1
|
Hong H, Gao M, Zhou M, Wang A, Hua R, Ma Z, Wang Y, Xu Y, Bai Y, Huang G, Yu Y, Tan H. Ethyl acetate extract of Nymphaea candida Presl: A potential anti-depressant and neuroprotective treatment strategy. Biomed Pharmacother 2024; 179:117304. [PMID: 39178813 DOI: 10.1016/j.biopha.2024.117304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Nymphaea candida Presl (NC), traditionally used in medicine for heat syndrome-related ailments, possesses antioxidative, anti-inflammatory, hepatoprotective, and neuroprotective properties. This research investigates the antidepressant and neuroprotective effects and mechanisms of Nymphaea candida Presl ethyl acetate (NCEA). Primary components of NCEA were identified as phenolic acids and flavonoids through UPLC-MS/MS analysis. The depression mouse model was induced via intracerebroventricular injection of Lipopolysaccharide (LPS), followed by oral administration of fluoxetine and NCEA for one week. Biochemical assays and HE staining confirmed NCEA's non-toxicity and protective effects on the liver and lungs. NCEA administration mitigated LPS-induced depressive behaviors, decreased IL-1β, TNF-α levels in the hippocampus, suppressed microglial activation, reduced Iba-1 expression, and increased NA, brain-derived neurotrophic factor (BDNF), and dendritic spine density in the hippocampus. Furthermore, NCEA enhanced cell viability in a CORT-induced PC12 cell model, decreased lactate dehydrogenase (LDH) release rate, total superoxide dismutase (SOD) inhibition rate, intracellular nitric oxide (NO) release, and reduced reactive oxygen species (ROS) production. Our research findings suggest that NCEA exhibits significant antidepressant effects, which may be attributed to its reduction of neuroinflammation, improvement in neurotransmitter levels, neuronal protection, and antioxidative stress properties.
Collapse
Affiliation(s)
- Huixia Hong
- College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, Xinjiang University, Urumqi, Xinjiang 830017, China.
| | - Ming Gao
- College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, Xinjiang University, Urumqi, Xinjiang 830017, China.
| | - Min Zhou
- College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, Xinjiang University, Urumqi, Xinjiang 830017, China.
| | - Ao Wang
- College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, Xinjiang University, Urumqi, Xinjiang 830017, China.
| | - Ruimao Hua
- College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, Xinjiang University, Urumqi, Xinjiang 830017, China.
| | - Ziwei Ma
- Shenzhen Children's Hospital of Shantou University Medical College, Shenzhen Second People's Hospital, Shenzhen University Health Science Center, 518026, China.
| | - Yachao Wang
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China; The Institute Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | - Yanwen Xu
- Translational Medicine Institute, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518000, China.
| | - Yu Bai
- Shenzhen Children's Hospital of Shantou University Medical College, Shenzhen Second People's Hospital, Shenzhen University Health Science Center, 518026, China.
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China; The Institute Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | - Yuming Yu
- College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, Xinjiang University, Urumqi, Xinjiang 830017, China.
| | - Hui Tan
- Shenzhen Children's Hospital of Shantou University Medical College, Shenzhen Second People's Hospital, Shenzhen University Health Science Center, 518026, China.
| |
Collapse
|
2
|
Zhou Y, Chen Z, Su F, Tao Y, Wang P, Gu J. NMR-based metabolomics approach to study the effect and related molecular mechanisms of Saffron essential oil against depression. J Pharm Biomed Anal 2024; 247:116244. [PMID: 38810330 DOI: 10.1016/j.jpba.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
Depression currently ranks as the fourth leading cause of disability globally, affecting approximately 20% of the world's population. we established a chronic restraint stress (CRS) induced depression model in mice and employed fluoxetine as a reference drug. We assessed the therapeutic potential of saffron essential oil (SEO) and elucidated its underlying mechanisms through behavioral indices and NMR-based metabolomic analysis. The findings indicate that SEO ameliorates behavioral symptoms of depression, such as the number of entries into the central area, fecal count, latency to immobility, and duration of immobility in both the Tail Suspension Test (TST) and the Forced Swim Test (FST), along with correcting the dysregulation of 5-serotonin. Metabolomic investigations identified sixteen potential biomarkers across the liver, spleen, and kidneys. SEO notably modulated nine of these biomarkers: dimethylglycine, glycerol, adenosine, β-glucose, α-glucose, uridine, mannose, sarcosine, and aspartate, with glycerol emerging as a common biomarker in both the liver and spleen. Pathway analysis suggests that these biomarkers participate in glycolysis, glycine serine threonine metabolism, and energy metabolism, potentially implicating a role in neural regulation. In summary, SEO effectively mitigates depressive-like behaviors in CRS mice, predominantly via modulation of glycolysis, amino acid metabolism, and energy metabolism, and potentially exerts antidepressant effects through neural regulation. Our study offers insights into small molecule metabolite alterations in CRS mice through a metabolomics lens, providing evidence for the antidepressant potential of plant essential oils and contributing to our understanding of the mechanisms of traditional Chinese medicine in treating depression.
