1
|
Wu J, Ding Z, Zhong M, Xi J, He Y, Zhang B, Fang J. Polyphyllin II Induces Apoptosis in Fibrosarcoma Cells via Activating Pyruvate Kinase M2. Chem Res Toxicol 2024; 37:1394-1403. [PMID: 39066737 DOI: 10.1021/acs.chemrestox.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Aerobic glycolysis is a metabolic reprogramming of tumor cells that is essential for sustaining their phenotype of fast multiplication by continuously supplying energy and mass. Pyruvate kinase M2 (PKM2) has a vital role in this process, which has given it high interest as a target for anticancer drug development. With potent toxicity to many types of cancer cells, polyphyllin II (PP2), a steroidal saponin isolated from the herbaceous plant Rhizoma paridis, brought to our attention that it might interfere with the PKM2 activity. In this study, we discovered that PP2 was a novel agonist of PKM2. PP2 activated recombinant PKM2 and changed the protein's oligomeric state to activate intracellular PKM2. At the same time, PP2 suppressed its protein kinase function by decreasing the content of nuclear PKM2. The mRNA levels of its downstream genes, such as Glut1, LDHA, and MYC, were inhibited. In addition, PP2 induced oxidative stress by downregulating the expression and activity of antioxidant proteins such as NQO1, TrxR, and Trx in HT-1080 cells, which in turn led to mitochondrial dysfunction and ultimately induced apoptosis. Moreover, PP2 reduced the proliferation and migration of HT-1080 cells. Thus, targeting the glycolysis pathway offers an unprecedented mode of action for comprehending PP2's pharmacological impacts and advances PP2's further development in fibrosarcoma therapy.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhenjiang Ding
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Xi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ying He
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 , Jiangsu, China
| |
Collapse
|
2
|
Chen DQ, Han J, Liu H, Feng K, Li P. Targeting pyruvate kinase M2 for the treatment of kidney disease. Front Pharmacol 2024; 15:1376252. [PMID: 38910890 PMCID: PMC11190346 DOI: 10.3389/fphar.2024.1376252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 06/25/2024] Open
Abstract
Pyruvate kinase M2 (PKM2), a rate limiting enzyme in glycolysis, is a cellular regulator that has received extensive attention and regards as a metabolic regulator of cellular metabolism and energy. Kidney is a highly metabolically active organ, and glycolysis is the important energy resource for kidney. The accumulated evidences indicates that the enzymatic activity of PKM2 is disturbed in kidney disease progression and treatment, especially diabetic kidney disease and acute kidney injury. Modulating PKM2 post-translational modification determines its enzymatic activity and nuclear translocation that serves as an important interventional approach to regulate PKM2. Emerging evidences show that PKM2 and its post-translational modification participate in kidney disease progression and treatment through modulating metabolism regulation, podocyte injury, fibroblast activation and proliferation, macrophage polarization, and T cell regulation. Interestingly, PKM2 activators (TEPP-46, DASA-58, mitapivat, and TP-1454) and PKM2 inhibitors (shikonin, alkannin, compound 3k and compound 3h) have exhibited potential therapeutic property in kidney disease, which indicates the pleiotropic effects of PKM2 in kidney. In the future, the deep investigation of PKM2 pleiotropic effects in kidney is urgently needed to determine the therapeutic effect of PKM2 activator/inhibitor to benefit patients. The information in this review highlights that PKM2 functions as a potential biomarker and therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Dan-Qian Chen
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Jin Han
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Department of Nephrology, Xi’an Chang’an District Hospital, Xi’an, Shaanxi, China
| | - Hui Liu
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Kai Feng
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Park YS, Han JH, Park JH, Choi JS, Kim SH, Kim HS. Pyruvate Kinase M2: A New Biomarker for the Early Detection of Diabetes-Induced Nephropathy. Int J Mol Sci 2023; 24:ijms24032683. [PMID: 36769016 PMCID: PMC9916947 DOI: 10.3390/ijms24032683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes. DN progresses to end-stage renal disease, which has a high mortality rate. Current research is focused on identifying non-invasive potential biomarkers in the early stage of DN. We previously indicated that pyruvate kinase M2 (PKM2) is excreted in the urine of rats after cisplatin-induced acute kidney injury (AKI). However, it has not been reported whether PKM2 can be used as a biomarker to diagnose DN. Therefore, we try to compare whether the protein PKM2 can be detected in the urine samples from diabetic patients as shown in the results of DN models. In this study, high-fat diet (HFD)-induced Zucker diabetic fatty (ZDF) rats were used for DN phenotyping. After 19 weeks of receiving a HFD, the DN model's blood glucose, blood urea nitrogen, and serum creatinine levels were significantly increased; severe tubular and glomerular damages were also noted. The following protein-based biomarkers were increased in the urine of these models: kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and PKM2. PKM2 had the earliest detection rate. In the urine samples of patients, PKM2 protein was highly detected in the urine of diabetic patients but was not excreted in the urine of normal subjects. Therefore, PKM2 was selected as the new biomarker for the early diagnosis of DN. Our results reflect current knowledge on the role of PKM2 in DN.
