1
|
Majumder A, Bano S. How the Western Diet Thwarts the Epigenetic Efforts of Gut Microbes in Ulcerative Colitis and Its Association with Colorectal Cancer. Biomolecules 2024; 14:633. [PMID: 38927037 PMCID: PMC11201633 DOI: 10.3390/biom14060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Ulcerative colitis (UC) is an autoimmune disease in which the immune system attacks the colon, leading to ulcer development, loss of colon function, and bloody diarrhea. The human gut ecosystem consists of almost 2000 different species of bacteria, forming a bioreactor fueled by dietary micronutrients to produce bioreactive compounds, which are absorbed by our body and signal to distant organs. Studies have shown that the Western diet, with fewer short-chain fatty acids (SCFAs), can alter the gut microbiome composition and cause the host's epigenetic reprogramming. Additionally, overproduction of H2S from the gut microbiome due to changes in diet patterns can further activate pro-inflammatory signaling pathways in UC. This review discusses how the Western diet affects the microbiome's function and alters the host's physiological homeostasis and susceptibility to UC. This article also covers the epidemiology, prognosis, pathophysiology, and current treatment strategies for UC, and how they are linked to colorectal cancer.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
2
|
Doğan GT, Kepekçi RA, Bostancıeri N, Tarakçıoğlu M. Protective effect of Arum maculatum against dextran sulfate sodium induced colitis in rats. Biotech Histochem 2023; 98:456-465. [PMID: 37394993 DOI: 10.1080/10520295.2023.2225226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory disease of the large intestine that is characterized by diarrhea, bloody stools, abdominal pain and mucosal ulceration. UC is treated with nonsteroidal anti-inflammatory drugs, corticosteroids or immunosuppressants, but long-term use of these drugs can cause adverse effects. Arum maculatum is used as a traditional treatment for digestive system disorders, but its use for treatment of UC has not been investigated rigorously. We investigated the possible protective effect of a methanol extract of A. maculatum against dextran sulfate sodium (DSS) induced experimental UC in rats. Total phenolic and flavonoid contents of the extract were 32.919 ± 1.125 mg gallic acid equivalent (GAE)/g and 52.045 ± 7.902 µg rutin equivalent (RE)/mg, respectively. The half-maximal inhibitory concentration (IC50) for the extract was 105.76 µg/ml according to the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity assay. Effects of A. maculatum extract on UC induced by DSS were assessed both macroscopically and histologically. We also investigated effects of A. maculatum extract on malondialdehyde (MDA) levels and the oxidative stress index (OSI) in normal rats and rats with UC. We found that treatment with A. maculatum extract protected the colon against DSS induced UC in a dose-dependent manner.
Collapse
Affiliation(s)
- Gülsüm Toparlı Doğan
- Biochemistry Science and Technology Department, Gaziantep University, Gaziantep, Turkey
| | | | - Nuray Bostancıeri
- Histology and Embryology Department, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Tarakçıoğlu
- Department of Biochemistry and Clinical Biochemistry, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
3
|
Abdelhamid AM, Youssef ME, Cavalu S, Mostafa-Hedeab G, Youssef A, Elazab ST, Ibrahim S, Allam S, Elgharabawy RM, El-Ahwany E, Amin NA, Shata A, Mohammed OA, Ibrahim Abdeldaiem MS, Alhowail A, El-Saber Batiha G, El-Mahmoudy EA, Attia M, Allam A, Zaater MY, Osman MM, Nader M, Taha A, Makarem NA, Saber S. Carbocisteine as a Modulator of Nrf2/HO-1 and NFκB Interplay in Rats: New Inspiration for the Revival of an Old Drug for Treating Ulcerative Colitis. Front Pharmacol 2022; 13:887233. [PMID: 35754464 PMCID: PMC9214041 DOI: 10.3389/fphar.2022.887233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/18/2022] [Indexed: 12/29/2022] Open
Abstract
Ulcerative colitis (UC), an inflammatory bowel disease, is a chronic condition of a multifaceted pathophysiology. The incidence of UC is increasing internationally. The current therapies for UC lack relative effectiveness and are associated with adverse effects. Therefore, novel therapeutic options should be developed. It has been well documented that modulating the Nrf2/NFκB is a promising therapeutic target in inflammation. Carbocisteine is a mucoregulatory medication and its efficacy in COPD was found to be more closely related to its antioxidant and anti-inflammatory properties. Carbocisteine has not yet been examined for the management of UC. Hence, our approach was to investigate the potential coloprotective role of carbocisteine in acetic acid-induced colitis in rats. Our results revealed that carbocisteine improved colon histology and macroscopic features and subdued the disease activity as well. Additionally, carbocisteine attenuated colon shortening and augmented colon antioxidant defense mechanisms via upregulating catalase and HO-1 enzymes. The myeloperoxidase activity was suppressed indicating inhibition of the neutrophil infiltration and activation. Consistent with these findings, carbocisteine boosted Nrf2 expression along with NFκB inactivation. Consequently, carbocisteine downregulated the proinflammatory cytokines IL-6 and TNF-α and upregulated the anti-inflammatory cytokine IL-10. Concomitant to these protective roles, carbocisteine displayed anti-apoptotic properties as revealed by the reduction in the Bax: BCL-2 ratio. In conclusion, carbocisteine inhibited oxidative stress, inflammatory response, and apoptosis in acetic acid-induced UC by modulating the Nrf2/HO-1 and NFκB interplay in rats. Therefore, the current study provides a potential basis for repurposing a safe and a commonly used mucoregulator for the treatment of UC.
