1
|
Sahoo DK, Wong D, Patani A, Paital B, Yadav VK, Patel A, Jergens AE. Exploring the role of antioxidants in sepsis-associated oxidative stress: a comprehensive review. Front Cell Infect Microbiol 2024; 14:1348713. [PMID: 38510969 PMCID: PMC10952105 DOI: 10.3389/fcimb.2024.1348713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Sepsis is a potentially fatal condition characterized by organ dysfunction caused by an imbalanced immune response to infection. Although an increased inflammatory response significantly contributes to the pathogenesis of sepsis, several molecular mechanisms underlying the progression of sepsis are associated with increased cellular reactive oxygen species (ROS) generation and exhausted antioxidant pathways. This review article provides a comprehensive overview of the involvement of ROS in the pathophysiology of sepsis and the potential application of antioxidants with antimicrobial properties as an adjunct to primary therapies (fluid and antibiotic therapies) against sepsis. This article delves into the advantages and disadvantages associated with the utilization of antioxidants in the therapeutic approach to sepsis, which has been explored in a variety of animal models and clinical trials. While the application of antioxidants has been suggested as a potential therapy to suppress the immune response in cases where an intensified inflammatory reaction occurs, the use of multiple antioxidant agents can be beneficial as they can act additively or synergistically on different pathways, thereby enhancing the antioxidant defense. Furthermore, the utilization of immunoadjuvant therapy, specifically in septic patients displaying immunosuppressive tendencies, represents a promising advancement in sepsis therapy.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Gujarat, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Potential Antioxidant Multitherapy against Complications Occurring in Sepsis. Biomedicines 2022; 10:biomedicines10123088. [PMID: 36551843 PMCID: PMC9775396 DOI: 10.3390/biomedicines10123088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Septic shock currently represents one of the main causes of mortality in critical patient units with an increase in its incidence in recent years, and it is also associated with a high burden of morbidity in surviving patients. Within the pathogenesis of sepsis, oxidative stress plays an important role. The excessive formation of reactive oxygen species (ROS) leads to mitochondrial damage and vasomotor dysfunction that characterizes those patients who fall into septic shock. Currently, despite numerous studies carried out in patients with septic shock of different causes, effective therapies have not yet been developed to reduce the morbidity and mortality associated with this pathology. Despite the contribution of ROS in the pathophysiology of sepsis and septic shock, most studies performed in humans, with antioxidant monotherapies, have not resulted in promising data. Nevertheless, some interventions with compounds such as ascorbate, N-acetylcysteine, and selenium would have a positive effect in reducing the morbidity and mortality associated with this pathology. However, more studies are required to demonstrate the efficacy of these therapies. Taking into account the multifactorial features of the pathophysiology of sepsis, we put forward the hypothesis that a supplementation based on the association of more than one antioxidant compound should result in a synergistic or additive effect, thus improving the beneficial effects of each of them alone, potentially serving as a pharmacological adjunct resource to standard therapy to reduce sepsis complications. Therefore, in this review, it is proposed that the use of combined antioxidant therapies could lead to a better clinical outcome of patients with sepsis or septic shock, given the relevance of oxidative stress in the pathogenesis of this multi-organ dysfunction.
Collapse
|
3
|
Thompson MA, Zuniga K, Sousse L, Christy R, Gurney J. The Role of Vitamin E in Thermal Burn Injuries, Infection, and Sepsis: A Review. J Burn Care Res 2022; 43:1260-1270. [PMID: 35863690 PMCID: PMC9629418 DOI: 10.1093/jbcr/irac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Thermal burn injuries are still a serious public health concern in the United States, due to the initial insult and resulting comorbidities. Burned patients are increasingly susceptible to colonization by endogenous and exogenous microorganisms after having lost skin, which acts as the primary protective barrier to environmental contaminants. Furthermore, the onset of additional pathophysiologies, specifically sepsis, becomes more likely in burned patients compared to other injuries. Despite improvements in the early care of burn patients, infections, and sepsis, these pathophysiologies remain major causes of morbidity and mortality and warrant further investigation of potential therapies. Vitamin E may be one such therapy. We aimed to identify publications of studies that evaluated the effectiveness of vitamin E as it pertains to thermal burn injuries, infection, and sepsis. Several investigations ranging from in vitro bench work to clinical studies have examined the impact on, or influence of, vitamin E in vitro, in vivo, and in the clinical setting. To the benefit of subjects it has been shown that enteral or parenteral vitamin E supplementation can prevent, mitigate, and even reverse the effects of thermal burn injuries, infection, and sepsis. Therefore, a large-scale prospective observational study to assess the potential benefits of vitamin E supplementation in patients is warranted and could result in clinical care practice paradigm changes.
