1
|
Goyani S, Shukla S, Jadiya P, Tomar D. Calcium signaling in mitochondrial intermembrane space. Biochem Soc Trans 2024; 52:2215-2229. [PMID: 39392359 PMCID: PMC11727339 DOI: 10.1042/bst20240319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The mitochondrial intermembrane space (IMS) is a highly protected compartment, second only to the matrix. It is a crucial bridge, coordinating mitochondrial activities with cellular processes such as metabolites, protein, lipid, and ion exchange. This regulation influences signaling pathways for metabolic activities and cellular homeostasis. The IMS harbors various proteins critical for initiating apoptotic cascades and regulating reactive oxygen species production by controlling the respiratory chain. Calcium (Ca2+), a key intracellular secondary messenger, enter the mitochondrial matrix via the IMS, regulating mitochondrial bioenergetics, ATP production, modulating cell death pathways. IMS acts as a regulatory site for Ca2+ entry due to the presence of different Ca2+ sensors such as MICUs, solute carriers (SLCs); ion exchangers (LETM1/SCaMCs); S100A1, mitochondrial glycerol-3-phosphate dehydrogenase, and EFHD1, each with unique Ca2+ binding motifs and spatial localizations. This review primarily emphasizes the role of these IMS-localized Ca2+ sensors concerning their spatial localization, mechanism, and molecular functions. Additionally, we discuss how these sensors contribute to the progression and pathogenesis of various human health conditions and diseases.
Collapse
Affiliation(s)
- Shanikumar Goyani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Shatakshi Shukla
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| |
Collapse
|
2
|
Gao H, Li Z, Gan L, Chen X. The Role and Potential Mechanisms of Rehabilitation Exercise Improving Cardiac Remodeling. J Cardiovasc Transl Res 2024; 17:923-934. [PMID: 38558377 DOI: 10.1007/s12265-024-10498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
Rehabilitation exercise is a crucial non-pharmacological intervention for the secondary prevention and treatment of cardiovascular diseases, effectively ameliorating cardiac remodeling in patients. Exercise training can mitigate cardiomyocyte apoptosis, reduce extracellular matrix deposition and fibrosis, promote angiogenesis, and regulate inflammatory response to improve cardiac remodeling. This article presents a comprehensive review of recent research progress, summarizing the pivotal role and underlying mechanism of rehabilitation exercise in improving cardiac remodeling and providing valuable insights for devising effective rehabilitation treatment programs. Graphical Abstract.
Collapse
Affiliation(s)
- Haizhu Gao
- Colleague of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Zhongxin Li
- Colleague of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Lijun Gan
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, No.89 Guhuai Road, Jining, 272029, Shandong, China
| | - Xueying Chen
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, No.89 Guhuai Road, Jining, 272029, Shandong, China.
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
3
|
Samani SL, Barlow SC, Freeburg LA, Jones TL, Poole M, Sarzynski MA, Zile MR, Shazly T, Spinale FG. Left ventricle function and post-transcriptional events with exercise training in pigs. PLoS One 2024; 19:e0292243. [PMID: 38306359 PMCID: PMC10836705 DOI: 10.1371/journal.pone.0292243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/14/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Standardized exercise protocols have been shown to improve overall cardiovascular fitness, but direct effects on left ventricular (LV) function, particularly diastolic function and relation to post-transcriptional molecular pathways (microRNAs (miRs)) are poorly understood. This project tested the central hypothesis that adaptive LV remodeling resulting from a large animal exercise training protocol, would be directly associated with specific miRs responsible for regulating pathways relevant to LV myocardial stiffness and geometry. METHODS AND RESULTS Pigs (n = 9; 25 Kg) underwent a 4 week exercise training protocol (10 degrees elevation, 2.5 mph, 10 min, 5 days/week) whereby LV chamber stiffness (KC) and regional myocardial stiffness (rKm) were measured by Doppler/speckle tracking echocardiography. Age and weight matched non-exercise pigs (n = 6) served as controls. LV KC fell by approximately 50% and rKm by 30% following exercise (both p < 0.05). Using an 84 miR array, 34 (40%) miRs changed with exercise, whereby 8 of the changed miRs (miR-19a, miR-22, miR-30e, miR-99a, miR-142, miR-144, miR-199a, and miR-497) were correlated to the change in KC (r ≥ 0.5 p < 0.05) and mapped to matrix and calcium handling processes. Additionally, miR-22 and miR-30e decreased with exercise and mapped to a localized inflammatory process, the inflammasome (NLRP-3, whereby a 2-fold decrease in NLRP-3 mRNA occurred with exercise (p < 0.05). CONCLUSION Chronic exercise reduced LV chamber and myocardial stiffness and was correlated to miRs that map to myocardial relaxation processes as well as local inflammatory pathways. These unique findings set the stage for utilization of myocardial miR profiling to identify underlying mechanisms by which exercise causes changes in LV myocardial structure and function.
Collapse
Affiliation(s)
- Stephanie L. Samani
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
- Columbia VA Health Care System, Columbia, SC, United States of America
| | - Shayne C. Barlow
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Lisa A. Freeburg
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
- Columbia VA Health Care System, Columbia, SC, United States of America
| | - Traci L. Jones
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Marlee Poole
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Mark A. Sarzynski
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | - Michael R. Zile
- Division of Cardiology, RHJ Department of Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC, United States of America
| | - Tarek Shazly
- College of Engineering and Computing, University of South Carolina, Columbia, SC, United States of America
| | - Francis G. Spinale
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
- Columbia VA Health Care System, Columbia, SC, United States of America
- College of Engineering and Computing, University of South Carolina, Columbia, SC, United States of America
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|