significantly higher proportions (P < 0.001) of blastocysts resulted from OV-MII oocytes than the other groups examined with 75% and 71% for IVF and ICSI, respectively. The 13 hrs-MII oocytes resulted in 47 and 40% blastocysts, while IVM-MII and 24 hrs-MII oocytes resulted in 38% and 0% blastocysts from IVF and 5% and 5% from ICSI, respectively. In addition, anucleate cells and DNA fragments were observed in retarded embryos derived from IVM and aged oocytes, however, apoptotic events were similar for all groups. CONCLUSION The data suggests that the use of oocytes other than freshly ovulated MII should be carefully considered for assisted reproduction.
Collapse
Affiliation(s)
- Orly Lacham-Kaplan
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Alan Trounson
- California Institute for Regenerative Medicine, San Francisco, CA, USA
| |
Collapse
|
20
|
Bedford-Guaus SJ, Yoon SY, Fissore RA, Choi YH, Hinrichs K. Microinjection of mouse phospholipase Cζ complementary RNA into mare oocytes induces long-lasting intracellular calcium oscillations and embryonic development. Reprod Fertil Dev 2008; 20:875-83. [DOI: 10.1071/rd08115] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 07/27/2008] [Indexed: 11/23/2022] Open
Abstract
Methods presently used to activate mare oocytes for assisted reproduction technologies provide low rates of advanced embryonic development. Because phospholipase Cζ (PLCζ) is the postulated sperm-borne factor responsible for oocyte activation at fertilisation, the aim of the present study was to investigate the pattern of [Ca2+]i oscillations and developmental rates achieved by microinjection of three concentrations of mouse PLCζ complementary (c) RNA (1, 0.5 or 0.25 μg μL–1) into mare oocytes. The frequency of [Ca2+]i oscillations was no different (P > 0.05) after injection of 1, 0.5 or 0.25 μg μL–1 PLCζ cRNA (41.1 ± 5.3, 47 ± 4.0 and 55.4 ± 9.0, respectively). However, [Ca2+]i oscillations persisted longest (P < 0.05) for oocytes injected with 0.5 μg μL–1 PLCζ cRNA (570.7 ± 64.2 min). There was no significant difference in cleavage rates after injection of the three concentrations of PLCζ (P > 0.05; range 97–100%), but the proportion of oocytes reaching advanced stages of embryonic development (>64 nuclei) was significantly lower for oocytes injected with 0.25 μg μL–1 PLCζ cRNA (3%) than for those injected with 1 μg μL–1 PLCζ cRNA (15%). Based on these results, microinjection of PLCζ may prove an effective and consistent method for the parthenogenetic activation of mare oocytes for nuclear transfer and provides a physiologically relevant tool with which to study fertilisation-dependent [Ca2+]i signalling in this species.
Collapse
|
21
|
Heytens E, Soleimani R, Lierman S, De Meester S, Gerris J, Dhont M, Van der Elst J, De Sutter P. Effect of ionomycin on oocyte activation and embryo development in mouse. Reprod Biomed Online 2008; 17:764-71. [DOI: 10.1016/s1472-6483(10)60403-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Yoon SY, Fissore RA. Release of phospholipase C ζand [Ca2+]i oscillation-inducing activity during mammalian fertilization. Reproduction 2007; 134:695-704. [DOI: 10.1530/rep-07-0259] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During fertilization of mammalian eggs a factor from the sperm, the sperm factor (SF), is released into the ooplasm and induces persistent [Ca2+]ioscillations that are required for egg activation and embryo development. A sperm-specific phospholipase C (PLC), PLCz, is thought to be the SF. Here, we investigated whether the SF activity and PLCζare simultaneously and completely released into the ooplasm soon after sperm entry. To accomplish this, we enucleated sperm heads within 90 min of intracytoplasmic sperm injection (ICSI) and monitored the persistence of the [Ca2+]ioscillations in eggs in which the sperm had been withdrawn. We also stained the enucleatedsperm heads to ascertain the presence/absence of PLCζ. Our results show that by 90 min all the SF activity had been released from the sperm, as fertilized enucleated eggs oscillated as fertilized controls, even in cases in which oscillations were prolonged by arresting eggs at metaphase. In addition, we found that the released SF activity became associated with the pronucleus (PN), as induction of PN envelope breakdown evoked comparable [Ca2+]iresponses in enucleated and non-manipulated zygotes. Lastly, we found that PLCzlocalized to the equatorial area of bull sperm and to the post-acrosomal region of mouse sperm and that by 90 min after ICSI all the sperm’s PLCζimmunoreactivity was lost in both species. Altogether, our findings show that during fertilization the SF activity and PLCζimmunoreactivity are simultaneously released from the sperm, suggesting that PLCζmay be the only [Ca2+]ioscillation-inducing factor of mammalian sperm.