Collapse
Affiliation(s)
- Ying Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China
| | - Feng Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Jinping Gu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China.
| |
Collapse
|
3
|
Costa A, Micheli L, Sordi V, Ciampi C, Lucci J, Passani MB, Provensi G. Preventing social defeat stress-induced behavioural and neurochemical alterations by repeated treatment with a mix of Centella asiatica, Echinacea purpurea and Zingiber officinale standardized extracts. Front Pharmacol 2024; 15:1439811. [PMID: 39253374 PMCID: PMC11381240 DOI: 10.3389/fphar.2024.1439811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Background: Prolonged exposure to stress is a risk factor for the onset of several disorders. Modern life is burdened by a pervasive prevalence of stress, which represents a major societal challenge requiring new therapeutic strategies. In this context, botanical drug-based therapies can have a paramount importance. Methods: Here we studied the preventive effects of a repeated treatment (p.o. daily, 3 weeks) with a combination of Centella asiatica (200 mg/kg), Echinacea purpurea (20 mg/kg) and Zingiber officinale (150 mg/kg) standardized extracts, on the chronic social defeat stress (CSDS) deleterious outcomes. After 10 days of CSDS exposure, male mice' performances were evaluated in paradigms relevant for social (social interaction test), emotional (tail suspension test), cognitive (novel object recognition) domains as well as for pain perception (cold plate and von Frey tests) and motor skills (rotarod). Mice were then sacrificed, the spinal cords, hippocampi and frontal cortices dissected and processed for RT-PCR analysis. Results: Extracts mix treatment prevented stress-induced social aversion, memory impairment, mechanical and thermal allodynia and reduced behavioural despair independently of stress exposure. The treatment stimulated hippocampal and cortical BDNF and TrkB mRNA levels and counteracted stress-induced alterations in pro- (TNF-α, IL-1β and IL-6) and anti-inflammatory (IL4, IL10) cytokines expression in the same areas. It also modulated expression of pain related genes (GFAP and Slc1a3) in the spinal cord. Conclusion: The treatment with the extracts mix obtained from C. asiatica, E. purpurea and Z. officinale may represent a promising strategy to promote resilience and prevent the deleterious effects induced by extended exposure to psychosocial stress.
Collapse
Affiliation(s)
- Alessia Costa
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Laura Micheli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Virginia Sordi
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Clara Ciampi
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Jacopo Lucci
- Bios-Therapy, Physiological Systems for Health S.p.A., Sansepolcro, Italy
- Aboca S.p.A. Società Agricola, Innovation and Medical Science Division, Sansepolcro, Italy
| | | | - Gustavo Provensi
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
4
|
Díez-Sainz E, Milagro FI, Aranaz P, Riezu-Boj JI, Lorente-Cebrián S. MicroRNAs from edible plants reach the human gastrointestinal tract and may act as potential regulators of gene expression. J Physiol Biochem 2024; 80:655-670. [PMID: 38662188 PMCID: PMC11502557 DOI: 10.1007/s13105-024-01023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules that regulate gene expression at the post-transcriptional level. A cross-kingdom regulatory function has been unveiled for plant miRNAs (xenomiRs), which could shape inter-species interactions of plants with other organisms (bacteria and humans) and thus, be key functional molecules of plant-based food in mammals. However, discrepancies regarding the stability and bioavailability of dietary plant miRNAs on the host cast in doubt whether these molecules could have a significant impact on human physiology. The aim of the present study was to identify miRNAs in edible plants and determine their bioavailability on humans after an acute intake of plant-based products. It was found that plant food, including fruits, vegetables and greens, nuts, legumes, and cereals, contains a wide range of miRNAs. XenomiRs miR156e, miR159 and miR162 were detected in great abundance in edible plants and were present among many plant foods, and thus, they were selected as candidates to analyse their bioavailability in humans. These plant miRNAs resisted cooking processes (heat-treatments) and their relative presence increased in faeces after and acute intake of plant-based foods, although they were not detected in serum. Bioinformatic analysis revealed that these miRNAs could potentially target human and bacterial genes involved in processes such as cell signalling and metabolism. In conclusion, edible plants contain miRNAs, such as miR156e, miR159 and miR162, that could resist degradation during cooking and digestion and reach the distal segments of the gastrointestinal tract. Nevertheless, strategies should be developed to improve their absorption to potentially reach host tissues and organs and modulate human physiology.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Paula Aranaz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - José I Riezu-Boj