Collapse
Affiliation(s)
- Yeon Su Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joo Hee Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Soo Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung Hyeon Kim
- St. Mark’s School, 25 Marlboro Rd, Southborough, MA 01772, USA
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: ; Tel.:+82-31-290-7789
| |
Collapse
|
4
|
Wang M, Pang Y, Guo Y, Tian L, Liu Y, Shen C, Liu M, Meng Y, Cai Z, Wang Y, Zhao W. Metabolic reprogramming: A novel therapeutic target in diabetic kidney disease. Front Pharmacol 2022; 13:970601. [PMID: 36120335 PMCID: PMC9479190 DOI: 10.3389/fphar.2022.970601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common microvascular complications of diabetes mellitus. However, the pathological mechanisms contributing to DKD are multifactorial and poorly understood. Diabetes is characterized by metabolic disorders that can bring about a series of changes in energy metabolism. As the most energy-consuming organs secondary only to the heart, the kidneys must maintain energy homeostasis. Aberrations in energy metabolism can lead to cellular dysfunction or even death. Metabolic reprogramming, a shift from mitochondrial oxidative phosphorylation to glycolysis and its side branches, is thought to play a critical role in the development and progression of DKD. This review focuses on the current knowledge about metabolic reprogramming and the role it plays in DKD development. The underlying etiologies, pathological damages in the involved cells, and potential molecular regulators of metabolic alterations are also discussed. Understanding the role of metabolic reprogramming in DKD may provide novel therapeutic approaches to delay its progression to end-stage renal disease.
Collapse
|
5
|
The Role of PKM2 in the Regulation of Mitochondrial Function: Focus on Mitochondrial Metabolism, Oxidative Stress, Dynamic, and Apoptosis. PKM2 in Mitochondrial Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7702681. [PMID: 35571239 PMCID: PMC9106463 DOI: 10.1155/2022/7702681] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
The M2 isoform of pyruvate kinase (PKM2) is one isoform of pyruvate kinase (PK). PKM2 is expressed at high levels during embryonic development and tumor progression and is subject to complex allosteric regulation. PKM2 is a special glycolytic enzyme that regulates the final step of glycolysis; the role of PKM2 in the metabolism, survival, and apoptosis of cancer cells has received increasing attention. Mitochondria are directly or indirectly involved in the regulation of energy metabolism, susceptibility to oxidative stress, and cell death; however, the role of PKM2 in mitochondrial functions remains unclear. Herein, we review the related mechanisms of the role of PKM2 in the regulation of mitochondrial functions from the aspects of metabolism, reactive oxygen species (ROS), dynamic, and apoptosis, which can be highlighted as a target for the clinical management of cardiovascular and metabolic diseases.