Collapse
|
23
|
Gardner AJ, Williams CJ, Evans JP. Establishment of the mammalian membrane block to polyspermy: evidence for calcium-dependent and -independent regulation. Reproduction 2007; 133:383-93. [PMID: 17307906 DOI: 10.1530/rep-06-0304] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One crucial result of egg activation is the establishment of blocks on the zona pellucida and the egg plasma membrane to prevent fertilization by additional sperm. The mechanism(s) by which a mammalian egg regulates the establishment of the membrane block to polyspermy is largely unknown. Since Ca(2+) signaling regulates several egg activation events, this study investigates how sperm-induced Ca(2+) transients affect the membrane block to polyspermy, building on our previous work (Biology of Reproduction 67:1342). We demonstrate that mouse eggs that experience only one sperm-induced Ca(2+) transient establish a membrane block that is less effective, than in eggs that experience normal sperm-induced Ca(2+) transients but that is more effective than in eggs with completely suppressed [Ca(2+)](cyt) increases. Sperm-induced increases in [Ca(2+)](cyt) regulate the timing of membrane block establishment, as this block is established more slowly in eggs that experience one or no sperm-induced Ca(2+) transients. Finally, our studies produce the intriguing discovery that there is also a Ca(2+)-independent event that is associated with fertilization in the pathway leading to membrane block establishment. Taken together, these data indicate that Ca(2+) plays a role in facilitating membrane block establishment by regulating the timing with which this change in egg membrane function occurs, and also that the membrane block differs from other post-fertilization egg activation responses as Ca(2+) is not the only stimulus. The membrane block to polyspermy in mammalian eggs is likely to be the culmination of multiple post-fertilization events that together modify the egg membrane's receptivity to sperm.
Collapse
Affiliation(s)
- Allison J Gardner
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Room W3606, 615 N. Wolfe St., Maryland, USA
| | | | | |
Collapse
|
24
|
FitzHarris G, Marangos P, Carroll J. Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein. Dev Biol 2007; 305:133-44. [PMID: 17368610 DOI: 10.1016/j.ydbio.2007.02.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 11/20/2022]
Abstract
Oocyte maturation in mouse is associated with a dramatic reorganisation of the endoplasmic reticulum (ER) from a network of cytoplasmic accumulations in the germinal vesicle-stage oocyte (GV) to a network of distinctive cortical clusters in the metaphase II egg (MII). Multiple lines of evidence suggest that this redistribution of the ER is important to prepare the oocyte for the generation of repetitive Ca2+ transients which trigger egg activation at fertilisation. The aim of the current study was therefore to investigate the timecourse and mechanism of ER reorganisation during oocyte maturation. The ER is first restructured at the time of GV-breakdown (GVBD) into a dense network of membranes which envelop and invade the developing meiotic spindle. GVBD is essential for the initiation of ER reorganisation, since ER structure does not change in GV-arrested oocytes. ER reorganisation is also prevented by the microtubule inhibitor nocodazole and by the inhibition of cytoplasmic dynein, a microtubule-associated motor protein. ER redistribution at GVBD is therefore dynein-driven and cell cycle-dependent. Following GVBD the dense network of ER surrounds the spindle during its migration to the oocyte cortex. Cortical clusters of ER are formed close to the time of, but independently of the metaphase I-metaphase II transition. Formation of the characteristic ER clusters is prevented by the depolymerisation of microfilaments, but not of microtubules. These experiments reveal that ER reorganisation during oocyte maturation is a complex multi-step process involving distinct microtubule- and microfilament-dependent phases and indicate a role for dynein in the cytoplasmic changes which prepare the oocyte for fertilisation.