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009, Saragossa, Spain
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013, Saragossa, Spain
- Aragón Health Research Institute (IIS-Aragon), 50009, Saragossa, Spain
| |
Collapse
|
5
|
Wang X, Yang C, Zhang X, Ye C, Liu W, Wang C. Marine natural products: potential agents for depression treatment. Acta Biochim Pol 2024; 71:12569. [PMID: 38812493 PMCID: PMC11135343 DOI: 10.3389/abp.2024.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 05/31/2024]
Abstract
Depression is a common psychiatric disorder. Due to the disadvantages of current clinical drugs, including poor efficacy and unnecessary side effects, research has shifted to novel natural products with minimal or no adverse effects as therapeutic alternatives. The ocean is a vast ecological home, with a wide variety of organisms that can produce a large number of natural products with unique structures, some of which have neuroprotective effects and are a valuable source for the development of new drugs for depression. In this review, we analyzed preclinical and clinical studies of natural products derived from marine organisms with antidepressant potential, including the effects on the pathophysiology of depression, and the underlying mechanisms of these effects. It is expected to provide a reference for the development of new antidepressant drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengmin Wang
- Department of Psychiatry, Shenzhen Longgang Center for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
6
|
Hua Z, Liu N, Yan X. Research progress on the pharmacological activity, biosynthetic pathways, and biosynthesis of crocins. Beilstein J Org Chem 2024; 20:741-752. [PMID: 38633914 PMCID: PMC11022409 DOI: 10.3762/bjoc.20.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Crocins are water-soluble apocarotenoids isolated from the flowers of crocus and gardenia. They exhibit various pharmacological effects, including neuroprotection, anti-inflammatory properties, hepatorenal protection, and anticancer activity. They are often used as coloring and seasoning agents. Due to the limited content of crocins in plants and the high cost of chemical synthesis, the supply of crocins is insufficient to meet current demand. The biosynthetic pathways for crocins have been elucidated to date, which allows the heterologous production of these valuable compounds in microorganisms by fermentation. This review article provides a comprehensive overview of the chemistry, pharmacological activity, biosynthetic pathways, and heterologous production of crocins, aiming to lay the foundation for the large-scale production of these valuable natural products by using engineered microbial cell factories.
Collapse
Affiliation(s)
- Zhongwei Hua
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Nan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
7
|
Annuar NAK, Azlan UK, Mediani A, Tong X, Han R, Al-Olayan E, Baharum SN, Bunawan H, Sarian MN, Hamezah HS, Jantan I. An insight review on the neuropharmacological effects, mechanisms of action, pharmacokinetics and toxicity of mitragynine. Biomed Pharmacother 2024; 171:116134. [PMID: 38219389 DOI: 10.1016/j.biopha.2024.116134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
Mitragynine is one of the main psychoactive alkaloids in Mitragyna speciosa Korth. (kratom). It has opium-like effects by acting on μ-, δ-, and κ-opioid receptors in the brain. The compound also interacts with other receptors, such as adrenergic and serotonergic receptors and neuronal Ca2+ channels in the central nervous system to have its neuropharmacological effects. Mitragynine has the potential to treat diseases related to neurodegeneration such as Alzheimer's disease and Parkinson's disease, as its modulation on the opioid receptors has been reported extensively. This review aimed to provide an up-to-date and critical overview on the neuropharmacological effects, mechanisms of action, pharmacokinetics and safety of mitragynine as a prospective psychotropic agent. Its multiple neuropharmacological effects on the brain include antinociceptive, anti-inflammatory, antidepressant, sedative, stimulant, cognitive, and anxiolytic activities. The potential of mitragynine to manage opioid withdrawal symptoms related to opioid dependence, its pharmacokinetics and toxic effects were also discussed. The interaction of mitragynine with various receptors in the brain produce diverse neuropharmacological effects, which have beneficial properties in neurological disorders. However, further studies need to be carried out on mitragynine to uncover its complex mechanisms of action, pharmacokinetics, pharmacodynamic profiles, addictive potential, and safe dosage to prevent harmful side effects.
