1
|
Van Oosterwyck R, Loos E, Willaert A. Otological problems in ichthyosis: A literature review. Int J Pediatr Otorhinolaryngol 2023; 173:111714. [PMID: 37714023 DOI: 10.1016/j.ijporl.2023.111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/29/2023] [Accepted: 08/27/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Ichthyoses are a rare group of keratinization disorders characterized by scaling of the skin due to an impaired barrier function. Few studies have addressed ear involvement in patients with ichthyosis, although it is a probably underestimated aspect of the disease. OBJECTIVE This study aims to provide an overview of the otological manifestations in ichthyosis and propose specific treatment options. METHODS Articles were collected using PubMed, EMBASE, and Web of Science. A total of 53 articles were included in this literature review. RESULTS The most common ear problem in patients with ichthyosis is scale accumulation in the ear canals, which can lead to conductive hearing loss and increases the risk of ear infections. Furthermore, some types of ichthyosis are associated with outer ear malformations. Lastly, sensorineural hearing loss is common in syndromic forms of ichthyosis. CONCLUSIONS Otological problems are present in all types of ichthyoses and their treatment is challenging. The involvement of ear, nose, and throat specialists in the routine care of ichthyosis patients is essential for early identification and treatment of these manifestations. More research is needed to provide more insight into the otological problems in ichthyosis and to ameliorate treatment options.
Collapse
Affiliation(s)
- R Van Oosterwyck
- University Hospitals Leuven, Department of Otorhinolaryngology-Head and Neck Surgery, Herestraat 49, B-3000, Leuven, Belgium
| | - E Loos
- University Hospitals Leuven, Department of Otorhinolaryngology-Head and Neck Surgery, Herestraat 49, B-3000, Leuven, Belgium; KU Leuven, University of Leuven, Department of Neurosciences, Research Group ExpORL, Leuven, Belgium.
| | - A Willaert
- University Hospitals Leuven, Department of Otorhinolaryngology-Head and Neck Surgery, Herestraat 49, B-3000, Leuven, Belgium
| |
Collapse
|
2
|
Siddiqui AJ, Jahan S, Chaturvedi S, Siddiqui MA, Alshahrani MM, Abdelgadir A, Hamadou WS, Saxena J, Sundararaj BK, Snoussi M, Badraoui R, Adnan M. Therapeutic Role of ELOVL in Neurological Diseases. ACS OMEGA 2023; 8:9764-9774. [PMID: 36969404 PMCID: PMC10034982 DOI: 10.1021/acsomega.3c00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Fatty acids play an important role in controlling the energy balance of mammals. De novo lipogenesis also generates a significant amount of lipids that are endogenously produced in addition to their ingestion. Fatty acid elongation beyond 16 carbons (palmitic acid), which can lead to the production of very long chain fatty acids (VLCFA), can be caused by the rate-limiting condensation process. Seven elongases, ELOVL1-7, have been identified in mammals and each has a unique substrate specificity. Researchers have recently developed a keen interest in the elongation of very long chain fatty acids protein 1 (ELOVL1) enzyme as a potential treatment for a variety of diseases. A number of neurological disorders directly or indirectly related to ELOVL1 involve the elongation of monounsaturated (C20:1 and C22:1) and saturated (C18:0-C26:0) acyl-CoAs. VLCFAs and ELOVL1 have a direct impact on the neurological disease. Other neurological symptoms such as ichthyotic keratoderma, spasticity, and hypomyelination have also been linked to the major enzyme (ELOVL1). Recently, ELOVL1 has also been heavily used to treat a number of diseases. The current review focuses on in-depth unique insights regarding the role of ELOVL1 as a therapeutic target and associated neurological disorders.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Sadaf Jahan
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Swati Chaturvedi
- Department
of Pharmaceutics and Pharmacokinetics, Pre-Clinical North, Lab-106, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Maqsood Ahmed Siddiqui
- Department
of Zoology, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department
of Clinical Laboratory Sciences, Faculty of Applied Medial Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdelmushin Abdelgadir
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Walid Sabri Hamadou
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Juhi Saxena
- Department
of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, NH-95, Chandigarh State Hwy, Ludhiana, Punjab 140413, India
| | - Bharath K. Sundararaj
- School