Collapse
Affiliation(s)
- Greg FitzHarris
- Department of Physiology, University College London, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
25
|
Markoulaki S, Kurokawa M, Yoon SY, Matson S, Ducibella T, Fissore R. Comparison of Ca2+ and CaMKII responses in IVF and ICSI in the mouse. Mol Hum Reprod 2007; 13:265-72. [PMID: 17327267 DOI: 10.1093/molehr/gal121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Novel methods of egg activation in human assisted reproductive technologies and animal somatic cell nuclear transfer are likely to alter the signalling process that occurs during normal fertilization. Intracytoplasmic sperm injection (ICSI) bypasses the normal processes of the acrosome reaction, sperm-egg fusion, and processing of the sperm plasma membrane, as well as alters some parameters of intracellular calcium ([Ca(2+)](i)) dynamics (reported previously by Kurokawa and Fissore (2003)). Herein, we extend these studies to determine if ICSI alters the activity of the Ca(2+)-dependent protein, Ca(2+)/calmodulin-dependent kinase II (CaMKII), which is responsible for the completion of meiosis in vertebrate eggs. After ICSI or in vitro fertilization (IVF), individual mouse eggs were monitored for their relative changes in both [Ca(2+)](i) and CaMKII activity during the first [Ca(2+)](i) rise and a subsequent rise associated with second polar body extrusion. The duration of the first [Ca(2+)](i) rise was greater in ICSI than in IVF, but the amplitude of the rise was transiently higher for IVF than ICSI. However, a similar mean CaMKII activity was observed in both procedures. During polar body extrusion, the amplitude and duration of the Ca(2+) rises were increased by a small amount in ICSI compared with IVF, whereas the CaMKII activities were similar. Thus, compared with IVF, ICSI is not associated with decreased or delayed CaMKII activity in response to these Ca(2+) signals in the mouse.
Collapse
Affiliation(s)
- Styliani Markoulaki
- Sackler School of Biomedical Sciences, Program in Cell, Molecular, and Developmental Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
26
|
Morozumi K, Shikano T, Miyazaki S, Yanagimachi R. Simultaneous removal of sperm plasma membrane and acrosome before intracytoplasmic sperm injection improves oocyte activation/embryonic development. Proc Natl Acad Sci U S A 2006; 103:17661-6. [PMID: 17090673 PMCID: PMC1693803 DOI: 10.1073/pnas.0608183103] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Direct injection of a single spermatozoon into an oocyte (ICSI) can produce apparently normal offspring. Although the production of normal offspring by ICSI has been successful in mice and humans, it has been less successful in many other species. The reason for this is not clear, but could be, in part, due to inconsistent activation of oocytes because of delayed disintegration of sperm plasma membrane within oocytes and incorporation of the acrosome containing a spectrum of hydrolyzing enzymes. In the mouse, the removal of sperm plasma membrane and acrosome was not a prerequisite to produce offspring by ICSI, but it resulted in earlier onset of oocyte activation and better embryonic development. The best result was obtained when spermatozoa were demembranated individually immediately before ICSI by using lysolecithin, a hydrolysis product of membrane phospholipids.
Collapse
Affiliation(s)
- Kazuto Morozumi
- *Institute for Biogenesis Research, University of Hawaii School of Medicine, Honolulu, HI 96822; and
| | - Tomohide Shikano
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shunichi Miyazaki
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Ryuzo Yanagimachi
- *Institute for Biogenesis Research, University of Hawaii School of Medicine, Honolulu, HI 96822; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Gardner AJ, Evans JP. Mammalian membrane block to polyspermy: new insights into how mammalian eggs prevent fertilisation by multiple sperm. Reprod Fertil Dev 2006; 18:53-61. [PMID: 16478602 DOI: 10.1071/rd05122] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 01/21/2005] [Indexed: 11/23/2022] Open
Abstract
To inhibit fertilisation by more than one sperm (a condition known as polyspermy), eggs have developed preventative mechanisms known as blocks to polyspermy. The block at the level of the egg extracellular coat (the zona pellucida in mammals, the vitelline envelope in non-mammals) has been well characterised in many different animal species and the block at the level of the egg plasma membrane is understood in some non-mammalian species. However, virtually nothing is known about the membrane block to polyspermy in mammalian eggs, despite data dating back 50–90 years that provide evidence for its existence. In the present review, we will discuss the background on blocks to polyspermy used by animal eggs and then focus on the membrane block to polyspermy in mammalian eggs. This will include a summary of classical studies that provide evidence for this block in mammalian eggs, assays used to study the mammalian membrane block and what has been elucidated from recent experimental studies about the cellular signalling events that lead to membrane block establishment and the mechanism of how the membrane block may prevent additional fertilisation.
