1
|
Venturelli V, Maranini B, Tohidi-Esfahani I, Isenberg DA, Cohen H, Efthymiou M. Can complement activation be the missing link in antiphospholipid syndrome? Rheumatology (Oxford) 2024; 63:3243-3254. [PMID: 38483257 PMCID: PMC11637425 DOI: 10.1093/rheumatology/keae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 12/14/2024] Open
Abstract
APS is an autoimmune disorder with life-threatening complications that, despite therapeutic advantages, remains associated with thrombotic recurrences and treatment failure. The role of complement activation in APS pathogenesis is increasingly recognized, specifically in obstetric APS. However, its exact role in thrombotic APS and on the severity of the disease is not yet fully elucidated. Further mechanistic studies are needed to delineate the role of complement activation in the various APS clinical manifestations with aim to identify novel markers of disease severity, together with clinical trials to evaluate the efficacy of complement inhibition in APS. This could ultimately improve risk stratification in APS, patient-tailored targeted therapy with complement inhibition identified as an adjunctive treatment. This article reviews current findings and challenges about complement activation in APS, discusses the potential role of platelet-mediated complement activation in this setting and provides an overview of clinical implications and current therapeutics.
Collapse
Affiliation(s)
- Veronica Venturelli
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda, Ospedaliero-Universitaria S. Anna, Cona, Italy
- Centre for Rheumatology, Department of Medicine, University College London, London, UK
- Department of Haematology, Cancer Institute, University College London, London, UK
| | - Beatrice Maranini
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda, Ospedaliero-Universitaria S. Anna, Cona, Italy
| | - Ibrahim Tohidi-Esfahani
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - David A Isenberg
- Centre for Rheumatology, Department of Medicine, University College London, London, UK
| | - Hannah Cohen
- Department of Haematology, Cancer Institute, University College London, London, UK
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Maria Efthymiou
- Department of Haematology, Cancer Institute, University College London, London, UK
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Qiu X, Nair MG, Jaroszewski L, Godzik A. Deciphering Abnormal Platelet Subpopulations in COVID-19, Sepsis and Systemic Lupus Erythematosus through Machine Learning and Single-Cell Transcriptomics. Int J Mol Sci 2024; 25:5941. [PMID: 38892129 PMCID: PMC11173046 DOI: 10.3390/ijms25115941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This study focuses on understanding the transcriptional heterogeneity of activated platelets and its impact on diseases such as sepsis, COVID-19, and systemic lupus erythematosus (SLE). Recognizing the limited knowledge in this area, our research aims to dissect the complex transcriptional profiles of activated platelets to aid in developing targeted therapies for abnormal and pathogenic platelet subtypes. We analyzed single-cell transcriptional profiles from 47,977 platelets derived from 413 samples of patients with these diseases, utilizing Deep Neural Network (DNN) and eXtreme Gradient Boosting (XGB) to distinguish transcriptomic signatures predictive of fatal or survival outcomes. Our approach included source data annotations and platelet markers, along with SingleR and Seurat for comprehensive profiling. Additionally, we employed Uniform Manifold Approximation and Projection (UMAP) for effective dimensionality reduction and visualization, aiding in the identification of various platelet subtypes and their relation to disease severity and patient outcomes. Our results highlighted distinct platelet subpopulations that correlate with disease severity, revealing that changes in platelet transcription patterns can intensify endotheliopathy, increasing the risk of coagulation in fatal cases. Moreover, these changes may impact lymphocyte function, indicating a more extensive role for platelets in inflammatory and immune responses. This study identifies crucial biomarkers of platelet heterogeneity in serious health conditions, paving the way for innovative therapeutic approaches targeting platelet activation, which could improve patient outcomes in diseases characterized by altered platelet function.
Collapse
Affiliation(s)
| | | | | | - Adam Godzik
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA 92521, USA; (X.Q.); (M.G.N.); (L.J.)