Collapse
|
6
|
Arora S, Joshi G, Chaturvedi A, Heuser M, Patil S, Kumar R. A Perspective on Medicinal Chemistry Approaches for Targeting Pyruvate Kinase M2. J Med Chem 2022; 65:1171-1205. [PMID: 34726055 DOI: 10.1021/acs.jmedchem.1c00981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The allosteric regulation of pyruvate kinase M2 (PKM2) affects the switching of the PKM2 protein between the high-activity and low-activity states that allow ATP and lactate production, respectively. PKM2, in its low catalytic state (dimeric form), is chiefly active in metabolically energetic cells, including cancer cells. More recently, PKM2 has emerged as an attractive target due to its role in metabolic dysfunction and other interrelated conditions. PKM2 (dimer) activity can be inhibited by modulating PKM2 dimer-tetramer dynamics using either PKM2 inhibitors that bind at the ATP binding active site of PKM2 (dimer) or PKM2 activators that bind at the allosteric site of PKM2, thus activating PKM2 from the dimer formation to the tetrameric formation. The present perspective focuses on medicinal chemistry approaches to design and discover PKM2 inhibitors and activators and further provides a scope for the future design of compounds targeting PKM2 with better efficacy and selectivity.
Collapse
Affiliation(s)
- Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand 248171, India
| | - Anuhar Chaturvedi
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Santoshkumar Patil
- Discovery Services, Syngene International Ltd., Biocon Park, SEZ, Bommasandra Industrial Area-Phase-IV, Bommasandra-Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
7
|
Tu C, Wang L, Wei L. The Role of PKM2 in Diabetic Microangiopathy. Diabetes Metab Syndr Obes 2022; 15:1405-1412. [PMID: 35548702 PMCID: PMC9081029 DOI: 10.2147/dmso.s366403] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic microangiopathy is among the most common complications affecting patients with diabetes, and includes both diabetic retinopathy (DR) and diabetic nephropathy (DKD). Diabetic microangiopathy remains a persistent threat to the health and quality of life of affected patients. Mechanistically, the severity of DR and DKD is tied to mitochondrial and glucose metabolism abnormalities, with the activation of the glycolytic enzyme pyruvate kinase M2 (PKM2) contributing to mitochondrial and glomerular dysfunction, abnormal renal hemodynamics, and retinopathy. PKM2 can activate inflammatory bodies in macrophages to promote the release of inflammatory mediators, and serves as a key regulator of inflammatory factors, chemokines and adhesion molecules. As such, there is sufficient evidence that PKM2 can be used as a biomarker for the diagnosis of diabetes and diabetic microangiopathy. Here, we survey the mechanisms whereby PKM2 contributes to diabetes-related microvascular diseases, associated regulatory roles, post-translational modifications, and the potential utility of PKM2 as a therapeutic target. Through this literature review, we have determined that PKM2 offers promise as both a diagnostic marker and therapeutic target with direct relevance to research pertaining to diabetic microangiopathy.
Collapse
Affiliation(s)
- Chao Tu
- Department of Internal Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, People’s Republic of China
| | - Liangzhi Wang
- Department of Internal Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, People’s Republic of China
| | - Lan Wei
- Department of Internal Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, People’s Republic of China
- Correspondence: Lan Wei, Department of Internal Medicine, the Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, Jiangsu, 213000, People’s Republic of China, Tel +86 0519 68871132, Email
| |
Collapse
|
8
|
Normalizing HIF-1α Signaling Improves Cellular Glucose Metabolism and Blocks the Pathological Pathways of Hyperglycemic Damage. Biomedicines 2021; 9:biomedicines9091139. [PMID: 34572324 PMCID: PMC8471680 DOI: 10.3390/biomedicines9091139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
Intracellular metabolism of excess glucose induces mitochondrial dysfunction and diversion of glycolytic intermediates into branch pathways, leading to cell injury and inflammation. Hyperglycemia-driven overproduction of mitochondrial superoxide was thought to be the initiator of these biochemical changes, but accumulating evidence indicates that mitochondrial superoxide generation is dispensable for diabetic complications development. Here we tested the hypothesis that hypoxia inducible factor (HIF)-1α and related bioenergetic changes (Warburg effect) play an initiating role in glucotoxicity. By using human endothelial cells and macrophages, we demonstrate that high glucose (HG) induces HIF-1α activity and a switch from oxidative metabolism to glycolysis and its principal branches. HIF1-α silencing, the carbonyl-trapping and anti-glycating agent ʟ-carnosine, and the glyoxalase-1 inducer trans-resveratrol reversed HG-induced bioenergetics/biochemical changes and endothelial-monocyte cell inflammation, pointing to methylglyoxal (MGO) as the non-hypoxic stimulus for HIF1-α induction. Consistently, MGO mimicked the effects of HG on HIF-1α induction and was able to induce a switch from oxidative metabolism to glycolysis. Mechanistically, methylglyoxal causes HIF1-α stabilization by inhibiting prolyl 4-hydroxylase domain 2 enzyme activity through post-translational glycation. These findings introduce a paradigm shift in the pathogenesis and prevention of diabetic complications by identifying HIF-1α as essential mediator of glucotoxicity, targetable with carbonyl-trapping agents and glyoxalase-1 inducers.