Collapse
Affiliation(s)
- Allison J Gardner
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
28
|
Abstract
Fertilization calcium waves are introduced, and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypotheses put forward to explain the generation of the fertilization calcium wave are set out, and it is concluded that initiation of the fertilization calcium wave can be most generally explained in invertebrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control, and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signaling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signaling during resumption of meiosis. Changes to the calcium signaling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed, and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signaling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog, and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed. Evidence that the Wingless/calcium signaling pathway is a strong ventralizing signal in Xenopus, mediated by phosphoinositide signaling, is adumbrated. The central role that calcium channels play in morphogenetic movements during gastrulation and in ectodermal and mesodermal gene expression during late gastrulation is demonstrated. Experiments in zebrafish provide a strong indication that calcium signals are essential for pattern formation and organogenesis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell & Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
29
|
Yanagimachi R. Intracytoplasmic injection of spermatozoa and spermatogenic cells: its biology and applications in humans and animals. Reprod Biomed Online 2005; 10:247-88. [PMID: 15823233 DOI: 10.1016/s1472-6483(10)60947-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intracytoplasmic sperm injection (ICSI) has become the method of choice to overcome male infertility when all other forms of assisted fertilization have failed. Animals in which ICSI has produced normal offspring include many species. Success rate with normal spermatozoa is well above 50% in the mouse but ICSI success rates in other animals have been low, ranging from 0.3 to 16.5%. Mouse ICSI revealed that spermatozoa that cannot participate in normal fertilization can produce normal offspring by ICSI, provided their nuclei are genomically intact. Human ICSI using infertile spermatozoa has been highly successful perhaps because of the intrinsic instability of human sperm plasma membrane. The health of children born after ICSI and other assisted fertilization techniques is of major concern. Careful analyses suggest that higher incidences of congenital malformations and/or low birth weights after assisted fertilization are largely attributable to parental genetic background and increased incidence of multiple births, rather than to the techniques of assisted fertilization. Since the physiological and nutritional environments of developing embryos may cause persisting alteration in DNA methylation, extreme caution must be exercised in handling gametes and embryos in vitro. In the mouse, round spermatid injection (ROSI) has been routinely successful but its use in humans is controversial. Whether human ROSI and assisted fertilization involving younger spermatogenic cells are medically safe must be the subject of further investigations.
Collapse
Affiliation(s)
- Ryuzo Yanagimachi
- Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
30
|
Bedford SJ, Kurokawa M, Hinrichs K, Fissore RA. Patterns of Intracellular Calcium Oscillations in Horse Oocytes Fertilized by Intracytoplasmic Sperm Injection: Possible Explanations for the Low Success of This Assisted Reproduction Technique in the Horse1. Biol Reprod 2004; 70:936-44. [PMID: 14656727 DOI: 10.1095/biolreprod.103.021485] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In all species studied, fertilization induces intracellular Ca2+ ([Ca2+]i) oscillations required for oocyte activation and embryonic development. This species-specific pattern has not been studied in the equine, partly due to the difficulties linked to in vitro fertilization in this species. Therefore, the objective of this study was to use intracytoplasmic sperm injection (ICSI) to investigate fertilization-induced [Ca2+]i signaling and, possibly, ascertain problems linked to the success of this technology in the horse. In vivo- and in vitro-matured mare oocytes were injected with a single motile stallion sperm. Few oocytes displayed [Ca2+]i responses regardless of oocyte source and we hypothesized that this may result from insufficient release of the sperm-borne active molecule (sperm factor) into the oocyte. However, permeabilization of sperm membranes with Triton-X or by sonication did not alleviate the deficient [Ca2+]i responses in mare oocytes. Thus, we hypothesized that a step downstream of release, possibly required for sperm factor function, is not appropriately accomplished in horse oocytes. To test this, ICSI-fertilized horse oocytes were fused to unfertilized mouse oocytes, which are known to respond with [Ca2+]i oscillations to injection of stallion sperm, and [Ca2+]i monitoring was performed. Such pairs consistently displayed [Ca2+]i responses demonstrating that the sperm factor is appropriately released into the ooplasm of horse oocytes, but that these are unable to activate and/or provide the appropriate substrate that is required for the sperm factor delivered by ICSI to initiate oscillations. These findings may have implications to improve the success of ICSI in the equine and other livestock species.