| |
Collapse
|
3
|
Isayeva G, Rumora K, Potlukova E, Leibfarth JP, Schäfer I, Bartha Z, Zellweger MJ, Trendelenburg M, Hejlesen TK, Hansen AG, Thiel S, Mueller C. Diagnostic and prognostic value of mannan-binding lectin associated protein (MAp19) for functionally relevant coronary artery disease. Clin Chim Acta 2024; 558:119668. [PMID: 38599540 DOI: 10.1016/j.cca.2024.119668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND This study aimed to evaluate the diagnostic and prognostic potential of MAp19, a regulating component of the lectin pathway of the complement system, in patients with suspected functionally relevant coronary artery disease (fCAD) as well as the determinants of MAp19 levels. METHODS The presence of fCAD was adjudicated using myocardial perfusion imaging with single-photon emission tomography and, where available, coronary angiography. MAp19 levels were measured in participants at rest, at peak stress tests, and two hours after the stress. The study also tracked major cardiovascular events, including non-fatal myocardial infarction and cardiovascular death, over a five-year follow-up period. RESULTS Among the 1,571 patients analyzed (32.3 % women), fCAD was identified in 462 individuals (29.4 %). MAp19 demonstrated no diagnostic significance, yielding an area under the curve (AUC) of 0.51 (0.47-0.55). Throughout the five-year follow-up, 107 patients (6.8 %) experienced non-fatal myocardial infarctions, 99 (6.3 %) had cardiovascular death, 194 (12.3 %) experienced all cause death and 50 (3.1 %) suffered a stroke. Cox and Kaplan-Meier analysis confirmed prognostic value of MAp19 for myocardial infarction, but not for cardiovascular death. Significant increases in the concentration of MAp19 were observed during bicycle (p = 0.001) and combined stress tests (p = 0.001). CONCLUSION MAp19 demonstrated an association with the risk of myocardial infarction. Increases in MAp19 concentration were observed during bicycle and combined stress-tests.
Collapse
Affiliation(s)
- Ganna Isayeva
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland.
| | - Klara Rumora
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Eliska Potlukova
- Division of Internal Medicine, University Hospital Basel, University of Basel, Switzerland; University Center of Internal Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Jan-Philipp Leibfarth
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Ibrahim Schäfer
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Zsofia Bartha
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Michael J Zellweger
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, University of Basel, Switzerland
| | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Denmark
| | - Christian Mueller
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland.
| |
Collapse
|
4
|
Li J, Peng L, Wu L, Ding Y, Duan X, Xu J, Wei W, Chen Z, Zhao C, Yang M, Jiang N, Zhang S, Wang Q, Tian X, Li M, Zeng X, Zhao Y, Zhao J. Antiphospholipid antibodies as potential predictors of disease severity and poor prognosis in systemic lupus erythematosus-associated thrombocytopenia: results from a real-world CSTAR cohort study. Arthritis Res Ther 2024; 26:67. [PMID: 38475924 DOI: 10.1186/s13075-024-03305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND To investigate the role of antiphospholipid antibodies (aPLs) in the disease severity and prognosis of SLE-related thrombocytopenia (SLE-TP). METHODS This multicenter prospective study was conducted based on data from the CSTAR registry. TP was defined as a platelet count<100 × 109/L. Demographic characteristics, platelet count, clinical manifestations, disease activity, and autoantibody profiles were collected at baseline. Relapse was defined as the loss of remission. Bone marrow aspirate reports were also collected. RESULTS A total of 350 SLE-TP patients with complete follow-up data, 194 (55.4%) were aPLs positive. At baseline, SLE-TP patients with aPLs had lower baseline platelet counts (61.0 × 109/L vs. 76.5 × 109/L, P<0.001), and a higher proportion of moderate to severe cases (24.2% vs. 14.1% ; 18.0% vs. 8.3%, P<0.001). SLE-TP patients with aPLs also had lower platelet counts at their lowest point (37.0 × 109/L vs. 51.0 × 109/L, P = 0.002). In addition, thean increasing number of aPLs types was associated with a decrease in the baseline and minimum values of platelets ( P<0.001, P = 0.001). During follow-up, SLE-TP carrying aPLs had a higher relapse rate (58.2% vs. 44.2%, P = 0.009) and a lower complete response (CR) rate. As the types of aPLs increased, the relapse rate increased, and the CR rate decreased. Furthermore, there was no significant difference in the ratio of granulocytes to red blood cells (G/E), the total number of megakaryocyte and categories. CONCLUSION SLE-TP patients with positive aPLs had more severe disease a lower remission rate but a higher relapse rate.
Collapse
Affiliation(s)
- Jun Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Liying Peng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Lijun Wu
- Department of Rheumatology and Immunology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Yufang Ding
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Xinwang Duan
- Department of Rheumatology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jian Xu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhen Chen
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Cheng Zhao
- Department of Rheumatology and Immunology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Min Yang
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Nan Jiang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Shangzhu Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China.
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China.
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China.
| |
Collapse
|