Collapse
Affiliation(s)
- Marc A Thompson
- US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX
| | - Kameel Zuniga
- US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX
| | - Linda Sousse
- US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX
| | - Robert Christy
- US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX
| | - Jennifer Gurney
- Burn Center, United States Army Institute of Surgical Research, JBSA Ft. Sam Houston, TX, USA
| |
Collapse
|
4
|
Scott MB, Styring AK, McCullagh JSO. Polyphenols: Bioavailability, Microbiome Interactions and Cellular Effects on Health in Humans and Animals. Pathogens 2022; 11:770. [PMID: 35890016 PMCID: PMC9324685 DOI: 10.3390/pathogens11070770] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by gut microbiota in many cases prior to entering circulation. They are linked to a range of positive health effects, including anti-oxidant, anti-inflammatory, antibiotic and disease-specific activities but the relationships between polyphenol bio-transformation products and their interactions in vivo are less well understood. Here we review the state of knowledge in this area, specifically what happens to dietary polyphenols after ingestion and how this is linked to health effects in humans and animals; paying particular attention to farm animals and pigs. We focus on the chemical transformation of polyphenols after ingestion, through microbial transformation, conjugation, absorption, entry into circulation and uptake by cells and tissues, focusing on recent findings in relation to bone. We review what is known about how these processes affect polyphenol bioactivity, highlighting gaps in knowledge. The implications of extending the use of polyphenols to treat specific pathogenic infections and other illnesses is explored.
Collapse
Affiliation(s)
- Michael B. Scott
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - Amy K. Styring
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - James S. O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
| |
Collapse
|
5
|
Abstract
Vitamins are essential micronutrients with key roles in many biological pathways relevant to sepsis. Some of these relevant biological mechanisms include antioxidant and anti-inflammatory effects, protein and hormone synthesis, energy generation, and regulation of gene transcription. Moreover, relative vitamin deficiencies in plasma are common during sepsis and vitamin therapy has been associated with improved outcomes in some adult and pediatric studies. High-dose intravenous vitamin C has been the vitamin therapy most extensively studied in adult patients with sepsis and septic shock. This includes three randomized control trials (RCTs) as monotherapy with a total of 219 patients showing significant reduction in organ dysfunction and lower mortality when compared to placebo, and five RCTs as a combination therapy with thiamine and hydrocortisone with a total of 1134 patients showing no difference in clinical outcomes. Likewise, the evidence for the role of other vitamins in sepsis remains mixed. In this narrative review, we present the preclinical, clinical, and safety evidence of the most studied vitamins in sepsis, including vitamin C, thiamine (i.e., vitamin B1), and vitamin D. We also present the relevant evidence of the other vitamins that have been studied in sepsis and critical illness in both children and adults, including vitamins A, B2, B6, B12, and E. IMPACT: Vitamins are key effectors in many biological processes relevant to sepsis. We present the preclinical, clinical, and safety evidence of the most studied vitamins in pediatric sepsis. Designing response-adaptive platform trials may help fill in knowledge gaps regarding vitamin use for critical illness and association with clinical outcomes.
Collapse
|
6
|
Leontopoulos S, Skenderidis P, Petrotos K, Giavasis I. Corn Silage Supplemented with Pomegranate ( Punica granatum) and Avocado ( Persea americana) Pulp and Seed Wastes for Improvement of Meat Characteristics in Poultry Production. Molecules 2021; 26:molecules26195901. [PMID: 34641445 PMCID: PMC8510452 DOI: 10.3390/molecules26195901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study, pomegranate peels, avocado peels, and seed vacuum microwave extraction solid by-products were supplemented in corn silage in order to investigate the effects on meat quality and growth rate in broiler chicken. There were 50 broilers, divided in two groups, treated with experimental or usual feed for 43 days (group A: 25 broilers fed with avocado and pomegranate by-products and group B: 25 broilers fed with corn-silage used as control). The results showed that broiler chickens fed with a diet supplemented with a mixture of pomegranate avocado by-products (group A) showed significant differences in chicken leg meat quality, significantly improving the level of proteins and fatty acids content in breast and leg meat, respectively. More specific ω3 and ω6 fatty acids content were three times higher than in group B. Moreover, a protective effect on the decomposition of polyunsaturated fatty acids, induced by free radicals and presented in chicken meat, is based on the evaluation of lipid peroxidation by measuring thiobarbituric acid reactive substances. Pomegranate peels, avocado peels, and seed by-products appeared to have a slight reduction on meat production, while it was found to improve the qualitative chicken meat characteristics. Regarding the production costs, it was calculated that the corn-silage supplementation, used in this study, lead to a 50% lower cost than the commercial corn-silage used for the breeding of broilers.