Collapse
Affiliation(s)
- Sylvia J Bedford
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
31
|
|
32
|
Abstract
A centrally important factor in initiating egg activation at fertilization is a rise in free Ca(2+) in the egg cytosol. In echinoderm, ascidian, and vertebrate eggs, the Ca(2+) rise occurs as a result of inositol trisphosphate-mediated release of Ca(2+) from the endoplasmic reticulum. The release of Ca(2+) at fertilization in echinoderm and ascidian eggs requires SH2 domain-mediated activation of a Src family kinase (SFK) and phospholipase C (PLC)gamma. Though some evidence indicates that a SFK and PLC may also function at fertilization in vertebrate eggs, SH2 domain-mediated activation of PLC gamma appears not to be required. Much work has focused on identifying factors from sperm that initiate egg activation at fertilization, either as a result of sperm-egg contact or sperm-egg fusion. Current evidence from studies of ascidian and mammalian fertilization favors a fusion-mediated mechanism; this is supported by experiments indicating that injection of sperm extracts into eggs causes Ca(2+) release by the same pathway as fertilization.
Collapse
Affiliation(s)
- Linda L Runft
- Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | |
Collapse
|
33
|
Piedrahita JA, Wells DN, Miller AL, Oliver JE, Berg MC, Peterson AJ, Tervit HR. Effects of follicular size of cytoplast donor on the efficiency of cloning in cattle. Mol Reprod Dev 2002; 61:317-26. [PMID: 11835577 DOI: 10.1002/mrd.10013] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In cattle, oocytes obtained from follicles smaller than 3 mm in diameter can undergo maturation in vitro, progressing to MII and undergoing fertilization, but are developmentally incompetent. Cytoplasts were prepared from in vitro matured oocytes aspirated from small (1-3 mm) or large (6-12 mm) follicles and fused to serum starved mural granulosa cells. Following activation, reconstructed embryos were cultured for 7 days and classified G1 to G4, before being processed for nuclei counting or transferred to synchronized recipients. Oocytes from small follicles had lower rates of polar body extrusion (59.6 vs. 69%; 731/1230 vs. 608/857) and fusion (71.4 vs. 78.8%; 360/497 vs. 364/465; P < 0.06). There were no differences in total rate of blastocysts development (60 vs. 59.8%; small vs. large), or any grade classification. A significant interaction was detected between follicle size and embryo grade with G3 embryos from small follicles having a greater cell number. Developmental competence of G1 and G2 embryos did not differ at day 27 (48 vs. 46%; 16/33 vs. 17/37; small vs. large). Although there were no differences in fetal size between the two groups, differences in allantois length (53 vs. 86 mm; small vs. large; P < 0.002) and allantois width (9.5 vs. 13 mm; small vs. large; P < 0.06) were seen. No differences in survival to term (2/13 in each group) were observed. These results indicate that cytoplasts from follicles of 1-3 and 6-12 mm in diameter are equally developmentally competent when used in a nuclear transfer procedure.