of Dental Medicine, Department of Cellular and Molecular Biology, Boston University, Medical Campus Boston, Boston, Massachusetts 02215, United States
| | - Mejdi Snoussi
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Riadh Badraoui
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| |
Collapse
|
3
|
Seider NA, Adeyemo B, Miller R, Newbold DJ, Hampton JM, Scheidter KM, Rutlin J, Laumann TO, Roland JL, Montez DF, Van AN, Zheng A, Marek S, Kay BP, Bretthorst GL, Schlaggar BL, Greene DJ, Wang Y, Petersen SE, Barch DM, Gordon EM, Snyder AZ, Shimony JS, Dosenbach NUF. Accuracy and reliability of diffusion imaging models. Neuroimage 2022; 254:119138. [PMID: 35339687 PMCID: PMC9841915 DOI: 10.1016/j.neuroimage.2022.119138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 01/19/2023] Open
Abstract
Diffusion imaging aims to non-invasively characterize the anatomy and integrity of the brain's white matter fibers. We evaluated the accuracy and reliability of commonly used diffusion imaging methods as a function of data quantity and analysis method, using both simulations and highly sampled individual-specific data (927-1442 diffusion weighted images [DWIs] per individual). Diffusion imaging methods that allow for crossing fibers (FSL's BedpostX [BPX], DSI Studio's Constant Solid Angle Q-Ball Imaging [CSA-QBI], MRtrix3's Constrained Spherical Deconvolution [CSD]) estimated excess fibers when insufficient data were present and/or when the data did not match the model priors. To reduce such overfitting, we developed a novel Bayesian Multi-tensor Model-selection (BaMM) method and applied it to the popular ball-and-stick model used in BedpostX within the FSL software package. BaMM was robust to overfitting and showed high reliability and the relatively best crossing-fiber accuracy with increasing amounts of diffusion data. Thus, sufficient data and an overfitting resistant analysis method enhance precision diffusion imaging. For potential clinical applications of diffusion imaging, such as neurosurgical planning and deep brain stimulation (DBS), the quantities of data required to achieve diffusion imaging reliability are lower than those needed for functional MRI.
Collapse
Affiliation(s)
- Nicole A Seider
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Ryland Miller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Neurology, New York University Langone Medical Center, New York, NY 10016, United States of America
| | - Jacqueline M Hampton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Kristen M Scheidter
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Jerrel Rutlin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Jarod L Roland
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO 63110 United States of America
| | - David F Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO 63110, United States of America
| | - Annie Zheng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - G Larry Bretthorst
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Chemistry, Washington University in St Louis, St. Louis, MO 63110, United States of America
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD 21205, United States of America; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, United States of America
| | - Yong Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO 63110, United States of America
| | - Steven E Petersen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO 63110, United States of America; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Psychological and Brain Sciences, Washington University in St. Louis, MO 63110, United States of America
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Psychological and Brain Sciences, Washington University in St. Louis, MO 63110, United States of America
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO 63110, United States of America; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| |
Collapse
|
4
|
Villar-Vera C, Cuesta Peredo A, Monfort-Belenguer L, Abellán Sanchez MR, Martínez-Costa C. Síndrome de Sjögren-Larsson en España; descripción de 3 nuevos casos. An Pediatr (Barc) 2021. [DOI: 10.1016/j.anpedi.2020.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
5
|
Villar-Vera C, Cuesta Peredo A, Monfort-Belenguer L, Abellán Sanchez MR, Martínez-Costa C. Sjögren-Larsson syndrome in Spain: Description of three new cases. An Pediatr (Barc) 2021; 95:203-204. [PMID: 34340960 DOI: 10.1016/j.anpede.2020.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/31/2020] [Indexed: 10/20/2022] Open
Affiliation(s)
- Cristina Villar-Vera
- Unidad de Neuropediatría, Servicio de Pediatría, Hospital Clínico Universitario de Valencia, Valencia, Spain.