Collapse
Affiliation(s)
- Stefanos Leontopoulos
- Laboratory of Food and Biosystems Engineering, Department of Agrotechnology, University of Thessaly, 41110 Larissa, Greece
| | - Prodromos Skenderidis
- Laboratory of Food and Biosystems Engineering, Department of Agrotechnology, University of Thessaly, 41110 Larissa, Greece
| | - Konstantinos Petrotos
- Laboratory of Food and Biosystems Engineering, Department of Agrotechnology, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Giavasis
- Laboratory of Food Microbiology, Department of Food Technology, University of Thessaly, 43100 Karditsa, Greece
| |
Collapse
|
7
|
Rubio CP, Mainau E, Cerón JJ, Contreras-Aguilar MD, Martínez-Subiela S, Navarro E, Tecles F, Manteca X, Escribano D. Biomarkers of oxidative stress in saliva in pigs: analytical validation and changes in lactation. BMC Vet Res 2019; 15:144. [PMID: 31088564 PMCID: PMC6515601 DOI: 10.1186/s12917-019-1875-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Biomarkers of oxidative stress in pigs have been measured in serum/plasma samples. However, blood collection in pigs can be highly stressful to the animals. Saliva is a biological fluid with several advantages in pigs over blood, since it can be easily collected without stress to the animals, being therefore an ideal sample in this species. The objective of this study was the validation of assays for the evaluation of oxidative stress status in saliva of pigs. For this purpose, three assays commonly used to evaluate the total antioxidant capacity (TAC): trolox equivalent antioxidant capacity (TEAC), cupric reducing antioxidant capacity (CUPRAC), and ferric reducing ability of plasma (FRAP)), one individual antioxidant (uric acid) and two assays to evaluate oxidant concentrations (advanced oxidation protein products (AOPP) and hydrogen peroxide (H2O2)) were measured and validated in porcine saliva. In addition, the possible changes of these assays in sows' saliva during lactation were be studied. RESULTS The methods had intra- and inter-assays coefficient of variation lower than 15%. They also showed an adequate linearity and recovery, and their detection limits were low enough to detect the analytes in saliva of pigs. Overall the analytical validation tests showed that the assays used in our study are valid and reliable for the evaluation of oxidative stress in porcine saliva. In addition, it was observed that these salivary biomarkers can change in a situation of oxidative stress such as lactation in sows. CONCLUSIONS All assays for salivary biomarkers of oxidative stress evaluated in this study have demonstrated a high analytical accuracy and low imprecision. In addition, it has been observed that these biomarkers showed significant changes in a situation of oxidative stress such as lactation in sows. Therefore, this study opens a new possibility of using saliva as a non-invasive sample to evaluate oxidative stress in pigs.
Collapse
Affiliation(s)
- Camila Peres Rubio
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Faculty of Veterinary Medicine, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Espinardo, Murcia, 30100 Spain
| | - Eva Mainau
- Department of Animal and Food Science, School of Veterinary Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Faculty of Veterinary Medicine, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Espinardo, Murcia, 30100 Spain
| | - Maria Dolores Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Faculty of Veterinary Medicine, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Espinardo, Murcia, 30100 Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Faculty of Veterinary Medicine, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Espinardo, Murcia, 30100 Spain
| | - Elena Navarro
- Department of Animal and Food Science, School of Veterinary Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Faculty of Veterinary Medicine, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Espinardo, Murcia, 30100 Spain
| | - Xavier Manteca
- Department of Animal and Food Science, School of Veterinary Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
| | - Damian Escribano
- Department of Animal and Food Science, School of Veterinary Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
| |
Collapse
|
8
|
Sánchez J, García A, Ruiz JM, Montes AM, Cabezas-Herrera J, Ros-Lara S, De la Cruz E, Gutiérrez AM. Porcine Breed, Sex, and Production Stage Influence the Levels of Health Status Biomarkers in Saliva Samples. Front Vet Sci 2019; 6:32. [PMID: 30838222 PMCID: PMC6382678 DOI: 10.3389/fvets.2019.00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/25/2019] [Indexed: 01/21/2023] Open
Abstract
In this study, the influence of several factors such as breed, sex, and production stage over the normal range values of salivary biomarkers of health status was evaluated in pigs. A total of 409 pigs of 2 different breeds (conventional Large White × Duroc and Iberian pigs) were included in the study. Animals were divided into different groups according to their sex (male or female) and the stage of the production cycle they were in (post-weaning, nursery, fattening, and finishing). The levels of an inflammatory marker, adenosine deaminase (ADA), and two acute phase proteins, C-reactive protein (CRP) and haptoglobin (Hp) were measured in saliva samples. Moreover, the total antioxidant capacity level (TAC) was quantified for the first time in porcine saliva; therefore, an analytical validation and stability analysis during storage at −80°C were also performed. Differences according to breed were observed for all the markers studied; thus, the influence of age and sex on the normal range values were studied separately for conventional and Iberian pigs. In Large White × Duroc pigs the overall median values of ADA, CRP, Hp and TAC were 282 U/L, 10.49 ng/mL, 0.88 μg/mL, and 21.73 μM Trolox equivalents, respectively. However, higher values of inflammatory marker and acute phase proteins were observed in males at the initial stages of the production cycle, while females presented higher values when they had reached sexual maturity. In Iberian pigs the overall median values observed were 585 U/L, 4.81 ng/mL, 0.63 μg/mL, and 21.21 μM Trolox equivalents for ADA, CRP, Hp, and TAC respectively with slight differences in the influence of the studied factors. Sex differences were not observed in the levels of acute phase proteins in Iberian pigs, probably due to the castration of males during the first days of life; however, ADA levels were found to be higher in male pigs at the end of the production cycle. It could be concluded that breed, sex, and production stage influence the range values of salivary markers of health status in pigs and should be taken into account to further establish reference intervals.