Collapse
Affiliation(s)
- Jorge A Piedrahita
- Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station, Texas 77843-4458, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Boni R, Cuomo A, Tosti E. Developmental potential in bovine oocytes is related to cumulus-oocyte complex grade, calcium current activity, and calcium stores. Biol Reprod 2002; 66:836-42. [PMID: 11870093 DOI: 10.1095/biolreprod66.3.836] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A morphological classification of the immature cumulus-oocyte complex (COC), which grossly resembled the atresia grade of its follicle source, was used in bovine oocytes to determine 1) the developmental potential by either in vitro fertilization or parthenogenetic activation, 2) the calcium current activity by whole-cell voltage clamp technique, and 3) the intracytoplasmic calcium stores by microfluorimetric evaluation. The COC classification took into account some cumulus and ooplasm features, designated as follows: A) presence of a clear and compact cumulus and translucent ooplasm, B) dark and compact cumulus and dark ooplasm, and C) dark and expanded cumulus and dark ooplasm. We found no difference between in vitro fertilization and parthenogenetically activated oocytes in terms of cleavage rate and blastocyst production. Both protocols indicated a significant variability between the three compared COC categories. The B-COCs showed the highest embryo production efficiency as well as the greatest Ca(2+) current activity, whereas A-COCs showed an opposite pattern. The C-COCs, mostly attributed to atretic and heavily atretic follicles, showed morphological characteristics between those of A- and B-COCs. Stores of Ca(2+) were significantly greater in A-COCs than in B- and C-COCs in the case of immature oocytes, and greater in B-COCs than in C-and A-COCs in the case of in vitro-matured oocytes. These results demonstrate that in the bovine 1) the considered morphological criteria for oocyte classification are related to developmental competence, 2) plasma membrane Ca(2+) current in the immature oocyte is related to developmental potential, and 3) calcium stores are related to morphological quality in immature oocytes and to developmental competence in mature oocytes.
Collapse
Affiliation(s)
- Raffaele Boni
- Department of Animal Science, University of Basilicata, 85100 Potenza, Italy.
| | | | | |
Collapse
|
35
|
Ogonuki N, Sankai T, Yagami K, Shikano T, Oda S, Miyazaki S, Ogura A. Activity of a sperm-borne oocyte-activating factor in spermatozoa and spermatogenic cells from cynomolgus monkeys and its localization after oocyte activation. Biol Reprod 2001; 65:351-7. [PMID: 11466200 DOI: 10.1095/biolreprod65.2.351] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
It is widely accepted that mature mammalian oocytes are induced to resume meiosis by a sperm-borne oocyte-activating factor(s) (sperm factor, SF) immediately after normal fertilization or intracytoplasmic sperm injection. The SF is most likely a soluble factor that is localized within the cytoplasm of mature spermatozoa, but the exact stage at which it appears during spermatogenesis and its localization after oocyte activation is not fully understood, except in the mouse. First, we injected mature spermatozoa and spermatogenic cells from cynomolgus monkeys into mouse oocytes to assess their oocyte-activating capacity. More than 90% of mouse oocytes were activated after injection of monkey spermatozoa. Round spermatids and primary spermatocytes (late pachytene to diplotene) also activated oocytes (93% and 79%, respectively). Injection of monkey spermatozoa and spermatids induces intracellular Ca(2+) oscillations in a pattern similar to that seen following normal fertilization. Most spermatocytes did not produce typical intracellular Ca(2+) oscillations. Second, we transferred pronuclei or cytoplasts from mouse oocytes that had been activated by monkey spermatozoa or spermatids into intact mature mouse oocytes by electrofusion in order to examine the localization of the SF after pronuclear formation. Some of the SF was localized within the pronuclei, but some stayed in the ooplasm. This study demonstrated that spermatogenic cells of cynomolgus monkeys acquire oocyte-activating capacity at much earlier stages than those of mice, and that the monkey SF has a pronucleus-directing nature, although to a lesser extent than the mouse SF.