| | - Ana Cuesta Peredo
- Laboratorio de Bioquímica y Patología Molecular, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Lucía Monfort-Belenguer
- Unidad de Neuropediatría, Servicio de Pediatría, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | | |
Collapse
|
6
|
Debs S, Ferreira CR, Groden C, Kim HJ, King KA, King MC, Lehky T, Cowen EW, Brown LH, Merideth M, Owen CM, Macnamara E, Toro C, Gahl WA, Soldatos A. Adult diagnosis of congenital serine biosynthesis defect: A treatable cause of progressive neuropathy. Am J Med Genet A 2021; 185:2102-2107. [PMID: 34089226 DOI: 10.1002/ajmg.a.62245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 11/07/2022]
Abstract
A woman with ichthyosis, contractures, and progressive neuropathy represents the first case of phosphoserine aminotransferase deficiency diagnosed and treated in an adult. She has novel compound heterozygous mutations in the gene PSAT1. Treatment with high dose oral L-serine completely resolved the ichthyosis. Consideration of this diagnosis is important because early treatment with L-serine repletion can halt progression of neurodegeneration and potentially improve neurological disabilities. As exome sequencing becomes more widely implemented in the diagnostic evaluation of progressive neurodegenerative phenotypes, adult neurologists and geneticists will increasingly encounter later onset manifestations of inborn errors of metabolism classically considered in infancy and early childhood.
Collapse
Affiliation(s)
- Sarah Debs
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Catherine Groden
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - H Jeffrey Kim
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelly A King
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Monique C King
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Tanya Lehky
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward W Cowen
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura H Brown
- Johns Hopkins Community Physicians_North Bethesda, Rockville, MD, USA
| | - Melissa Merideth
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Carter M Owen
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ellen Macnamara
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Camilo Toro
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William A Gahl
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Diociaiuti A, Martinelli D, Nicita F, Cesario C, Pisaneschi E, Macchiaiolo M, Rossi S, Condorelli AG, Zambruno G, El Hachem M. Two Italian Patients with ELOVL4-Related Neuro-Ichthyosis: Expanding the Genotypic and Phenotypic Spectrum and Ultrastructural Characterization. Genes (Basel) 2021; 12:genes12030343. [PMID: 33652762 PMCID: PMC7996761 DOI: 10.3390/genes12030343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/03/2022] Open
Abstract
Elongation of Very Long Chain Fatty Acid-4 (ELOVL4) is a fatty acid elongase responsible for very long-chain fatty acid biosynthesis in the brain, retina, and skin. Heterozygous mutations in ELOVL4 gene cause Stargardt-like macular dystrophy and spinocerebellar ataxia type-34, while different homozygous mutations have been associated with ichthyosis, spastic quadriplegia, and mental retardation syndrome in three kindred. We report the first two Italian children affected with neuro-ichthyosis due to the previously undescribed ELOVL4 homozygous frameshift variant c.435dupT (p.Ile146TyrfsTer29), and compound heterozygous variants c.208C>T (p.Arg70Ter) and c.487T>C (p.Cys163Arg), respectively. Both patients were born with collodion membrane followed by development of diffuse mild hyperkeratosis and scaling, localized erythema, and palmoplantar keratoderma. One infant displayed mild facial dysmorphism. They suffered from failure to thrive, and severe gastro-esophageal reflux with pulmonary aspiration. The patients presented axial hypotonia, hypertonia of limbs, and absent head control with poor eye contact from infancy. Visual evoked potentials showed markedly increased latency and poor morphological definition, indicative of alteration of the retro-retinal visual pathways in both patients. Ultrastructural skin examination revealed abnormalities of lamellar bodies with altered release in the epidermal granular and horny layer intracellular spaces. Our findings contribute to expanding the phenotypic and genotypic features of ELOVL4-related neuro-ichthyosis.