Collapse
Affiliation(s)
- Nur Aisyah Khairul Annuar
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ummi Kalthum Azlan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Murni Nazira Sarian
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
8
|
Singh A, Sarwat M, Gupta S. Pharmacological Mechanism of Herbal Interventions for Bipolar Disorder. Curr Pharm Des 2024; 30:1867-1879. [PMID: 38847247 DOI: 10.2174/0113816128312442240519184440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/17/2024] [Indexed: 09/21/2024]
Abstract
Bipolar disorder is a neuropsychiatric disease characterized by an abundance of undesired ideas and thoughts associated with recurrent episodes of mania or hypomania and depression. Alterations in the circuits, including the prefrontal cortex, striatum, and limbic system, regulate mood and cause variation in several crucial neurotransmitters, including serotonin, dopamine, GABA, and glutamate. Imbalances in dopamine levels have been implicated in the manic phase, while variance in serotonin is linked to depressive episodes. The precise pathophysiology of bipolar disorder is still unknown. Though different treatments are available, like lithium, risperidone, valproic acid, etc., which are widely used, they come with certain limitations, including narrow therapeutic index, hypothyroidism, weight gain, extrapyramidal symptoms, etc. The interest in herbal- based treatments for bipolar disorder arises from the desire for alternative, potentially more natural, and holistic approaches with fewer side effects. The current review focuses on the potential effects of herbal drugs and their derivatives to alleviate the symptoms of bipolar disorder.
Collapse
Affiliation(s)
- Abhinav Singh
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India
| | - Sangeetha Gupta
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India
| |
Collapse
|
9
|
Wu Y, Gong Y, Sun J, Zhang Y, Luo Z, Nishanbaev SZ, Usmanov D, Song X, Zou L, Benito MJ. Bioactive Components and Biological Activities of Crocus sativus L. Byproducts: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19189-19206. [PMID: 37963243 DOI: 10.1021/acs.jafc.3c04494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The production of saffron spice results in numerous byproducts, as only 15 g of spice can be produced from 1 kg of flowers, indicating that over 90% of the saffron flower material is eventually discarded as waste. In view of this, the paper reviews current knowledge on the natural active components in saffron byproducts and their biological activities, aiming to lay a theoretical and scientific foundation for the further utilization. Saffron byproducts contain a variety of phytochemical components, such as flavonoids, anthocyanins, carotenoids, phenolic acids, monoterpenoids, alkaloids, glycosides, and saponins. The activities of saffron byproducts and their mechanisms are also discussed in detail here.
Collapse
Affiliation(s)
- Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yucui Gong
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Juan Sun
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yao Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Sabir Z Nishanbaev
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100170, Uzbekistan
| | - Durbek Usmanov
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100170, Uzbekistan
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Ligen Zou
- Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang 310023, China
| | - María José Benito
- School of Agricultural Engineering, University of Extremadura, Badajoz 06007, Spain
| |
Collapse
|
10
|
Meesakul P, Shea T, Wong SX, Kuroki Y, Cao S. Hawaiian Plants with Beneficial Effects on Sleep, Anxiety, and Mood, etc. Pharmaceuticals (Basel) 2023; 16:1228. [PMID: 37765036 PMCID: PMC10538232 DOI: 10.3390/ph16091228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Diverse chemical messengers are responsible for maintaining homeostasis in the human body, for example, hormones and neurotransmitters. Various Hawaiian plant species produce compounds that exert effects on these messengers and the systems of which they are a part. The main purpose of this review article is to evaluate the potential effects of Hawaiian plants on reducing pain and anxiety and improving sleep and mood. A comprehensive literature search was conducted in SciFinder, PubMed, Science Direct, Scopus, Google Scholar, and Scientific Information Database between 2019 and 2023 to identify related articles. Results indicate that several Hawaiian plant species, such as M. citrifolia and P. methysticum, have medicinal properties associated with these effects. These plants have been used in traditional Hawaiian cultural practices for centuries, suggesting their potential to benefit human health and well-being. This review presents a comprehensive analysis of the available evidence concerning the potential impacts of Hawaiian plants on sleep, anxiety, mood, and pain.
Collapse
Affiliation(s)
- Pornphimon Meesakul
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA;
| | - Tyler Shea
- Chemistry Department, University of Hawai’i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA;
| | - Shi Xuan Wong
- Delightex Pte. Ltd., 230 Victoria Street, #15-01/08 Bugis Junction Towers, Singapore 188024, Singapore; (S.X.W.); (Y.K.)