Collapse
Affiliation(s)
- Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Sakakah, Saudi Arabia.,Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Amal Youssef
- Medical Pharmacology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Samar Ibrahim
- Department of Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | | | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Noha A Amin
- Department of Haematology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed Shata
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha, Saudi Arabia
| | - Mahmoud Said Ibrahim Abdeldaiem
- Clinical Pharmacy Department, School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town, Malaysia.,Pharmacy Practice Department, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
| | - Ahmed Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Engy A El-Mahmoudy
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Maram Attia
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Alaa Allam
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mona Y Zaater
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mona M Osman
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Manar Nader
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Aya Taha
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Nada Abul Makarem
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
4
|
Durmus A, Durmus I, Bender O, Karatepe O. The effect of Hericium erinaceum on the prevention of chemically induced experimental colitis in rats. Korean J Intern Med 2021; 36:S44-S52. [PMID: 32550720 PMCID: PMC8009150 DOI: 10.3904/kjim.2019.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/18/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS The aim of this study is to investigate the effects of the Hericium erinaceum on an experimental colitis model. METHODS Twenty-four Wistar albino were included in this study. Rats were divided into three groups. Group 1 (n = 8) was sham group. Group 2 is the group of chemically induced by intrarectal administration of trinitrobenzene sulfonic acid (TNBS) resulting in colitis. Group 3 (n = 8) is the group that was treated 7 days before and 7 days after with H. erinaceum resulting in colitis. The activity of colitis was evaluated macroscopically and microscopically in rats. In other words, nitric oxide (NO) levels, malondialdehyde (MDA), interleukin 6 (IL-6), nuclear factor-kappa B (NF-κB) and, tumor necrosis factor-α (TNF-α) in addition to the myeloperoxidasem (MPO) activities was determined. RESULTS The rate of TNBS-induced colitis caused to increase the level of MDA activities meaningfully in the colitis group than the control group. The results indicated that MDA (p = 0.001), NO (p = 0.001), IL-6 (p = 0.001), MPO (p = 0.878), TNF-α (p = 0.001), and NF-κB levels of treatment group decreased in the blood and colon tissues because of the H. erinaceum treatment when compared to the colitis group. H. erinaceum treatment was related to the declining of MDA, NF-κB, NO, IL-6, and TNF-α levels. CONCLUSION H. erinaceum had a positive effect on the colitis by reducing oxidative damage in blood and tissue.
