1
|
Haar M, Konen FF, Gehlhaar MA, Oluwatoba-Popoola I, Donicova E, Wachsmann M, Lubbad A, Hufendiek K, Pielen A, Hohberger B, Mardin C, Gingele S, Prenzler NK, Ernst D, Witte T, Framme C, Skripuletz T, Seeliger T, Bajor A. Optical coherence tomography angiography to assess for retinal vascular changes in Neuro-Sjögren. Ther Adv Ophthalmol 2024; 16:25158414241294024. [PMID: 39493254 PMCID: PMC11528602 DOI: 10.1177/25158414241294024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Background Sjögren's syndrome is an autoimmune disease characterized by sicca symptoms and various extraglandular manifestations including vasculitis. Neurological involvement occurs frequently (Neuro-Sjögren) and often mimics immune neuropathies such as chronic inflammatory demyelinating polyneuropathy (CIDP). Objectives We aim to assess relevant differences in vessel density (VD) in Optical Coherence Tomography Angiography (OCTA) in those diseases to use it as an easily available diagnostic tool. Design Prospective, monocentric pilot-study. Methods OCTA (Heidelberg Engineering OCT SPECTRALIS) of the superficial vascular plexus, intermediate capillary plexus (ICP) and deep capillary plexus (DCP) of the retina was prospectively performed in Neuro-Sjögren, age-matched CIDP patients (n = 31, each), and healthy controls (n = 30). Vessel density (VD) and foveal avascular zone (FAZ) was measured with Erlangen Angio Tool. Results Significantly lower VD were found for the DCP and ICP in Neuro-Sjögren and CIDP patients compared to healthy controls (p = 0.0002 and <0.0001). When group comparison was age-adjusted, these differences were not found anymore. Different frequencies of "low" retinal blood flow in each layer comparing Neuro-Sjögren and CIDP patients were not found. FAZ revealed no significant differences between patients with Neuro-Sjögren, CIDP and healthy controls. Conclusion This study found no significant differences in VD or the foveal avascular zone between Neuro-Sjögren and CIDP patients using OCTA, suggesting that inflammatory vascular changes in the retina are uncommon in Neuro-Sjögren patients.
Collapse
Affiliation(s)
- Melanie Haar
- Department of Ophthalmology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | | | | | | | - Emilia Donicova
- Department of Ophthalmology, Hannover Medical School, Hannover, Germany
| | - Marija Wachsmann
- Department of Ophthalmology, Hannover Medical School, Hannover, Germany
| | - Ahmed Lubbad
- Department of Ophthalmology, Hannover Medical School, Hannover, Germany
| | | | - Amelie Pielen
- Department of Ophthalmology, Hannover Medical School, Hannover, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Universitätsklinkum Erlangen, Erlangen, Germany
| | - Christian Mardin
- Department of Ophthalmology, Universitätsklinkum Erlangen, Erlangen, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Nils K. Prenzler
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Diana Ernst
- Department of Rheumatology & Immunology, Hannover Medical School, Hannover, Germany
| | - Torsten Witte
- Department of Rheumatology & Immunology, Hannover Medical School, Hannover, Germany
| | - Carsten Framme
- Department of Ophthalmology, Hannover Medical School, Hannover, Germany
| | | | - Tabea Seeliger
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Anna Bajor
- Department of Ophthalmology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Grishechkina IA, Lobanov AA, Andronov SV, Rachin AP, Fesyun AD, Ivanova EP, Masiero S, Maccarone MC. Long-term outcomes of different rehabilitation programs in patients with long COVID syndrome: a cohort prospective study. Eur J Transl Myol 2023. [PMID: 37052043 PMCID: PMC10388602 DOI: 10.4081/ejtm.2023.11063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/20/2023] [Indexed: 04/14/2023] Open
Abstract
After the resolution of the acute SARS-COV-2 infection, an important percentage of patients do not fully recover and continue to present several symptoms. Nevertheless, there is a lack of data in the literature on the effects of rehabilitation programs on medium- and long-term long COVID symptoms. Therefore, the aim of this study was to evaluate the long-term outcomes after rehabilitation programs in long COVID syndrome patients. A prospective cohort study was conducted from August 2021 to March 2022, involving 113 patients with long COVID syndrome. The patients in the experimental group (EG, n=25) received a tailored and multidisciplinary rehabilitative program, involving aquatic exercises, respiratory and motor exercises, social integration training and neuropsychologic sessions, LASER therapy and magnetotherapy. Patients in the other three comparison groups received eastern medicine techniques (CG1), balneotherapy and physiotherapy (group CG2), self-training and home-based physical exercise (CG3). Once the several rehabilitation protocols had been performed, a structured telephone contact was made with the patients after 6 months ± 7 days from the end of the rehabilitation treatment, in order to record the frequency of hospital ad-missions due to exacerbation of post-exacerbation syndrome, death or disability, and the need for other types of care or drugs. The patients in the comparison groups were more likely to request therapeutic care for emerging long COVID symptoms (χ2=6.635, p=0.001; χ2=13.463, p=0.001; χ2=10.949, p=0.001, respectively), as well as more likely to be hospitalized (χ2=5.357, p=0.021; χ2=0.125, p=0.724; χ2=0.856, p=0.355, respectively) when compared to the patients of the EG. The relative risk (RR) of hospital admissions in the observed cohort was 0.143 ±1,031 (СI: 0.019; 1.078); 0.580±1,194 (CI: 0.056; 6.022); 0,340±1,087 (CI: 0.040; 2.860). The RR of hospital admissions for patients with long COVID syndrome was reduced by 85.7%; 42.0% and 66.0%, respectively, when the experimental rehabilitation technique was employed. In conclusion, a tailored and multidisciplinary rehabilitative program seems to have a better preventive effect not only in the short term, but also over the next 6 months, avoiding the new onset of disabilities and the use of medicines and specialist advice, than other rehabilitative programs. Future studies will need to further investigate these aspects to identify the best rehabilitation therapy, also in terms of cost-effectiveness, for these patients.