| | - Yutaka Kuroki
- Delightex Pte. Ltd., 230 Victoria Street, #15-01/08 Bugis Junction Towers, Singapore 188024, Singapore; (S.X.W.); (Y.K.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA;
| |
Collapse
|
11
|
Dobrek L, Głowacka K. Depression and Its Phytopharmacotherapy-A Narrative Review. Int J Mol Sci 2023; 24:4772. [PMID: 36902200 PMCID: PMC10003400 DOI: 10.3390/ijms24054772] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Depression is a mental health disorder that develops as a result of complex psycho-neuro-immuno-endocrinological disturbances. This disease presents with mood disturbances, persistent sadness, loss of interest and impaired cognition, which causes distress to the patient and significantly affects the ability to function and have a satisfying family, social and professional life. Depression requires comprehensive management, including pharmacological treatment. Because pharmacotherapy of depression is a long-term process associated with the risk of numerous adverse drug effects, much attention is paid to alternative therapy methods, including phytopharmacotherapy, especially in treating mild or moderate depression. Preclinical studies and previous clinical studies confirm the antidepressant activity of active compounds in plants, such as St. John's wort, saffron crocus, lemon balm and lavender, or less known in European ethnopharmacology, roseroot, ginkgo, Korean ginseng, borage, brahmi, mimosa tree and magnolia bark. The active compounds in these plants exert antidepressive effects in similar mechanisms to those found in synthetic antidepressants. The description of phytopharmacodynamics includes inhibiting monoamine reuptake and monoamine oxidase activity and complex, agonistic or antagonistic effects on multiple central nervous system (CNS) receptors. Moreover, it is noteworthy that the anti-inflammatory effect is also important to the antidepressant activity of the plants mentioned above in light of the hypothesis that immunological disorders of the CNS are a significant pathogenetic factor of depression. This narrative review results from a traditional, non-systematic literature review. It briefly discusses the pathophysiology, symptomatology and treatment of depression, with a particular focus on the role of phytopharmacology in its treatment. It provides the mechanisms of action revealed in experimental studies of active ingredients isolated from herbal antidepressants and presents the results of selected clinical studies confirming their antidepressant effectiveness.
Collapse
Affiliation(s)
- Lukasz Dobrek
- Department of Clinical Pharmacology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | |
Collapse
|
12
|
Al-Eitan L, Sendyani S, Alnimri M. Applications of the One Health concept: Current Status in the Middle East. JOURNAL OF BIOSAFETY AND BIOSECURITY 2023. [DOI: 10.1016/j.jobb.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
13
|
Taboada T, Alvarenga NL, Galeano AK, Arrúa WJ, Campuzano-Bublitz MA, Kennedy ML. In Vivo Antidepressant-Like Effect Assessment of Two Aloysia Species in Mice and LCMS Chemical Characterization of Ethanol Extract. Molecules 2022; 27:molecules27227828. [PMID: 36431928 PMCID: PMC9693556 DOI: 10.3390/molecules27227828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal plants belonging to the Verbenaceae family demonstrated antidepressant effects in preclinical studies. Depression is one of the largest contributors to the global health burden of all countries. Plants from the Aloysia genus are traditionally used for affective disorders, and some of them have proven anxiolytic and antidepressant activity. The aim of this work was to evaluate the antidepressant effect of the ethanolic extract of Aloysia gratissima var. gratissima (Agg) and Aloysia virgata var. platyphylla (Avp) in mice. A tail suspension test (TST) and forced swimming test (FST) were conducted after three doses in a period of 24 h and after 7 days of treatment. Imipramine was used as an antidepressant drug. The main results demonstrated that Agg extract reduced the immobility time in mice treated orally for 7 consecutive days when compared to the control group (reduced by about 77%, imipramine 70%). Animals treated with three doses of Avp in a 24-h period had reduced immobility time in the FST (60%), and after 7 days of treatment the reduction was greater (Avp 50, 100, and 200 about 85%; Avp 400, 96.5%; p < 0.0001, imipramine, 77%). LCMS analysis showed the presence of verbascoside, hoffmaniaketone, and hoffmaniaketone acetate in both, A. virgata var. platyphylla and A. gratissima var gratissima. The flavonoids nepetin and 6-hydroxyluteolin were also found in Agg. Both tested extracts demonstrated promising antidepressant-like activity in mice.