Collapse
Affiliation(s)
| | - Ana García
- Department of Animal Medicine and Surgery, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - José María Ruiz
- Department of Animal Medicine and Surgery, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Ana María Montes
- Department of Animal Medicine and Surgery, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Juan Cabezas-Herrera
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Susana Ros-Lara
- Department of Animal Medicine and Surgery, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Ernesto De la Cruz
- Department of Physical Activity and Sport, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Ana María Gutiérrez
- Department of Animal Medicine and Surgery, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
| |
Collapse
|
9
|
Feed supplemented with polyphenolic byproduct from olive mill wastewater processing improves the redox status in blood and tissues of piglets. Food Chem Toxicol 2015; 86:319-27. [DOI: 10.1016/j.fct.2015.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/05/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022]
|
10
|
Gerasopoulos K, Stagos D, Kokkas S, Petrotos K, Kantas D, Goulas P, Kouretas D. Feed supplemented with byproducts from olive oil mill wastewater processing increases antioxidant capacity in broiler chickens. Food Chem Toxicol 2015; 82:42-9. [PMID: 25916917 DOI: 10.1016/j.fct.2015.04.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/30/2015] [Accepted: 04/20/2015] [Indexed: 01/09/2023]
Abstract
In the present study, a ceramic membrane microfiltration method was used for the separation of two liquid products, the downstream permeate and the upstream retentate, from olive mill wastewater (OMWW). These liquid products were examined for their antioxidant activity by incorporating them into broilers' feed. Twenty four broilers 13 d old were divided into two feeding groups receiving supplementation with OMWW retentate or permeate for 37 d. Blood was drawn at 17, 27 and 37 d, while tissues (muscle, heart, liver) were collected at 37 d. The antioxidant effects were assessed by measuring oxidative stress biomarkers in blood and tissues. The results showed that broilers given feed supplemented with OMWW retentate or permeate had significantly lower protein oxidation and lipid peroxidation levels and higher total antioxidant capacity in plasma and tissues compared to control group. In both OMWW groups, catalase activity in erythrocytes and tissues was significantly increased compared to control group. OMWW retentate administration increased significantly GSH in erythrocytes in broilers with low GSH, although both OMWW products significantly reduced GSH in broilers with high GSH. Thus, it has been demonstrated for the first time that supplementation with OMWW processing residues could be used for enhancing broilers' redox status.
Collapse
Affiliation(s)
- Konstantinos Gerasopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26 and Aiolou st., 41221 Larissa, Greece; Department of Biosystem Engineering, Technical Education Institute of Thessaly, 41110 Larissa, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26 and Aiolou st., 41221 Larissa, Greece
| | - Stylianos Kokkas
- Department of Biosystem Engineering, Technical Education Institute of Thessaly, 41110 Larissa, Greece
| | - Konstantinos Petrotos
- Department of Biosystem Engineering, Technical Education Institute of Thessaly, 41110 Larissa, Greece.
| | - Dimitrios Kantas
- Department of Biosystem Engineering, Technical Education Institute of Thessaly, 41110 Larissa, Greece
| | - Panagiotis Goulas
- Department of Biosystem Engineering, Technical Education Institute of Thessaly, 41110 Larissa, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26 and Aiolou st., 41221 Larissa, Greece.