Collapse
Affiliation(s)
- N Ogonuki
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Mohri T, Shirakawa H, Oda S, Sato MS, Mikoshiba K, Miyazaki S. Analysis of Mn(2+)/Ca(2+) influx and release during Ca(2+) oscillations in mouse eggs injected with sperm extract. Cell Calcium 2001; 29:311-25. [PMID: 11292388 DOI: 10.1054/ceca.2000.0196] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Repetitive Ca(2+) release from the endoplasmic reticulum (ER) is necessary for activation of mammalian eggs. Influx and release of Mn(2+) and Ca(2+) during Ca(2+) oscillations induced by injection of sperm extract (SE) into mouse eggs were investigated by Mn(2+)-quenching of intracellular Fura-2 after adding Mn(2+) to external medium. Mn(2+)/Ca(2+) influx was detected at the resting state. A marked Mn(2+)/Ca(2+) influx occurred during the first Ca(2+) release upon SE injection, and persistently facilitated Mn(2+)/Ca(2+) influx was observed during steady Ca(2+) oscillations. As intracellular Mn(2+) concentration ([Mn(2+)](i)) increased progressively, periodic [Mn(2+)](i) rises appeared, corresponding to each Ca(2+)transient but taking a slower time course. A numerical simulation based on continuous Mn(2+)/Ca(2+) influx-extrusion across the plasma membrane and release-uptake across the ER membrane in a competitive manner mimicked well the Mn(2+) oscillations calculated from experimental data, strongly suggesting that repetitive Mn(2+) release develops after Mn(2+) entry and uptake into the ER. In other experiments, a marked Mn(2+) influx occurred upon Mn(2+) addition to Ca(2+)-free medium after depletion of the ER using an ER Ca(2+) pump inhibitor plus repeated injection of inositol 1,4,5-trisphosphate (InsP(3)). No significant increase in Mn(2+) influx was induced by injection of SE, InsP(3), or Ca(2+), when Ca(2+) release was prevented by pre-injection of an antibody against the InsP(3) receptor. We concluded that Ca(2+) influx is activated during the initial large Ca(2+)release possibly by a capacitative mechanism and kept facilitated during steady Ca(2+) oscillations. The finding that repetitive Mn(2+) release is caused by continuous Mn(2+) entry suggests that continuous Ca(2+) influx may play a critical role in refilling the ER and, thereby, maintaining Ca(2+)oscillations in mammalian fertilization.
Collapse
Affiliation(s)
- T Mohri
- Laboratory of Intracellular Metabolism, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
During fertilization, the spermatozoon penetrates through the cumulus cells and the zona pellucida that surrounds the oocyte, before it binds and fuses with the oocyte plasma membrane to induce activation. In vitro fertilization (IVF) studies performed in non-human mammals have contributed extensive knowledge regarding the mechanisms by which the spermatozoon activates the meiotic-arrested oocyte to resume meiosis, cleave and develop into an embryo. Although IVF has been used extensively for treating subfertile couples, not all of them were able to benefit from this procedure. In intracytoplasmic sperm injection (ICSI), one viable spermatozoon only is sufficient for successful fertilization of a single oocyte. Moreover, the injected fertilizing spermatozoon bypasses several physiological barriers, compared with IVF, which together could explain the high success rate for this procedure. ICSI has also allowed the identification of sperm components that are required for successful fertilization.
Collapse
Affiliation(s)
- D Ben-Yosef
- Racine IVF Unit, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | | |
Collapse
|
38
|
Stricker SA, Swann K, Jones KT, Fissore RA. Injections of porcine sperm extracts trigger fertilization-like calcium oscillations in oocytes of a marine worm. Exp Cell Res 2000; 257:341-7. [PMID: 10837148 DOI: 10.1006/excr.2000.4897] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The precise mechanisms by which sperm trigger calcium transients in eggs or oocytes during fertilization remain unknown. Based on time-lapse confocal microscopy, we show that intracellular injections of porcine sperm extracts cause the oocytes of a marine nemertean worm to undergo repetitive calcium oscillations resembling those obtained during normal fertilizations. Such findings are consistent with the view that fertilization involves a soluble sperm factor (SF) which is capable of eliciting calcium transients without binding to externally situated receptors on the oocyte plasmalemma. This study also describes for the first time the wave-like propagation patterns of SF-induced calcium transients that are generated in a heterologous combination of gametes obtained from different phyla of animals. Such cross-reactivity between distantly related taxa suggests that the intracellular signaling pathways triggered by sperm factors can be well conserved.
Collapse
Affiliation(s)
- S A Stricker
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA.
| | | | | | | |
Collapse
|