Collapse
Affiliation(s)
- Teresa Taboada
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Una, San Lorenzo 2169, Paraguay
| | - Nelson L. Alvarenga
- Departamento de Fitoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Una, San Lorenzo 2169, Paraguay
| | - Antonia K. Galeano
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Una, San Lorenzo 2169, Paraguay
| | - Wilfrido J. Arrúa
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Una, San Lorenzo 2169, Paraguay
| | - Miguel A. Campuzano-Bublitz
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Una, San Lorenzo 2169, Paraguay
| | - María L. Kennedy
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Una, San Lorenzo 2169, Paraguay
- Correspondence: or
| |
Collapse
|
14
|
Rosemary as an adjunctive treatment in patients with major depressive disorder: A randomized, double‐blind, placebo‐controlled trial. Complement Ther Clin Pract 2022; 49:101685. [DOI: 10.1016/j.ctcp.2022.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
15
|
Kumar M, Kumar D, Kumar S, Kumar A, Mandal UK. A Recent Review on Bio-availability Enhancement of Poorly Water-soluble Drugs by using Bioenhancer and Nanoparticulate Drug Delivery System. Curr Pharm Des 2022; 28:3212-3224. [PMID: 36281868 DOI: 10.2174/1381612829666221021152354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Intravenous route of drug administration has maximum bioavailability, which shows 100% of the drug reaches blood circulation, whereas the oral administration of drugs, are readily undergoing pre-systemic metabolism, which means the poor bioavailability of the drug and limited amount of drug reaches the target site. INTRODUCTION Bioenhancers are substances having medicinal entities which enhance the bioavailability and efficacy of the active constituents of drugs. The enhanced bioavailability of drugs may lead to dose reduction, which may further reduce the cost and undesired side effects associated with the drugs. METHODS The solid lipid nanoparticles (SLNs) loaded with ketoprofen made from carnauba wax and beeswax. It was discovered that when the drug-loaded SLNs were mixed with egg-lecithin and Tween-80, as well as when the total surfactant concentration was increased, the average particle size of the drug-loaded SLNs decreased. RESULTS The drug-loaded nanoparticles, when given in combination with bio-enhancers such as piperine and quercetin, enhanced the drug's effectiveness. The Area Under Curve (AUC) was increased when the drug was coupled with bio-enhancers. Based on the findings, it can be concluded that piperine and quercetin when used with drug-loaded nanoparticles improve their therapeutic effectiveness. CONCLUSION Bioenhancers are crucial to amplifying the bioavailability of many synthetic drugs. These attributes are useful to reduce the dose of drugs and increase the therapeutic efficacy of drugs with poor bioavailability.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Sumant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Akshay Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| |
Collapse
|
16
|
Detection of the role of intestinal flora and tryptophan metabolism involved in antidepressant-like actions of crocetin based on a multi-omics approach. Psychopharmacology (Berl) 2022; 239:3657-3677. [PMID: 36169685 DOI: 10.1007/s00213-022-06239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
RATIONALE Depression is a serious mood disorder, and crocetin has a variety of pharmacological activities, including antidepressant effect. The alterations of intestinal flora have a significant correlation with depression, and crocetin can alter the composition of intestinal flora in mice with depression-like behaviors. OBJECTIVE This study investigated the underlying antidepressant mechanisms of crocetin through multi-omics coupled with biochemical technique validation. METHODS Chronic unpredictable stress (CUMS) was used to induce mice model of depression to evaluate the antidepressant effect of crocetin through behavioral tests, and the metagenomic and metabolomic were used to explore the potential mechanisms involved. In order to verify its underlying mechanism, western blot (WB), Elisa, immune histological and HPLC techniques were used to detect the level of inflammatory cytokines and the level of metabolites/proteins related to tryptophan metabolism in crocetin-treated mice. RESULTS Crocetin ameliorated depression-like behaviors and increased mobility in depressive mice induced by CUMS. Metagenomic results showed that crocetin regulated the structure of intestinal flora, as well as significantly regulated the function gene related to derangements in energy metabolism and amino acid metabolism in mice with depression-like behaviors. Metabolomic results showed that the tryptophan metabolism, arginine metabolism and arachidonic acid metabolism played an essential role in exerting antidepressant-like effect of crocetin. According to multi-omics approaches and validation results, tryptophan metabolism and inflammation were identified and validated as valuable biological processes involved in the antidepressant effects of crocetin. Crocetin regulated the tryptophan metabolism in mice with depression-like behaviors, including increased aryl hydrocarbon receptor (AhR) expression, reduced indoleamine 2,3-dioxygenase 1 (IDO1) and serotonin transporter (SERT) expression in the hippocampus, elevated the content of 5-HT, kynurenic acid in serum and 5-HT, tryptophan in hippocampus. In addition, crocetin also attenuated inflammation in mice with depression-like behaviors, which presented with reducing the production of inflammatory cytokines in serum and colon. Meanwhile, crocetin up-regulated the expression of zonula occludens 1 (ZO-1) and occludin in ileum and colon to repair the intestinal barrier for preventing inflammation transfer. CONCLUSION Our findings clarify that crocetin exerted antidepressant effects through its anti-inflammation, repairment of intestinal barrier, modulatory on the intestinal flora and metabolic disorders, which further regulated tryptophan metabolism and impacted mitogen-activated protein kinase (MAPK) signaling pathway to enhance neural plasticity, thereby protect neural.
