1
|
Li X, Zhang J, Li Y, Dai Y, Zhu H, Jiang H, Han Y, Chu X, Sun Y, Ju W, Li Z, Zeng L, Xu K, Qiao J. Celastrol inhibits platelet function and thrombus formation. Biochem Biophys Res Commun 2024; 693:149366. [PMID: 38091842 DOI: 10.1016/j.bbrc.2023.149366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Celastrol is an active pentacyclic triterpenoid extracted from Tripterygium wilfordii and has anti-inflammatory and anti-tumor properties. Whether Celastrol modulates platelet function remains unknown. Our study investigated its role in platelet function and thrombosis. METHODS Human platelets were isolated and incubated with Celastrol (0, 1, 3 and 5 μM) at 37 °C for 1 h to measure platelet aggregation, granules release, spreading, thrombin-induced clot retraction and intracellular calcium mobilization. Additionally, Celastrol (2 mg/kg) was intraperitoneally administrated into mice to evaluate hemostasis and thrombosis in vivo. RESULTS Celastrol treatment significantly decreased platelet aggregation and secretion of dense or alpha granules induced by collagen-related peptide (CRP) or thrombin in a dose-dependent manner. Additionally, Celastrol-treated platelets showed a dramatically reduced spreading activity and decreased clot retraction. Moreover, Celastrol administration prolonged tail bleeding time and inhibited formation of arterial/venous thrombosis. Furthermore, Celastrol significantly reduced calcium mobilization. CONCLUSION Celastrol inhibits platelet function and venous/arterial thrombosis, implying that it might be utilized for treating thrombotic diseases.
Collapse
Affiliation(s)
- Xiaoqian Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jie Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yingying Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yue Dai
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Hui Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Huimin Jiang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yiran Han
- The First Clinical School of Medicine, Xuzhou Medical University, Xuzhou, China
| | - Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yueyue Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| |
Collapse
|
2
|
Weber C, Rigby A, Lip GYH. Thrombosis and Haemostasis 2023 Editors' Choice Papers. Thromb Haemost 2024; 124:80-87. [PMID: 38211580 DOI: 10.1055/s-0043-1778032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Affiliation(s)
- Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Anne Rigby
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Jung I, Cho YJ, Park M, Park K, Lee SH, Kim WH, Jeong H, Lee JE, Kim GY. Proteomic analysis reveals activation of platelet- and fibrosis-related pathways in hearts of ApoE -/- mice exposed to diesel exhaust particles. Sci Rep 2023; 13:22636. [PMID: 38114606 PMCID: PMC10730529 DOI: 10.1038/s41598-023-49790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Air pollution is an environmental risk factor linked to multiple human diseases including cardiovascular diseases (CVDs). While particulate matter (PM) emitted by diesel exhaust damages multiple organ systems, heart disease is one of the most severe pathologies affected by PM. However, the in vivo effects of diesel exhaust particles (DEP) on the heart and the molecular mechanisms of DEP-induced heart dysfunction have not been investigated. In the current study, we attempted to identify the proteomic signatures of heart fibrosis caused by diesel exhaust particles (DEP) in CVDs-prone apolipoprotein E knockout (ApoE-/-) mice model using tandem mass tag (TMT)-based quantitative proteomic analysis. DEP exposure induced mild heart fibrosis in ApoE-/- mice compared with severe heart fibrosis in ApoE-/- mice that were treated with CVDs-inducing peptide, angiotensin II. TMT-based quantitative proteomic analysis of heart tissues between PBS- and DEP-treated ApoE-/- mice revealed significant upregulation of proteins associated with platelet activation and TGFβ-dependent pathways. Our data suggest that DEP exposure could induce heart fibrosis, potentially via platelet-related pathways and TGFβ induction, causing cardiac fibrosis and dysfunction.
Collapse
Affiliation(s)
- Inkyo Jung
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeng2-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Yoon Jin Cho
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Minhan Park
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Kihong Park
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seung Hee Lee
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeng2-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeng2-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Hyuk Jeong
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Ji Eun Lee
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Geun-Young Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeng2-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea.
| |
Collapse
|
4
|
Chu X, Zhang J, Li Y, Yuan K, Wang X, Gui X, Sun Y, Geng C, Ju W, Xu M, Li Z, Zeng L, Xu K, Qiao J. Dimethyl fumarate possesses antiplatelet and antithrombotic properties. Int Immunopharmacol 2023; 120:110381. [PMID: 37245302 DOI: 10.1016/j.intimp.2023.110381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Dimethyl fumarate (DMF) is a methyl ester of fumaric acid and has been approved for treating multiple sclerosis (MS) and psoriasis due to anti-inflammatory effect. There is a close association between platelets and the pathogenesis of MS. Whether DMF affects platelet function remains unclear. Our study intends to evaluate DMF's effect on platelet function. METHODS Washed human platelets were treated with different concentrations of DMF (0, 50, 100 and 200 μM) at 37 °C for 1 h followed by analysis of platelet aggregation, granules release, receptors expression, spreading and clot retraction. In addition, mice received intraperitoneal injection of DMF (15 mg/kg) to assess tail bleeding time, arterial and venous thrombosis. RESULTS DMF significantly inhibited platelet aggregation and the release of dense/alpha granules in response to collagen-related peptide (CRP) or thrombin stimulation dose-dependently without altering the expression of platelet receptors αIIbβ3, GPIbα, and GPVI. In addition, DMF-treated platelets presented significantly reduced spreading on collagen or fibrinogen and thrombin-mediated clot retraction along with the decreased phosphorylation of c-Src and PLCγ2. Moreover, administration of DMF into mice significantly prolonged the tail bleeding time and impaired arterial and venous thrombus formation. Furthermore, DMF reduced the generation of intracellular reactive oxygen species and calcium mobilization, and inhibited NF-κB activation and the phosphorylation of ERK1/2, p38 and AKT. CONCLUSION DMF inhibits platelet function and arterial/venous thrombus formation. Considering the presence of thrombotic events in MS, our study indicates that DMF treatment for patients with MS might obtain both anti-inflammatory and anti-thrombotic benefits.
Collapse
Affiliation(s)
- Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jie Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yingying Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Ke Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Xue Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yueyue Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Chaonan Geng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| |
Collapse
|
5
|
The Role of NO/sGC/cGMP/PKG Signaling Pathway in Regulation of Platelet Function. Cells 2022; 11:cells11223704. [PMID: 36429131 PMCID: PMC9688146 DOI: 10.3390/cells11223704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Circulating blood platelets are controlled by stimulatory and inhibitory factors, and a tightly regulated equilibrium between these two opposing processes is essential for normal platelet and vascular function. NO/cGMP/ Protein Kinase G (PKG) pathways play a highly significant role in platelet inhibition, which is supported by a large body of studies and data. This review focused on inconsistent and controversial data of NO/sGC/cGMP/PKG signaling in platelets including sources of NO that activate sGC in platelets, the role of sGC/PKG in platelet inhibition/activation, and the complexity of the regulation of platelet inhibitory mechanisms by cGMP/PKG pathways. In conclusion, we suggest that the recently developed quantitative phosphoproteomic method will be a powerful tool for the analysis of PKG-mediated effects. Analysis of phosphoproteins in PKG-activated platelets will reveal many new PKG substrates. A future detailed analysis of these substrates and their involvement in different platelet inhibitory pathways could be a basis for the development of new antiplatelet drugs that may target only specific aspects of platelet functions.
Collapse
|