Collapse
Affiliation(s)
- Andrea Diociaiuti
- Dermatology Unit, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.C.); (G.Z.)
- Correspondence: ; Tel.: +39-066-859-2509; Fax: +39-066-859-2300
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio, 4, 00165 Rome, Italy;
| | - Claudia Cesario
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio, 4, 00165 Rome, Italy; (C.C.); (E.P.)
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio, 4, 00165 Rome, Italy; (C.C.); (E.P.)
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio, 4, 00165 Rome, Italy;
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio, 4, 00165 Rome, Italy;
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.C.); (G.Z.)
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.C.); (G.Z.)
| | - May El Hachem
- Dermatology Unit, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.C.); (G.Z.)
| |
Collapse
|
8
|
Krupenko NI, Sharma J, Pediaditakis P, Helke KL, Hall MS, Du X, Sumner S, Krupenko SA. Aldh1l2 knockout mouse metabolomics links the loss of the mitochondrial folate enzyme to deregulation of a lipid metabolism observed in rare human disorder. Hum Genomics 2020; 14:41. [PMID: 33168096 PMCID: PMC7654619 DOI: 10.1186/s40246-020-00291-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Background Mitochondrial folate enzyme ALDH1L2 (aldehyde dehydrogenase 1 family member L2) converts 10-formyltetrahydrofolate to tetrahydrofolate and CO2 simultaneously producing NADPH. We have recently reported that the lack of the enzyme due to compound heterozygous mutations was associated with neuro-ichthyotic syndrome in a male patient. Here, we address the role of ALDH1L2 in cellular metabolism and highlight the mechanism by which the enzyme regulates lipid oxidation. Methods We generated Aldh1l2 knockout (KO) mouse model, characterized its phenotype, tissue histology, and levels of reduced folate pools and applied untargeted metabolomics to determine metabolic changes in the liver, pancreas, and plasma caused by the enzyme loss. We have also used NanoString Mouse Inflammation V2 Code Set to analyze inflammatory gene expression and evaluate the role of ALDH1L2 in the regulation of inflammatory pathways. Results Both male and female Aldh1l2 KO mice were viable and did not show an apparent phenotype. However, H&E and Oil Red O staining revealed the accumulation of lipid vesicles localized between the central veins and portal triads in the liver of Aldh1l2-/- male mice indicating abnormal lipid metabolism. The metabolomic analysis showed vastly changed metabotypes in the liver and plasma in these mice suggesting channeling of fatty acids away from β-oxidation. Specifically, drastically increased plasma acylcarnitine and acylglycine conjugates were indicative of impaired β-oxidation in the liver. Our metabolomics data further showed that mechanistically, the regulation of lipid metabolism by ALDH1L2 is linked to coenzyme A biosynthesis through the following steps. ALDH1L2 enables sufficient NADPH production in mitochondria to maintain high levels of glutathione, which in turn is required to support high levels of cysteine, the coenzyme A precursor. As the final outcome, the deregulation of lipid metabolism due to ALDH1L2 loss led to decreased ATP levels in mitochondria. Conclusions The ALDH1L2 function is important for CoA-dependent pathways including β-oxidation, TCA cycle, and bile acid biosynthesis. The role of ALDH1L2 in the lipid metabolism explains why the loss of this enzyme is associated with neuro-cutaneous diseases. On a broader scale, our study links folate metabolism to the regulation of lipid homeostasis and the energy balance in the cell. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-020-00291-3.