Collapse
|
17
|
Ajjoun M, Kharchoufa L, Alami Merrouni I, Elachouri M. Moroccan medicinal plants traditionally used for the treatment of skin diseases: From ethnobotany to clinical trials. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115532. [PMID: 35843409 DOI: 10.1016/j.jep.2022.115532] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Skin diseases are among the most common human health affections. A healthy skin promotes a healthy body that can be achieved through modern, allopathic and natural medicines. Therefore, medicinal plants can be a reliable therapy in treating skin diseases in humans through a diverse range of bioactive molecules they contain. AIM OF THE STUDY This review aims to provide for the first-time scientific evidence related to the dermatological properties of Morocco's medicinal plants and it aims to provide a baseline for the discovery of new drugs having activities against skin issues. METHODS This review involved an investigation with different search engines for Moroccan ethnobotanical surveys published between 1991 and 2021. The plants used to treat skin diseases have been determined. Information regarding pharmacological effects, phytochemical, and clinical trials related to the plants listed in this review was collected from different scientific databases like PubMed, Science Direct, Google Scholar, Web of Science and Scopus. The data were analyzed and summarized in the review. RESULTS A total of 401 plants belonging to 86 families mainly represented by Asteraceae, Lamiaceae, Fabaceae, and Apiaceae which have been documented to be in common use by Moroccans for managing skin diseases. Among those plants recorded, the most commonly used are Allium cepa L, Chamaeleon gummifer (L.) Cass and Salvia rosmarinus Schleid. Mill. Leaves were the most commonly used plant part, while powder and decoction were the most common method of traditional drug preparation. 107 of the 401 plants (27%) have undergone pharmacological validation. A total of 44 compounds isolated from 27 plants were investigated to treat different types of skin diseases, and 25 plants have been clinically studied for their activities against skin diseases. CONCLUSION The beneficial effects of using Moroccan medicinal plants to treat skin diseases, according to traditional practices, have been proven in numerous scientific studies. Therefore, other studies should focus on isolating and identifying specific bioactive compounds from plant extracts, revealing more valuable therapeutic properties. Furthermore, additional reliable clinical trials are needed to confirm their beneficial effect on patients with skin diseases.
Collapse
Affiliation(s)
- Mohammed Ajjoun
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Loubna Kharchoufa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Ilyass Alami Merrouni
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Mostafa Elachouri
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| |
Collapse
|
18
|
Moragrega I, Ríos JL. Medicinal Plants in the Treatment of Depression. II: Evidence from Clinical Trials. PLANTA MEDICA 2022; 88:1092-1110. [PMID: 34157753 DOI: 10.1055/a-1517-6882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Depression is a syndrome characterized by deep sadness and the inhibition of psychic functions, sometimes accompanied by neurovegetative disorders, with symptoms of anxiety almost always present. The disease produces alterations in a variety of neural networks and neurotransmission systems, along with a dysfunction of the hypothalamic-pituitary-adrenal axis, which leads to concomitant alterations in the immunological response. Generally, there is a parallel increase in proinflammatory mediators as well as oxidative and nitrosative damage caused by a reduction of antioxidant defenses. In a previous review, we compiled and examined studies of medicinal plants that had been evaluated in preclinical assays, including existing data on 155 species studied and reported as antidepressants or as sources of active principles for treating this condition. This review will thus limit its focus to the 95 clinical trials found in PubMed among the 670 articles on antidepressant-like medicinal plants. To this end, we have reviewed the publications cited in the Cochrane Database of Systematic Reviews, PubMed, and the Science Citation Index from 2000 to 2020. Our review emphasizes those species that have demonstrated the greatest pharmacological potential when studied for their antidepressant properties in humans through clinical trials. Saffron, turmeric, St. John's wort, ginkgo, kava, and golden root are the most relevant plants that have provided important evidence for the treatment of depression in clinical trials.