Collapse
Affiliation(s)
| | | | | | | | - Anatoliy D Fesyun
- National Medical Research Center, Moscow, Russia; Moscow State University of Food Production, Moscow.
| | | | - Stefano Masiero
- Physical Medicine and Rehabilitation School, Department of Neuroscience, University of Padova, Padua, Italy; Department of Neuroscience, Rehabilitation Unit, University of Padova, Padua.
| | - Maria Chiara Maccarone
- Physical Medicine and Rehabilitation School, Department of Neuroscience, University of Padova, Padua.
| |
Collapse
|
3
|
Post-COVID-19 Syndrome: Retinal Microcirculation as a Potential Marker for Chronic Fatigue. Int J Mol Sci 2022; 23:ijms232213683. [PMID: 36430175 PMCID: PMC9690863 DOI: 10.3390/ijms232213683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
Post-COVID-19 syndrome (PCS) is characterized by persisting sequelae after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). PCS can affect patients with all COVID-19 disease severities. As previous studies have revealed impaired blood flow as a provoking factor triggering PCS, it was the aim of the present study to investigate the potential association between self-reported chronic fatigue and retinal microcirculation in patients with PCS, potentially indicating an objective biomarker. A prospective study was performed, including 201 subjects: 173 patients with PCS and 28 controls. Retinal microcirculation was visualized by OCT angiography (OCT-A) and quantified using the Erlangen-Angio-Tool as macula and peripapillary vessel density (VD). Chronic fatigue (CF) was assessed according to the variables of Bell’s score, age and gender. VDs in the superficial vascular plexus (SVP), intermediate capillary plexus (ICP) and deep capillary plexus (DCP) were analyzed, considering the repetitions (12 times). Seropositivity for autoantibodies targeting G protein-coupled receptors (GPCR-AAbs) was determined by an established cardiomyocyte bioassay. Taking account of the repetitions, a mixed model was performed to detect possible differences in the least square means between the different groups included in the analysis. An age effect in relation to VD was observed between patients and controls (p < 0.0001). Gender analysis showed that women with PCS showed lower VD levels in the SVP compared to male patients (p = 0.0015). The PCS patients showed significantly lower VDs in the ICP as compared to the controls (p = 0.0001 (CI: 0.32; 1)). Moreover, considering PCS patients, the mixed model revealed a significant difference between those with chronic fatigue (CF) and those without CF with respect to VDs in the SVP (p = 0.0033 (CI: −4.5; −0.92)). The model included variables of age, gender and Bell’s score, representing a subjective marker for CF. Consequently, retinal microcirculation might serve as an objective biomarker in subjectively reported chronic fatigue in patients with PCS.
Collapse
|
4
|
Szewczykowski C, Mardin C, Lucio M, Wallukat G, Hoffmanns J, Schröder T, Raith F, Rogge L, Heltmann F, Moritz M, Beitlich L, Schottenhamml J, Herrmann M, Harrer T, Ganslmayer M, Kruse FE, Kräter M, Guck J, Lämmer R, Zenkel M, Gießl A, Hohberger B. Long COVID: Association of Functional Autoantibodies against G-Protein-Coupled Receptors with an Impaired Retinal Microcirculation. Int J Mol Sci 2022; 23:7209. [PMID: 35806214 PMCID: PMC9266742 DOI: 10.3390/ijms23137209] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Long COVID (LC) describes the clinical phenotype of symptoms after infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnostic and therapeutic options are limited, as the pathomechanism of LC is elusive. As the number of acute SARS-CoV-2 infections was and is large, LC will be a challenge for the healthcare system. Previous studies revealed an impaired blood flow, the formation of microclots, and autoimmune mechanisms as potential factors in this complex interplay. Since functionally active autoantibodies against G-protein-coupled receptors (GPCR-AAbs) were observed in patients after SARS-CoV-2 infection, this study aimed to correlate the appearance of GPCR-AAbs with capillary microcirculation. The seropositivity of GPCR-AAbs was measured by an established cardiomyocyte bioassay in 42 patients with LC and 6 controls. Retinal microcirculation was measured by OCT-angiography and quantified as macula and peripapillary vessel density (VD) by the Erlangen-Angio Tool. A statistical analysis yielded impaired VD in patients with LC compared to the controls, which was accentuated in female persons. A significant decrease in macula and peripapillary VD for AAbs targeting adrenergic β2-receptor, MAS-receptor angiotensin-II-type-1 receptor, and adrenergic α1-receptor were observed. The present study might suggest that a seropositivity of GPCR-AAbs can be linked to an impaired retinal capillary microcirculation, potentially mirroring the systemic microcirculation with consecutive clinical symptoms.
Collapse
Affiliation(s)
- Charlotte Szewczykowski
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Christian Mardin
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Marianna Lucio
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | | | - Jakob Hoffmanns
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Thora Schröder
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Franziska Raith
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Lennart Rogge
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Felix Heltmann
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Michael Moritz
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Lorenz Beitlich
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Julia Schottenhamml
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Martin Herrmann
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.H.); (T.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Thomas Harrer
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.H.); (T.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Marion Ganslmayer
- Department of Internal Medicine 1, Universität of Erlangen-Nürnberg, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Friedrich E. Kruse
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany; (M.K.); (J.G.)
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany; (M.K.); (J.G.)
| | - Robert Lämmer
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Matthias Zenkel
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Andreas Gießl
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Bettina Hohberger
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| |
Collapse
|