| |
Collapse
|
11
|
Kadiiska MB, Peddada S, Herbert RA, Basu S, Hensley K, Jones DP, Hatch GE, Mason RP. Biomarkers of oxidative stress study VI. Endogenous plasma antioxidants fail as useful biomarkers of endotoxin-induced oxidative stress. Free Radic Biol Med 2015; 81:100-6. [PMID: 25614459 PMCID: PMC4467900 DOI: 10.1016/j.freeradbiomed.2015.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 12/31/2022]
Abstract
This is the newest report in a series of publications aiming to identify a blood-based antioxidant biomarker that could serve as an in vivo indicator of oxidative stress. The goal of the study was to test whether acutely exposing Göttingen mini pigs to the endotoxin lipopolysaccharide (LPS) results in a loss of antioxidants from plasma. We set as a criterion that a significant effect should be measured in plasma and seen at both doses and at more than one time point. Animals were injected with two doses of LPS at 2.5 and 5 µg/kg iv. Control plasma was collected from each animal before the LPS injection. After the LPS injection, plasma samples were collected at 2, 16, 48, and 72 h. Compared with the controls at the same time point, statistically significant losses were not found for either dose at multiple time points in any of the following potential markers: ascorbic acid, tocopherols (α, δ, γ), ratios of GSH/GSSG and cysteine/cystine, mixed disulfides, and total antioxidant capacity. However, uric acid, total GSH, and total Cys were significantly increased, probably because LPS had a harmful effect on the liver. The leakage of substances from damaged cells into the plasma may have increased plasma antioxidant concentrations, making changes difficult to interpret. Although this study used a mini-pig animal model of LPS-induced oxidative stress, it confirmed our previous findings in different rat models that measurement of antioxidants in plasma is not useful for the assessment of oxidative damage in vivo.
Collapse
Affiliation(s)
- Maria B Kadiiska
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Shyamal Peddada
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ronald A Herbert
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samar Basu
- Oxidative Stress and Inflammation, Department of Public Health and Caring Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Kenneth Hensley
- Department of Pathology, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Gary E Hatch
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Ronald P Mason
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
12
|
Wen SH, Ling YH, Liu WF, Qiu YX, Li YS, Wu Y, Shen JT, Xia ZY, Liu KX. Role of 15-F2t-isoprostane in intestinal injury induced by intestinal ischemia/reperfusion in rats. Free Radic Res 2014; 48:907-18. [DOI: 10.3109/10715762.2014.926010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Yazar E, Er A, Uney K, Bulbul A, Avci GE, Elmas M, Tras B. Effects of drugs used in endotoxic shock on oxidative stress and organ damage markers. Free Radic Res 2010; 44:397-402. [DOI: 10.3109/10715760903513025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Weber SU, Lehmann LE, Schewe JC, Thiele JT, Schröder S, Book M, Hoeft A, Stüber F. Low serum alpha-tocopherol and selenium are associated with accelerated apoptosis in severe sepsis. Biofactors 2008; 33:107-19. [PMID: 19346586 DOI: 10.1002/biof.5520330203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During sepsis, a severe systemic disorder, micronutrients often are decreased. Apoptosis is regarded as an important mechanism in the development of often significant immunosuppression in the course of the disease. This study aimed to investigate alpha-tocopherol and selenium in reference to apoptosis in patients with sepsis. 16 patients were enrolled as soon as they fulfilled the criteria of severe sepsis. 10 intensive care patients without sepsis and 11 healthy volunteers served as controls. alpha-Tocopherol, selenium and nucleosomes were measured in serum. Phosphatidylserine externalization and Bcl-2 expression were analyzed in T-cells by flow cytometry. Serum alpha-tocopherol and selenium were decreased in severe sepsis but not in non-septic critically ill patients (p < 0.05). Conversely, markers of apoptosis were increased in sepsis but not in critically ill control patients: Nucleosomes were found to be elevated 3 fold in serum (p < 0.05) and phosphatidylserine was externalized on an expanded subpopulation of T-cells (p < 0.05) while Bcl-2 was expressed at lower levels (p < 0.05). The decrease of micronutrients correlated with markers of accelerated apoptosis. Accelerated apoptosis in sepsis is associated with low alpha-tocopherol and selenium. The results support the investigation of micronutrient supplementation strategies in severe sepsis.
Collapse
Affiliation(s)
- Stefan U Weber
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn Medical Center, Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Basu S. Novel cyclooxygenase-catalyzed bioactive prostaglandin F2alpha from physiology to new principles in inflammation. Med Res Rev 2007; 27:435-68. [PMID: 17191216 DOI: 10.1002/med.20098] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prostaglandin F2alpha (PGF2alpha), a foremost stable vasoactive cyclooxygenase (COX)-catalyzed prostaglandin, regulates a number of key physiological functions such as luteolysis, ovarian function, luteal maintenance of pregnancy, and parturition as a constitutive part of ongoing reproductive processes of the body. It has recently been implicated in the regulation of intricate pathophysiological processes, such as acute and chronic inflammation, cardiovascular and rheumatic diseases. Since the discovery of a second isoform of COXs, it has been shown that PGF2alpha can be formed in vivo from arachidonic acid through both isoforms of COXs, namely cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Being synthesized in various parts of the body, it metabolizes instantly to a number of rather inactive metabolites mainly in the lungs, liver, kidney, and efficiently excretes into the urine. 15-Keto-dihydro-PGF2alpha, a major stable metabolite of PGF2alpha that reflects in vivo PGF2alpha biosynthesis, is found in larger quantities than its parent compound in the circulation and urine in basal physiological conditions, with short-lived pulses during luteolysis, induced termination of pregnancy and parturition, and is increased in tissues and various body fluids during acute, sub-chronic, and severe chronic inflammation. Further, the close relationship of PGF2alpha with a number of risk factors for atherosclerosis indicates its major role in inflammation pathology. This review addresses multiple aspects of PGF2alpha in addition to its emerging role in physiology to inflammation.