Collapse
|
9
|
Li Z, Lu S, Li X. The role of metabolic reprogramming in tubular epithelial cells during the progression of acute kidney injury. Cell Mol Life Sci 2021; 78:5731-5741. [PMID: 34185125 PMCID: PMC11073237 DOI: 10.1007/s00018-021-03892-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is one of the most common clinical syndromes. AKI is associated with significant morbidity and subsequent chronic kidney disease (CKD) development. Thus, it is urgent to develop a strategy to hinder AKI progression. Renal tubules are responsible for the reabsorption and secretion of various solutes and the damage to this part of the nephron is a key mediator of AKI. As we know, many common renal insults primarily target the highly metabolically active proximal tubular cells (PTCs). PTCs are the most energy-demanding cells in the kidney. The ATP that they use is mostly produced in their mitochondria by fatty acid β-oxidation (FAO). But, when PTCs face various biological stresses, FAO will shut down for a time that outlives injury. Recent studies have suggested that surviving PTCs can adapt to FAO disruption by increasing glycolysis when facing metabolic constraints, although PTCs do not perform glycolysis in a normal physiological state. Enhanced glycolysis in a short period compensates for impaired energy production and exerts partial renal-protective effects, but its long-term effect on renal function and AKI progression is not promising. Deranged FAO and enhanced glycolysis may contribute to the AKI to CKD transition through different molecular biological mechanisms. In this review, we concentrate on the recent pathological findings of AKI with regards to the metabolic reprogramming in PTCs, confirming that targeting metabolic reprogramming represents a potentially effective therapeutic strategy for the progression of AKI.
Collapse
Affiliation(s)
- Zhenzhen Li
- Medicial Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Shan Lu
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaobing Li
- College of Basic Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| |
Collapse
|
10
|
Iacobini C, Vitale M, Pesce C, Pugliese G, Menini S. Diabetic Complications and Oxidative Stress: A 20-Year Voyage Back in Time and Back to the Future. Antioxidants (Basel) 2021; 10:727. [PMID: 34063078 PMCID: PMC8147954 DOI: 10.3390/antiox10050727] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Twenty years have passed since Brownlee and colleagues proposed a single unifying mechanism for diabetic complications, introducing a turning point in this field of research. For the first time, reactive oxygen species (ROS) were identified as the causal link between hyperglycemia and four seemingly independent pathways that are involved in the pathogenesis of diabetes-associated vascular disease. Before and after this milestone in diabetes research, hundreds of articles describe a role for ROS, but the failure of clinical trials to demonstrate antioxidant benefits and some recent experimental studies showing that ROS are dispensable for the pathogenesis of diabetic complications call for time to reflect. This twenty-year journey focuses on the most relevant literature regarding the main sources of ROS generation in diabetes and their role in the pathogenesis of cell dysfunction and diabetic complications. To identify future research directions, this review discusses the evidence in favor and against oxidative stress as an initial event in the cellular biochemical abnormalities induced by hyperglycemia. It also explores possible alternative mechanisms, including carbonyl stress and the Warburg effect, linking glucose and lipid excess, mitochondrial dysfunction, and the activation of alternative pathways of glucose metabolism leading to vascular cell injury and inflammation.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy;
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| |
Collapse
|
11
|