Collapse
Affiliation(s)
- Natalia I Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Jaspreet Sharma
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Peter Pediaditakis
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Madeline S Hall
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Xiuxia Du
- Department of Bioinformatics & Genomics, UNC Charlotte, Charlotte, NC, USA
| | - Susan Sumner
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Sergey A Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA. .,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Fouzdar-Jain S, Suh DW, Rizzo WB. Sjögren-Larsson syndrome: a complex metabolic disease with a distinctive ocular phenotype. Ophthalmic Genet 2019; 40:298-308. [DOI: 10.1080/13816810.2019.1660379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samiksha Fouzdar-Jain
- Department of Pediatrics and Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Children’s Hospital & Medical Center, Omaha, NE, USA
- Department of Ophthalmology and Visual Science, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Donny W Suh
- Department of Pediatrics and Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Children’s Hospital & Medical Center, Omaha, NE, USA
- Department of Ophthalmology and Visual Science, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - William B Rizzo
- Department of Pediatrics and Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
10
|
Sarret C, Ashkavand Z, Paules E, Dorboz I, Pediaditakis P, Sumner S, Eymard-Pierre E, Francannet C, Krupenko NI, Boespflug-Tanguy O, Krupenko SA. Deleterious mutations in ALDH1L2 suggest a novel cause for neuro-ichthyotic syndrome. NPJ Genom Med 2019; 4:17. [PMID: 31341639 PMCID: PMC6650503 DOI: 10.1038/s41525-019-0092-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023] Open
Abstract
Neuro-ichthyotic syndromes are a group of rare genetic diseases mainly associated with perturbations in lipid metabolism, intracellular vesicle trafficking, or glycoprotein synthesis. Here, we report a patient with a neuro-ichthyotic syndrome associated with deleterious mutations in the ALDH1L2 (aldehyde dehydrogenase 1 family member L2) gene encoding for mitochondrial 10-formyltetrahydrofolate dehydrogenase. Using fibroblast culture established from the ALDH1L2-deficient patient, we demonstrated that the enzyme loss impaired mitochondrial function affecting both mitochondrial morphology and the pool of metabolites relevant to β-oxidation of fatty acids. Cells lacking the enzyme had distorted mitochondria, accumulated acylcarnitine derivatives and Krebs cycle intermediates, and had lower ATP and increased ADP/AMP indicative of a low energy index. Re-expression of functional ALDH1L2 enzyme in deficient cells restored the mitochondrial morphology and the metabolic profile of fibroblasts from healthy individuals. Our study underscores the role of ALDH1L2 in the maintenance of mitochondrial integrity and energy balance of the cell, and suggests the loss of the enzyme as the cause of neuro-cutaneous disease.
Collapse
Affiliation(s)
- Catherine Sarret
- IGCNC, Institut Pascal, UMR CNRS-UCA-SIGMA, Aubière, France
- Department of Clinical Genetics and Medical Cytogenetics, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Zahra Ashkavand
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
| | - Evan Paules
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| | - Imen Dorboz
- INSERM UMR1141, DHU PROTECT, PARIS-DIDEROT, University Sorbonne Paris-Cite, Paris, France
| | - Peter Pediaditakis
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
| | - Susan Sumner
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| | - Eléonore Eymard-Pierre
- Department of Clinical Genetics and Medical Cytogenetics, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Christine Francannet
- Department of Clinical Genetics and Medical Cytogenetics, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Natalia I. Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| | - Odile Boespflug-Tanguy
- INSERM UMR1141, DHU PROTECT, PARIS-DIDEROT, University Sorbonne Paris-Cite, Paris, France
- Department of Child Neurology and Metabolic Disorders, LEUKOFRANCE, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sergey A. Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
11
|
Cho KH, Shim SH, Kim M. Clinical, biochemical, and genetic aspects of Sjögren-Larsson syndrome. Clin Genet 2017; 93:721-730. [PMID: 28543186 DOI: 10.1111/cge.13058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/14/2017] [Accepted: 05/18/2017] [Indexed: 11/26/2022]
Abstract
Sjögren-Larsson syndrome (SLS) is caused by an autosomal recessive mutation in ALDH3A2, which encodes the fatty aldehyde dehydrogenase responsible for the metabolism of long-chain aliphatic aldehydes and alcohols. The pathophysiologic accumulation of aldehydes in various organs, including the skin, brain, and eyes, leads to characteristic features of ichthyosis, intellectual disability, spastic di-/quadriplegia, and low visual acuity with photophobia. The severity of the clinical manifestations thereof can vary greatly, although most patients are bound to a wheelchair due to contractures. To date, correlations between genotype and phenotype have proven difficult to document due to low disease incidence and high heterogenetic variability in mutations. This review summarizes the clinical characteristics of SLS that have been found to contribute to the prognosis thereof, as well as recent updates from genetic and brain imaging studies. In addition, the differential diagnoses of SLS are briefly illustrated, covering cerebral palsy and other genetic or neurocutaneous syndromes mimicking the syndrome.