Collapse
Affiliation(s)
- Samar Basu
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Faculty of Medicine, Uppsala University, Uppsala Science Park, Uppsala, Sweden.
| |
Collapse
|
16
|
Lykkesfeldt J, Svendsen O. Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet J 2006; 173:502-11. [PMID: 16914330 DOI: 10.1016/j.tvjl.2006.06.005] [Citation(s) in RCA: 426] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 06/05/2006] [Accepted: 06/20/2006] [Indexed: 12/28/2022]
Abstract
Important infectious diseases in farm animals, such as pneumonia and enteritis, are thought to be associated with the so-called oxidative stress, i.e. a chemical phenomenon involving an imbalance in the redox status of the individual animal. The specifics of oxidative stress and how it may result in disease or be prevented are complex questions with no simple answers. However, the considerable literature on the subject suggests that many researchers consider oxidative stress-related mechanisms to be important early events in disease development. A particularly intriguing aspect is that, at least theoretically, oxidative stress should be easily prevented with antioxidants yet the use of antioxidants as therapy remains controversial. The present knowledge on oxidative stress in farm animals is the topic of this review.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Section of Biomedicine, Department of Veterinary Pathobiology, Royal Veterinary and Agricultural University, Copenhagen, Denmark.
| | | |
Collapse
|
17
|
|
18
|
Abstract
Discovery of the F2-isoprostanes, a group of prostaglandin F2-like compounds biosynthesized from arachidonic acid nonenzymatically, has uncovered a new and novel facet of free radical biology. Some of these compounds are bioactive and thus may mediate adverse effects associated with oxidant stress. F2-Isoprostanes have also been shown to be reliable biomarkers of lipid peroxidation. Factors influencing their formation and metabolism have been studied to some extent, although much remains to be determined. The purpose of this review is to summarize our current knowledge of conditions that modulate endogenous generation of these compounds. Isoprostanes have a wide daily variation in secretion in humans. Although normal levels can be defined, these compounds are found in increased concentrations in various pathophysiological states, including ischemia-reperfusion injury, atherosclerosis, and diabetes, and in experimental conditions of oxidative stress and inflammation. Alterations in isoprostane biosynthesis, secretion, and excretion in normal physiology and in pathophysiological states are due to the various types of endogenous and exogenous regulatory mechanisms that control the availability of precursors required for isoprostane synthesis, such as dietary and tissue arachidonic acid content, oxygen concentration, and the generation of various free radical species. Selected aspects of issues related to isoprostane formation and metabolism in vivo will be examined herein.
Collapse
Affiliation(s)
- Samar Basu
- Section of Geriatrics and Clinical Nutrition Research, Faculty of Medicine, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
19
|
Crimi E, Liguori A, Condorelli M, Cioffi M, Astuto M, Bontempo P, Pignalosa O, Vietri MT, Molinari AM, Sica V, Corte FD, Napoli C. The beneficial effects of antioxidant supplementation in enteral feeding in critically ill patients: a prospective, randomized, double-blind, placebo-controlled trial. Anesth Analg 2004; 99:857-863. [PMID: 15333422 DOI: 10.1213/01.ane.0000133144.60584.f6] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated whether intervention with antioxidant vitamins C and E in enteral feeding influenced oxidative stress and clinical outcome in critically ill patients. Two-hundred-sixteen patients expected to require at least 10 days of enteral feeding completed the study. One-hundred-five patients received enteral feeding supplemented with antioxidants, and 111 control patients received an isocaloric formula. Plasma lipoperoxidation (by thiobarbituric acid reactive substances [TBARS] and prostaglandin F(2alpha) isoprostane levels), low-density lipoprotein (LDL) oxidizability, and LDL tocopherol content were determined at baseline and at the end of the 10-day period. The clinical 28-day outcome was also assessed. Plasma TBARS and isoprostanes were 5.33 +/- 1.26 nM/mL and 312 +/- 68 pg/mL, respectively, before treatment and 2.42 +/- 0.61 nM/mL and 198 +/- 42 pg/mL after intervention (P < 0.01 for both comparisons). Antioxidants improved LDL resistance to oxidative stress by approximately 30% (the lag time before treatment was 87 +/- 23 min and was 118 +/- 20 min after treatment; P < 0.04). There was a significantly reduced 28-day mortality after antioxidant intervention (45.7% in the antioxidant group and 67.5% in the regular-feeding group; P < 0.05). Isoprostanes may provide a sensitive biochemical marker for dose selection in studies involving antioxidants.