Patel S, Das A, Meshram P, Sharma A, Chowdhury A, Jariyal H, Datta A, Sarmah D, Nalla LV, Sahu B, Khairnar A, Bhattacharya P, Srivastava A, Shard A. Pyruvate kinase M2 in chronic inflammations: a potpourri of crucial protein-protein interactions. Cell Biol Toxicol 2021; 37:653-678. [PMID: 33864549 DOI: 10.1007/s10565-021-09605-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Chronic inflammation (CI) is a primary contributing factor involved in multiple diseases like cancer, stroke, diabetes, Alzheimer's disease, allergy, asthma, autoimmune diseases, coeliac disease, glomerulonephritis, sepsis, hepatitis, inflammatory bowel disease, reperfusion injury, and transplant rejections. Despite several expansions in our understanding of inflammatory disorders and their mediators, it seems clear that numerous proteins participate in the onset of CI. One crucial protein pyruvate kinase M2 (PKM2) much studied in cancer is also found to be inextricably woven in the onset of several CI's. It has been found that PKM2 plays a significant role in several disorders using a network of proteins that interact in multiple ways. For instance, PKM2 forms a close association with epidermal growth factor receptors (EGFRs) for uncontrolled growth and proliferation of tumor cells. In neurodegeneration, PKM2 interacts with apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) to onset Alzheimer's disease pathogenesis. The cross-talk of protein tyrosine phosphatase 1B (PTP1B) and PKM2 acts as stepping stones for the commencement of diabetes. Perhaps PKM2 stores the potential to unlock the pathophysiology of several diseases. Here we provide an overview of the notoriously convoluted biology of CI's and PKM2. The cross-talk of PKM2 with several proteins involved in stroke, Alzheimer's, cancer, and other diseases has also been discussed. We believe that considering the importance of PKM2 in inflammation-related diseases, new options for treating various disorders with the development of more selective agents targeting PKM2 may appear.
Collapse
Affiliation(s)
- Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Anwesha Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Payal Meshram
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Ayushi Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Arnab Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
12
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
13
|
Pyruvate kinase M2 activation protects against the proliferation and migration of pulmonary artery smooth muscle cells. Cell Tissue Res 2020; 382:585-598. [PMID: 32719938 DOI: 10.1007/s00441-020-03245-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Pyruvate kinase M2 (PKM2), which is encoded by PKM, is a ubiquitously expressed intracellular protein and is associated with proliferation cell phenotype. In PAH patients and PAH models, we found higher levels of PKM2 tyrosine 105 phosphorylation (phospho-PKM2 (Y105)) than in controls, both in vivo and in vitro. Here, we demonstrate that PKM2 stimulates inflammatory and apoptosis signalling pathways in pulmonary artery smooth muscle cells (PASMCs) and promotes PASMC migration and proliferation. PKM2 phosphorylation promoted the dimerization activation and nuclear translocation of STAT3, a transcription factor regulating proliferation, growth, and apoptosis. TLR2, a transmembrane protein receptor involved in both innate and adaptive immune responses, promoted PKM2 phosphorylation in hypoxia-induced PASMCs. Therefore, we hypothesized that PKM2 also affects the proliferation and migration of PASMCs. The proliferation of hypoxia-induced normal human pulmonary artery smooth muscle cells (normal-HPASMCs) was found to be inhibited by TEPP-46 (PKM2 agonist) and PKM2 siRNA using wound healing, 5-ethynyl-2'-deoxyuridine (EdU), and immunofluorescence (Ki67) assays. PASMCs isolated from PAH patients (PAH-HPASMCs) and hypoxia-treated rats (PAH-RPASMCs) also confirmed the above results. TEPP-46 treatment was found to improve hypoxia-induced pulmonary artery remodelling and right heart function in mice, and the link between PKM2 and STAT3 was also confirmed in vivo. In conclusion, PKM2 plays crucial roles in the proliferation and migration of PASMCs.
Collapse
|