Collapse
Affiliation(s)
- K H Cho
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - S H Shim
- Genetics Laboratory, Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - M Kim
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
12
|
Saral S, Vural A, Wollenberg A, Ruzicka T. A practical approach to ichthyoses with systemic manifestations. Clin Genet 2016; 91:799-812. [DOI: 10.1111/cge.12828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/06/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022]
Affiliation(s)
- S. Saral
- Department of Dermatology and Venereology; Ankara University; Ankara Turkey
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| | - A. Vural
- Department of Neurology; Hacettepe University; Ankara Turkey
| | - A. Wollenberg
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| | - T. Ruzicka
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| |
Collapse
|
13
|
Clinico-radiological and genetic features of a common neuro-ichthyotic syndrome. Indian J Pediatr 2015; 82:487-9. [PMID: 25532748 DOI: 10.1007/s12098-014-1663-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/04/2014] [Indexed: 01/25/2023]
|
14
|
Wu JW, Yang H, Wang SP, Soni KG, Brunel-Guitton C, Mitchell GA. Inborn errors of cytoplasmic triglyceride metabolism. J Inherit Metab Dis 2015; 38:85-98. [PMID: 25300978 DOI: 10.1007/s10545-014-9767-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
Abstract
Triglyceride (TG) synthesis, storage, and degradation together constitute cytoplasmic TG metabolism (CTGM). CTGM is mostly studied in adipocytes, where starting from glycerol-3-phosphate and fatty acyl (FA)-coenzyme A (CoA), TGs are synthesized then stored in cytoplasmic lipid droplets. TG hydrolysis proceeds sequentially, producing FAs and glycerol. Several reactions of CTGM can be catalyzed by more than one enzyme, creating great potential for complex tissue-specific physiology. In adipose tissue, CTGM provides FA as a systemic energy source during fasting and is related to obesity. Inborn errors and mouse models have demonstrated the importance of CTGM for non-adipose tissues, including skeletal muscle, myocardium and liver, because steatosis and dysfunction can occur. We discuss known inborn errors of CTGM, including deficiencies of: AGPAT2 (a form of generalized lipodystrophy), LPIN1 (childhood rhabdomyolysis), LPIN2 (an inflammatory condition, Majeed syndrome, described elsewhere in this issue), DGAT1 (protein loosing enteropathy), perilipin 1 (partial lipodystrophy), CGI-58 (gene ABHD5, neutral lipid storage disease (NLSD) with ichthyosis and "Jordan's anomaly" of vacuolated polymorphonuclear leukocytes), adipose triglyceride lipase (ATGL, gene PNPLA2, NLSD with myopathy, cardiomyopathy and Jordan's anomaly), hormone-sensitive lipase (HSL, gene LIPE, hypertriglyceridemia, and insulin resistance). Two inborn errors of glycerol metabolism are known: glycerol kinase (GK, causing pseudohypertriglyceridemia) and glycerol-3-phosphate dehydrogenase (GPD1, childhood hepatic steatosis). Mouse models often resemble human phenotypes but may diverge markedly. Inborn errors have been described for less than one-third of CTGM enzymes, and new phenotypes may yet be identified.
Collapse
Affiliation(s)
- Jiang Wei Wu
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | | | | | | | | | | |
Collapse
|