Collapse
Affiliation(s)
- Ettore Crimi
- *Department of Anesthesiology and Intensive Care, University of Eastern Piedmont, Novara, Italy; †Coronary Care Unit, Pellegrini Hospital, Naples, Italy; ‡Department of Medicine, University of Naples, Naples, Italy; §Division of Clinical Pathology, II University of Naples, Naples, Italy; and ||Department of Anesthesiology and Intensive Care, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Isoprostanes, are a novel group of prostaglandin-like compounds that are biosynthesised from esterified polyunsaturated fatty acid (PUFA) through a non-enzymatic free radical-catalysed reaction. Several of these compounds possess potent biological activity, as evidenced mainly through their pulmonary and renal vasoconstrictive effects, and have short half-lives. It has been shown that isoprostanes act as full or partial agonists through thromboxane receptors. Both human and experimental studies have indicated associations of isoprostanes and severe inflammatory conditions, ischemia-reperfusion, diabetes and atherosclerosis. Reports have shown that F2-isoprostanes are authentic biomarkers of lipid peroxidation and can be used as potential in vivo indicators of oxidant stress in various clinical conditions, as well as in evaluations of antioxidants or drugs for their free radical-scavenging properties. Higher levels of F2-isoprostanes have been found in the normal human pregnancy compared to non-pregnancy, but their physiological role has not been well studied so far. Since bioactive F2-isoprostanes are continuously formed in various tissues and large amounts of these potent compounds are found unmetabolised in their free acid form in the urine in normal basal conditions with a wide inter-individual variation, their role in the regulation of normal physiological functions could be of further biological interest, but has yet to be disclosed. Their potent biological activity has attracted great attention among scientists, since these compounds are found in humans and animals in both physiological and pathological conditions and can be used as reliable biomarkers of lipid peroxidation.
Collapse
Affiliation(s)
- Samar Basu
- Section of Geriatrics and Clinical Nutrition Research, Faculty of Medicine, Uppsala University, Box 609, SE-751 25 Uppsala, Sweden.
| |
Collapse
|
21
|
Durant R, Klouche K, Delbosc S, Morena M, Amigues L, Beraud JJ, Canaud B, Cristol JP. SUPEROXIDE ANION OVERPRODUCTION IN SEPSIS: EFFECTS OF VITAMIN E AND SIMVASTATIN. Shock 2004; 22:34-9. [PMID: 15201699 DOI: 10.1097/01.shk.0000129197.46212.7e] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oxidative stress during sepsis induces tissue damage, leading to organ dysfunction and high mortality. The antioxidant effects of vitamin E have been reported in several diseases, but not in sepsis. Statins have cholesterol-independent anti-inflammatory effects that are related to a decrease of isoprenoid proteins and oxidative stress. Therefore, we evaluated superoxide anion (O2- degree) production and ex vivo effects of vitamin E and simvastatin in sepsis. Fourteen healthy volunteers, 14 intensive care unit (ICU) nonseptic, and 14 ICU patients with sepsis were included in this prospective study. Plasma cholesterol, triglyceride, and vitamin E levels were determined by routine laboratory tests. Superoxide anion production was measured in the venous blood by chemiluminescence technique after phorbol myristate acetate stimulation. Effects of vitamin E and simvastatin on O2- degree production was investigated ex vivo. Luminescence was indexed to the leukocyte count. We also investigated the in vitro effect of simvastatin on translocation of NADPH oxidase p21 Rac2 subunit in THP-1 monocytic cell line. The ratio of vitamin E/cholesterol + triglycerides was significantly decreased in septic as compared with nonseptic patients and volunteers. The O2- degree production was significantly higher in the group of septic patients than in the others, regardless of the polymorphonuclear leukocyte count. Vitamin E and simvastatin induced ex vivo an inhibition of O2- degree production of 20% and 40% respectively. In vitro, simvastatin inhibited phorbol myristate acetate-induced- O2- degree production by monocytes through NADPH oxidase inactivation. We conclude that sepsis is associated with a significant decrease in vitamin E and an overproduction of O2- degree. Vitamin E and simvastatin lessen this phenomenon through NADPH oxidase inactivation.