Collapse
Affiliation(s)
- Inés Moragrega
- Departament de Psicobiologia, Facultat de Psicologia, Universitat de València, Valencia, Spain
| | - José Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| |
Collapse
|
19
|
Siddiqui SA, Ali Redha A, Snoeck ER, Singh S, Simal-Gandara J, Ibrahim SA, Jafari SM. Anti-Depressant Properties of Crocin Molecules in Saffron. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072076. [PMID: 35408474 PMCID: PMC9000812 DOI: 10.3390/molecules27072076] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
Abstract
Saffron is a valued herb, obtained from the stigmas of the C. sativus Linn (Iridaceae), with therapeutic effects. It has been described in pharmacopoeias to be variously acting, including as an anti-depressant, anti-carcinogen, and stimulant agent. The therapeutic effects of saffron are harbored in its bioactive molecules, notably crocins, the subject of this paper. Crocins have been demonstrated to act as a monoamine oxidase type A and B inhibitor. Furthermore, saffron petal extracts have experimentally been shown to impact contractile response in electrical field stimulation. Other research suggests that saffron also inhibits the reuptake of monoamines, exhibits N-methyl-d-aspartate antagonism, and improves brain-derived neurotrophic factor signaling. A host of experimental studies found saffron/crocin to be similarly effective as fluoxetine and imipramine in the treatment of depression disorders. Saffron and crocins propose a natural solution to combat depressive disorders. However, some hurdles, such as stability and delivery, need to be overcome.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany;
- German Institute of Food Technologies (DIL e.V.), 49610 D-Quakenbrück, Germany
| | - Ali Ali Redha
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Edgar Remmet Snoeck
- Food Technology Study Programme, HAS University of Applied Sciences, Onderwijsboulevard 221, 5223 DE ‘s-Hertogenbosch, The Netherlands;
| | - Shubhra Singh
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, No. 1, Xuefu Rd, Neipu Township, Pingtung City 912, Taiwan;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain;
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, E. Market Street, 1601, Greensboro, NC 24711, USA;
| | - Seid Mahdi Jafari
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain;
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189, Iran
- Correspondence:
| |
Collapse
|
20
|
Thymoquinone-Enriched Naringenin-Loaded Nanostructured Lipid Carrier for Brain Delivery via Nasal Route: In Vitro Prospect and In Vivo Therapeutic Efficacy for the Treatment of Depression. Pharmaceutics 2022; 14:pharmaceutics14030656. [PMID: 35336030 PMCID: PMC8953208 DOI: 10.3390/pharmaceutics14030656] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
In the current research, a thymoquinone-enriched naringenin (NGN)-loaded nanostructured lipid carrier (NLC) was developed and delivered via the nasal route for depression. Thymoquinone (TQ) oil was used as the liquid lipid and provided synergistic effects. A TQ- and NGN-enriched NLC was developed via the ultrasonication technique and optimized using a central composite rotatable design (CCRD). The optimized NLC exhibited the following properties: droplet size, 84.17 to 86.71 nm; PDI, 0.258 to 0.271; zeta potential, −8.15 to −8.21 mV; and % EE, 87.58 to 88.21%. The in vitro drug release profile showed the supremacy of the TQ-NGN-NLC in comparison to the NGN suspension, with a cumulative drug release of 82.42 ± 1.88% from the NLC and 38.20 ± 0.82% from the drug suspension. Ex vivo permeation study displayed a 2.21-fold increase in nasal permeation of NGN from the NLC compared to the NGN suspension. DPPH study showed the better antioxidant potential of the TQ-NGN-NLC in comparison to NGN alone due to the synergistic effect of NGN and TQ oil. CLSM images revealed deeper permeation of the NGN-NLC (39.9 µm) through the nasal mucosa in comparison to the NGN suspension (20 µm). Pharmacodynamic studies, such as the forced swim test and the locomotor activity test, were assessed in the depressed rat model, which revealed the remarkable antidepressant effect of the TQ-NGN-NLC in comparison to the NGN suspension and the marketed formulation. The results signify the potential of the TQ-enriched NGN-NLC in enhancing brain delivery and the therapeutic effect of NGN for depression treatment.
Collapse
|
21
|
Elias E, Zhang AY, Manners MT. Novel Pharmacological Approaches to the Treatment of Depression. Life (Basel) 2022; 12:196. [PMID: 35207483 PMCID: PMC8879976 DOI: 10.3390/life12020196] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder is one of the most prevalent mental health disorders. Monoamine-based antidepressants were the first drugs developed to treat major depressive disorder. More recently, ketamine and other analogues were introduced as fast-acting antidepressants. Unfortunately, currently available therapeutics are inadequate; lack of efficacy, adverse effects, and risks leave patients with limited treatment options. Efforts are now focused on understanding the etiology of depression and identifying novel targets for pharmacological treatment. In this review, we discuss promising novel pharmacological targets for the treatment of major depressive disorder. Targeting receptors including N-methyl-D-aspartate receptors, peroxisome proliferator-activated receptors, G-protein-coupled receptor 39, metabotropic glutamate receptors, galanin and opioid receptors has potential antidepressant effects. Compounds targeting biological processes: inflammation, the hypothalamic-pituitary-adrenal axis, the cholesterol biosynthesis pathway, and gut microbiota have also shown therapeutic potential. Additionally, natural products including plants, herbs, and fatty acids improved depressive symptoms and behaviors. In this review, a brief history of clinically available antidepressants will be provided, with a primary focus on novel pharmaceutical approaches with promising antidepressant effects in preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Melissa T. Manners
- Department of Biological Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA; (E.E.); (A.Y.Z.)
| |
Collapse
|