Collapse
Affiliation(s)
- Ali Durmus
- Department of Surgery, Nisantasi University, Istanbul, Turkey
| | - Ilgim Durmus
- Department of Medical Biotechnology, Acibadem University, Istanbul, Turkey
- Correspondence to Ilgim Durmus, Ph.D. Department of Medical Biotechnology, Acibadem University, İçerenköy Mahallesi, Kayışdağı Cd. No. 32, 34752, Ataşehir/Istanbul, Turkey Tel: +90-212-230-2008 Fax: +90-212-230-4949 E-mail:
| | - Omer Bender
- Department of SHMYO (Health Occupation School), Yeni Yuzyil University, Istanbul, Turkey
| | - Oguzhan Karatepe
- Department of SHMYO (Health Occupation School), Yeni Yuzyil University, Istanbul, Turkey
| |
Collapse
|
5
|
The Bisindole Alkaloid Caulerpin, from Seaweeds of the Genus Caulerpa, Attenuated Colon Damage in Murine Colitis Model. Mar Drugs 2018; 16:md16090318. [PMID: 30205459 PMCID: PMC6163434 DOI: 10.3390/md16090318] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022] Open
Abstract
Caulerpin (CLP), an alkaloid from algae of the genus Caulerpa, has shown anti-inflammatory activity. Therefore, this study aimed to analyze the effect of CLP in the murine model of peritonitis and ulcerative colitis. Firstly, the mice were submitted to peritonitis to evaluate which dose of CLP (40, 4, or 0.4 mg/kg) could decrease the inflammatory infiltration in the peritoneum. The most effective doses were 40 and 4 mg/kg. Then, C57BL/6 mice were submitted to colitis development with 3% dextran sulfate sodium (DSS) and treated with CLP at doses of 40 and 4 mg/kg. The disease development was analyzed through the disease activity index (DAI); furthermore, colonic tissue samples were submitted to histological analysis, NFκB determination, and in vitro culture for cytokines assay. Therefore, CLP at 4 mg/kg presented the best results, triggering improvement of DAI and attenuating the colon shortening and damage. This dose was able to reduce the TNF-α, IFN-γ, IL-6, IL-17, and NFκB p65 levels, and increased the levels of IL-10 in the colon tissue. Thus, CLP mice treatment at a dose of 4 mg/kg showed promising results in ameliorating the damage observed in the ulcerative colitis.
Collapse
|
6
|
Dönder Y, Arikan TB, Baykan M, Akyüz M, Öz AB. Effects of quercitrin on bacterial translocation in a rat model of experimental colitis. Asian J Surg 2018; 41:543-550. [PMID: 29371051 DOI: 10.1016/j.asjsur.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/25/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This study aimed to analyze the effects of quercitrin, which has anti-inflammatory properties, on bacterial translocation in inflammatory bowel diseases by using an experimental colitis model. METHODS Forty male Wistar-Albino rats were used in the study. Rats were divided into 4 groups (control, colitis, treatment 1 and 2 groups). The rats in the control group were given normal drinking water. In the colitis group, colitis was induced by 5% DSS in drinking water. The control and colitis groups underwent operation on Day 7. In the 2 treatment groups, 5% DSS was added to drinking water for the first 7 days and the groups were treated with quercitrin at the doses of 1 and 5 mg/kg/day for the following 10 days. Treatment groups operated on Day 18. Blood samples were taken for blood culture and left colectomy was performed. The inflammation in the colon was macroscopically and microscopically evaluated and graded. Tissue samples were taken (liver, spleen and mesenteric lymph nodes (MLN)) for tissue culturing in order to assess bacterial translocation. Tissue myeloperoxidase (MPO), serum tumor necrosis factor-alpha (TNF-α) and plasma endotoxin levels were measured. RESULTS When the control and colitis groups were compared, observed that colitis was induced by DSS (p < 0.05). When the colitis and treatment groups were compared, it was found that quercitrin had a significant therapeutic effect (p < 0.05). CONCLUSION In the experimental colitis model established by using DSS, treatment with quercitrin resulted in a histopathological improvement and reduction in biochemical parameters, inflammation and in bacterial translocation (p < 0.05).
Collapse
Affiliation(s)
- Yunus Dönder
- Kilis State Hospital, Department of General Surgery, Kilis, Turkey.
| | - Türkmen B Arikan
- Erciyes University School of Medicine, Department of General Surgery, Kayseri, Turkey
| | - Mehmet Baykan
- Private Melikgazi Hospital, Department of General Surgery, Kayseri, Turkey
| | - Muhammet Akyüz
- Erciyes University School of Medicine, Department of General Surgery, Kayseri, Turkey
| | - A Bahadır Öz
- Erciyes University School of Medicine, Department of General Surgery, Kayseri, Turkey
| |
Collapse
|
8
|
Li YL, Huang SP, Chen Y. Refractory and active ulcerative colitis complicated by venous thrombosis: a case report. ACTA ACUST UNITED AC 2014; 29:242-4. [PMID: 25429751 DOI: 10.1016/s1001-9294(14)60079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yu-ling Li
- Department of Gastroenterology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510370, China
| | - Sui-ping Huang
- Department of Gastroenterology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510370, China
| | - Yan Chen
- Department of Gastroenterology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510370, China
| |
Collapse
|