Collapse
Affiliation(s)
- Richard Durant
- Intensive Care Unit, Lapeyronie University Hospital, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Victor VM, Rocha M, De la Fuente M. Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol 2004; 4:327-47. [PMID: 15037211 DOI: 10.1016/j.intimp.2004.01.020] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 01/13/2004] [Accepted: 01/29/2004] [Indexed: 02/07/2023]
Abstract
The excessive production of reactive oxygen species (ROS), associated with inflammation, leads to a condition of oxidative stress. Oxidative stress is a major contributing factor to the high mortality rates associated with several diseases such as endotoxic shock. This condition can be controlled to a certain degree by antioxidant therapies. Immune cells use ROS in order to support their functions and therefore need adequate levels of antioxidant defenses in order to avoid the harmful effect of an excessive production of ROS. This review discusses the toxic effects of endotoxin, paying particular attention to immune function. It continues by analyzing the mechanism to which specific cells of the immune system recognize endotoxin, and the resulting pathways leading to nuclear factor-kappaB activation and proinflammatory gene transcription. We also focus on the involvement of reactive oxygen and nitric oxide (NO) and the protective role of antioxidants. The potential clinical use of antioxidants in the treatment of sepsis and the effects on the redox state of the immune cells are discussed.
Collapse
Affiliation(s)
- Victor M Victor
- Unidad Mixta Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III-Universidad de Valencia, Avda. Blasco Ibañez 15, 46010 Valencia, Spain
| | | | | |
Collapse
|
23
|
Abstract
Dysregulation of the immuno-inflammatory response, as seen in sepsis, may culminate in host cell and organ damage. Lipopolysaccharide from Gram-negative bacterial cell walls induces gene activation and subsequent inflammatory mediator expression. Gene activation is regulated by a number of transcription factors at the nuclear level, of which nuclear factor kappaB appears to have a central role. The redox (reduction-oxidation) cellular balance is important for normal cellular function, including transcription factor regulation. In sepsis, a state of severe oxidative stress is encountered, with host endogenous antioxidant defences overcome. This has implications for cellular function and the regulation of gene expression. This review gives an overview of the mechanisms by which transcription factor activation and inflammatory mediator overexpression occur in sepsis, together with the events surrounding the state of oxidative stress encountered and the effects on the host's antioxidant defences. The effect of oxidative stress on transcription factor regulation is considered, together with the role of antioxidant repletion in transcription factor activation and in sepsis in general. Other interventions that may modulate transcription factor activation are also highlighted.
Collapse
Affiliation(s)
- J Macdonald
- Academic Unit of Anaesthesia and Intensive Care, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | |
Collapse
|
24
|
Basu S, Mutschler DK, Larsson AO, Kiiski R, Nordgren A, Eriksson MB. Propofol (Diprivan-EDTA) counteracts oxidative injury and deterioration of the arterial oxygen tension during experimental septic shock. Resuscitation 2001; 50:341-8. [PMID: 11719164 DOI: 10.1016/s0300-9572(01)00351-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Human septic shock can be replicated in the endotoxaemic pig. Endotoxaemia causes a multitude of events, including reduced PaO(2) and increased lipid peroxidation. This study was designed to evaluate the possible effects of a commonly used anaesthetic drug with known antioxidant properties (propofol) during porcine endotoxaemia. METHODS Ten pigs were anaesthetised and given a 6 h E. coli endotoxin infusion. The animals received, randomly, a supplementary continuous infusion of propofol emulsion (containing 0.005% EDTA) or the corresponding volume of vehicle (controls). Pathophysiologic responses were determined. Non-enzymatic (by measuring plasma 8-iso-PGF(2 alpha) and enzymatic (by measuring plasma 15-keto-dihydro-PGF(2 alpha)) lipid peroxidations were evaluated. Plasma levels of the endogenous antioxidants alpha- and gamma-tocopherols, were also analysed. RESULTS Endotoxaemia increased plasma levels of 8-iso-PGF(2 alpha) (1st-4th h) and 15-keto-dihydro-PGF(2 alpha) (1st-4th h) significantly more in controls than in the propofol+endotoxin group. PaO(2) was significantly less affected by endotoxin in the propofol treated animals (2nd-4th h). Mean arterial pressure (4th-6th h) and systemic vascular resistance (6th h) were reduced significantly more by endotoxin among the propofol-treated animals. Vitamin E (alpha-tocopherol) increased in all animals, significantly more in the propofol+endotoxin group (1/2-6th h) than in the control group. CONCLUSIONS Propofol reduced endotoxin-induced free radical mediated and cyclooxygenase catalysed lipid peroxidation significantly. The implication is that propofol counteracts endotoxin-induced deterioration of PaO(2).
Collapse
Affiliation(s)
- S Basu
- Department of Geriatrics and Clinical Nutrition Research, Uppsala University Hospital, S-751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|